

CES Medicina ISSN: 0120-8705 ISSN: 2215-9177

Universidad CES

Rojas-Gallego, Isabel Cristina; Vásquez-Builes, Santiago; Escorcia-García, Clara Lucía; Alvarán-Florez, Liliana Fisiopatologia do dano cerebral e traumatismo encéfalo craniano CES Medicina, vol. 32, núm. 1, 2018, Janeiro-Abril, pp. 31-40 Universidad CES

DOI: https://doi.org/10.21615/cesmedicina.32.1.4

Disponível em: https://www.redalyc.org/articulo.oa?id=261157133005

Número completo

Mais informações do artigo

Site da revista em redalyc.org

Sistema de Informação Científica Redalyc

Rede de Revistas Científicas da América Latina e do Caribe, Espanha e Portugal Sem fins lucrativos acadêmica projeto, desenvolvido no âmbito da iniciativa

acesso aberto

Revisão do tema

Fisiopatologia do dano cerebral e traumatismo encéfalo craniano

Fisiopatología del daño cerebral en el trauma encéfalo-craneano

Isabel Cristina Rojas-Gallego¹.²™, Santiago Vásquez-Builes², Clara Lucía Escorcia-García², Liliana Alvarán- Florez²

Data correspondência:

Recebido: 21 de outubro de 2016. Revisado: 27 de setembro de 2017. Aceito: 23 de outubro de 2017.

Formulário para citar:

Rojas-Gallego IC, Vásquez-Builes S, Escorcia-García CL, Alvarán-Florez L. Fisiopatologia do dano cerebral em trauma encéfalo cutâneo. Rev CES Med 2018; 32(1): 31-40.

Open access
© Derecho de autor
Licencia creative commons
Ética de publicaciones
Revisión por pares
Gestión por Open Journal System
DOI: http://dx.doi.org/10.21615/
cesmedicina.32.1.4
ISSN 0120-8705
e-ISSN 2215-9177

Sobre os autores:

1. Médico e cirurgião, especialista em Ciências Biomédicas Básicas, Mestrado em Educação, Graduação e Pós-Graduação em Anatomia, Universidade CES.

Comparte

Resumo

O trauma craniocerebral é considerado a causa mais comum de dano cerebral adquirido. É um problema de saúde pública devido à sua grande incidência em todo o mundo, sua alta mortalidade e as sequelas que causa nas funções motoras, endócrinas, cognitivas, ou sensoriais que aparecem imediatamente ou após o dano cerebral causado. Métodos: foram analisados alguns bancos de dados, foram encontrados 33 artigos de revisão sobre a fisiopatologia, chave para definir os dois mecanismos: lesões primárias e secundárias. Estes últimos estão associados ao aparecimento de necrose e apoptose no tecido comprometido e geralmente são induzidos após alterações na homeostase do cálcio, excitotoxicidade e neuroinflamação. Posteriormente, a neurodegeneração ocorre, associada a alterações difusas devido a alterações na fisiopatologia. O conhecimento básico dos mecanismos fisiopatológicos que medeiam danos cerebrais no trauma cerebral-cérebro nos permite compreender as diferentes intervenções que são realizadas e melhorar o prognóstico neurológico do paciente.

Palavras-chave: Trauma cerebral-craniano; Lesão axonal; Contusão cerebral; Neurotraumaia.

Resumen

El trauma encéfalo-craneano se considera como la causa más común de daño cerebral adquirido. Es un problema de salud pública por su alta incidencia a nivel mundial, su alta mortalidad y las secuelas que ocasiona en las funciones motoras, endocrinas, cognitivas, sensitivas o sensoriales que aparecen inmediatamente o después del daño cerebral ocasionado. Métodos: se revisaron algunas bases de datos encontrándose 33 artículos de revisión sobre la fisiopatología, clave para la definir los dos mecanismos: lesiones primarias y lesiones secundarias. Estas últimas están vinculadas con la aparición de necrosis y apoptosis en el tejido comprometido y generalmente se inducen luego de alteraciones en la homeostasis del calcio, excitotoxicidad y neuroinflamación. Posteriormente, se presenta neurodegeneración, asociada a los cambios difusos por las alteraciones en la fisiopatología. El conocimiento básico de los mecanismos fisiopatológicos que median el daño cerebral en el trauma encéfalo-craneano permite comprender las diferentes intervenciones que se realizan y mejorar el pronóstico neurológico del paciente.

Palabras clave: Trauma encéfalo-craneano; Lesión axonal; Contusión cerebral; Neurotrauma.

2. Estudantes de Medicina CES University Neuroscience Group, CES University.

Introdução

O trauma cerebral-craniano é considerado a causa mais comum de dano cerebral adquirido (1). Na prática neurológica e neuropsicológica, a condição é que desempenha o maior número de intervenções devido aos danos que causa (1). Caracteriza-se por uma alteração na atividade cerebral secundária a uma lesão traumática que exerce um passo de energia que gera danos e compromete estruturas como tecido cerebral e vasos sanguíneos (2).

A presença de um dos seguintes sinais define uma alteração na atividade cerebral (2): perda ou diminuição da consciência; perda de memória antes ou após o evento ter ocorrido; fraqueza, perda de equilíbrio, paralisia ou perda de visão e, alteração mental no momento da lesão.

Os homens são 1,4 vezes mais propensos do que as mulheres a sofrer trauma encéfalo-craniano. Maior prevalência foi encontrada na primeira infância (0 a 4 anos), adolescência (15 a 19 anos) e adultos mais velhos (mais de 75 anos) (3).

A primeira causa pela qual ocorre devido a quedas de altura própria, o que ocorrem mais frequentemente na primeira infância e em adultos mais velhos de 75 anos. A segunda causa são acidentes de trânsito, onde há maior ocorrência. A mortalidade (31%) e a população adolescente estão mais comprometidas (3). De acordo com a Organização Mundial da Saúde, o trauma encéfalo-craniano será um dos principais causas de morte e incapacidade funcional no ano 2020 (4).

Este artigo pretende descrever uma revisão de considerações fisiopatológicas encontradas na literatura científica, que se desenvolve em pacientes com trauma encéfalo-craniano, especificamente na fisiopatologia da lesão axonal difusa.

Lesões focais

Lesões cerebrais primárias em trauma craniano

As lesões primárias causadas pelo trauma craniano são manifestadas por duas formas: *focal e difusa*. Os focos são produzidos principalmente por traumatismo direto no crânio e inclui contusões, lacerações corticais ou subcorticais, hematomas (subdural e peridural) e hemorragias intracranianas (subaracnócidas e intraparenquimatosas) (5). Lesões difusas são causadas por esticão, esmagamento ou efeito direto no tecido cerebral. Este tipo de lesão inclui lesão axonal difusa, lesão hipóxico-isquêmica e alterações na permeabilidade vascular (hemorragia, edema e ruptura da barreira hematoencefálica) (6).

A lesão axonal difusa refere-se a um processo de dano axonal generalizado, secundário aos mecanismos de rotação, aceleração e desaceleração da cabeça, bem como a propagação da força através do cérebro após um trauma agudo ou repetitivo.

Lesões difusas

A lesão axonal difusa surgiu nos últimos 70 anos como característica patológica a traumatismo cérebro-cérebro mais comum e importante (4) e ocorre mais frequentemente em adultos (42%) do que em crianças (22%). Entre aqueles que sofrem desta alteração, 43% não sobrevivem, 9% culminam em estado vegetativo e menos de 50% são capazes de levar uma vida independente (7).

A lesão axonal difusa refere-se a um processo de dano axonal generalizado, secundário aos mecanismos de rotação, aceleração e desaceleração da cabeça, bem como a propagação da força através do cérebro após um trauma agudo ou repetitivo (7).

É considerada uma doença estrutural na qual a arquitetura básica do cérebro é irreversivelmente interrompido em escala microscópica. Aparecem aparências nas vias eletroquímica, metabólica e inflamatória, bem como no corte e redução da substância branca (7). O cisalhamento neuronal produz um segmento axonal proximal que permanece conectado ao soma neuronal e um segmento distal que avança para a degeneração de Waller (8).

Devido à lesão axonal difusa, há proteólise, desgaste dos pequenos vasos sanguíneos, acumulação de remanescentes de mielina e agregação de proteína beta-amilóide e proteína TAU cronicamente (9). O dano induzido diminui a plasticidade axonal e evita a recuperação em sua forma original (10). As áreas mais afetadas são o tronco encefálico, a substância branca do córtex cerebral e o corpo caloso. O compromisso deste último é um indicador de mau prognóstico (8).

Dependendo da gravidade e extensão da lesão, pode manifestar-se agudo com confusão ou perda imediata de consciência e em casos mais graves, persistir ao coma ou disfunção cognitiva (tabela 1) (8).

Tabela 1. Classificação da lesão axonal difusa

Classificação - graus	Território anatômico comprometido
I - Suave	Substância cinza e branca dos lobos frontais
II - Moderada	Lesão do corpo caloso e substância branca subcortical
III - Severo	Região medial dorsolateral, substância brancasubcortical ecorpus callosum

Diferentes tipos de histopatologia são evidenciados pós-morte para confirmar o diagnóstico de lesão axonal difusa. Essas lesões podem ser observadas microscopicamente como varizes, edema axonal, bulbos terminais ou presença de proteína precursora beta-amilóide sob a forma de "salsicha" (11). Varicosidades e edema axonal são caracterizados por inflamações interligadas por um axônio de maneira contígua na substância branca. A presença de bulbos terminais está relacionada à interrupção do transporte axonal devido à força repentina nas interfaces de substância cinza e branca (8).

Necrose e apoptose podem evoluir em paralelo no mesmo tecido danificado.

A detecção histopatológica da proteína precursora beta-amilóide na forma de "salsicha" é devida a um padrão de deposição dispersa e difusa de grupos individuais ou pequenos de proteína precursora beta-amilóide nos axônios. Se forem observados focos circunscritos na forma de "ziguezague" ou "Z", não sugere que a lesão axonal difusa seja de origem traumática, mas de origem isquêmica (12).

Fisiopatologia de lesões cerebrais secundárias em trauma craniano

A apoptose e necrose são dois mecanismos de morte celular que se distinguiram pelas diferenças em seus mecanismos patológicos e foram observados no sistema nervoso após lesão traumática (13). A apoptose é um processo ativo que requer energia, enquanto a necrose é um evento passivo que resulta de uma falha de energia e alteração na homeostase iónica (13). Evidências recentes mostram que necrose e apoptose podem evoluir em paralelo no mesmo tecido danificado (13). Esta forma híbrida de morte celular é chamada de aponecrose e reflete o fato de que essas células apresentam as características morfológicas de ambos os tipos de morte celular (13,14). Em seguida, são mencionados mecanismos diferentes que facilitam a apoptose e a necrose nos neurônios como mecanismos secundários.

Alteração da homeostase de cálcio

A resposta secundária à lesão axonal é observada com o aumento nos níveis de cálcio intracelular. A alteração física direta da membrana celular é a maneira mais comum de alterar a homeostase do cálcio: no entanto, as alterações nos níveis de cálcio podem ocorrer mesmo quando a membrana não é interrompida (15). Geralmente, a alteração na homeostase de cálcio produz mudanças iónicas que precipitam a deformação axonal, axotomia secundária e degeneração walleriana (8).

A deformação axonal inicia a abertura de canais de sódio sensíveis a mecânicos. reverte os transportadores de sódio-cálcio e ativa os canais de cálcio dependentes de tensão; Além disso, a ruptura mecânica cria lacunas no axolema que culminam continuamente no influxo extracelular de cálcio (11). Os canais do tipo de cálcio L e T dependentes da tensão também foram associados à deformação axonal (16).

A resposta secundária à lesão axonal é observada com o aumento nos níveis de cálcio intracelular.

> Por outro lado, há um aumento inicial de cálcio a partir de fontes intraaxonaiscomo as mitocôndrias e o retículo sarcoplásmico, bem como a falha nos mecanismos de reparo intracelular (17). Portanto, a elevação intracelular do cálcio contribui para um aumento do cálcio axoplasmático que prejudica os axônios de neurônios através da destruição do citoesqueleto, disfunção mitocondrial e ativação de proteases, como calpains (figura 1) (13,18).

> Calpains tem diferentes isotipos, incluindo macro-calpain e micro-calpain que estão localizados no sistema nervoso central. Embora calpaínas têm diferentes substratos de degradação dentro dos neurônios, como elementoscitoesqueleto, neurofilamentos, proteína quinase C, ligação à proteína calmodulina e fatores de transcrição, um dos mais amplamente investigados é o spectrin (13).

> Spectrin é o principal componente do citoesqueleto neuronal e sua clivagem pelo calpain conduz à destruição da integridade celular, aparência de permeabilidade da membrana, compromisso de transporte axonal e indução de mecanismos de morte celular (13).

> O excesso de influxo de cálcio e a ativação concomitante de calpains conduzem a degradação proteolítica de proteínas e membranas intracelulares. Além disso, facilitar a liberação de neurotransmissores excitatórios para criar um "loop" de "feedback" positivo, que perpetua a despolarização em neurônios (13,18) (figura 1).

FIGURA 1 | CASCADA DE LESIÓN INTRACELULAR EN LAD

Figura 1. Estruturas celulares que participam de lesões axonais

(feita pelos autores)

[A] Em resposta ao trauma, o axolema sofre uma falha mecânica primária, expondoo citossol no espaço extracelular e ativando os canais mechanosensitivos de sódio que resultam em um fluxo de sódio para o axoplasma.

Geralmente, a alteração na homeostase de cálcio produz mudanças iónicas que precipitam a deformação axonal, axotomia secundária e dege-

neração walleriana.

[[]B] A perturbação do equilíbrio iônico resulta em mudanças direcionais no fluxo de cálcio, o que leva à sua acumulação intracelular [C] O cálcio pode ser sequestrado pelas mitocôndrias, no entanto, isso gera espécies reativas de oxigênio que interrompem o metabolismo oxidativo e causam danos ao axônio. Da mesma forma, o cálcio elevado pode ativar calpainas dependentes de cálcio, que medeiam a degradação do citoesqueleto. [D] O dano do citoesqueleto produz alteração do transporte axonal, edema axonal e compactação de neurofilamentos

Exitoxicidade

Os neurotransmissores desencadeiam excitoxicidade; O glutamato é o principal contribuindo para a referida lesão devido ao seu poderoso efeito no aumento do cálcio intracelular através de receptores ionotrópicos (principalmente NMDA) (12). A sobrecargade cálcio induzido por receptores de glutamato ativa as enzimas dependentes de cálcio, aumenta as espécies reativas de oxigênio e nitrogênio e culmina com a ativação de cascatas de morte celular necrótica ou apoptótica (11).

A deterioração da recaptação de glutamato por astrocitos no nível extracelular aumenta a excitotoxicidade (19). Os Astrocytes são a principal defesa durante a liberação extracelular de glutamato, devido à sua alta capacidade de captura através dos transportadores de glutamato-1 (GLT-1) e do transportador de aspartato de glutamato (GLAST) (20). Através deste mecanismo, as concentrações o glutamato extracelular é tamponado, quando capturado e metabolizado paraglutamina, que é diluída em sincitia astrocítica, através das junções defenda (21).

Microglia é a primeira linha de defesa após um trauma encéfalo-craniano.

Numa segunda fase, se persistirem altas concentrações de glutamato extracelular, astrocitos diminuem os transportadores de glutamato e sobrecarregam de sódio intracelular, favorecendo a saída de glutamato do astrocito eaumentando o dano excitotóxico (22). O hipocampo e o estriado são duas regiões do cérebro particularmente sensíveis à morte neuronal excitotóxica após isquemia cerebral. Um estudo realizado em pacientes que sofreram o trauma encefalônico-craniano grave descobre aumento do glutamato extracelularem mais de 75% dos pacientes. Os valores de glutamato são normalizados em 60% dos pacientes ao longo de cinco dias, mas há maior mortalidade em pacientes com elevações persistentes (23).

Resposta celular neuroinflamatória

Microglia é a primeira linha de defesa após um trauma encéfalo-craniano(24). Migra rapidamente para a área lesada e ativa processos citoplasmáticos para os axônios lesados, a fim de isolar as estruturas danificadas (21). Está associado a uma variedade de funções nocivas e regenerativas, incluindo fagocitose, secreção de neutrofina e citoquinas (25). A secreção de citocinas possivelmente ocorre em níveis elevados de trifosfato de adenosina (ATP) liberados pelas células lesadas. As citocinas pró-inflamatórias que predominam durante a lesão é o fator de necrose tumoral alfa, interleucina-1, interleucina-6, interleucina-12 e interferão-gama (26).

Um "ciclo de citoquinas" foi proposto onde o trauma cerebral-craniano pode, em indivíduos suscetíveis, iniciar uma resposta inflamatória sustentada que resulte em neurodegeneração (26). Neste ciclo, a interleucina-1 é um agente chave de iniciação e coordenação que promove a síntese e processamento neuronal da proteína precursora beta-amilóide, favorecendo a deposição contínua de beta-amilóide e a ativação de astrócitos e síntese astrocítica (27).

A lesão resultante desse dano neuronal induzido por citocinas pode ativar a microglia com uma superexpressão adicional da interleucina-1, produzindo assim a amplificação do feedback e auto-propagação deste ciclo de citoquinas. A propagação crônica deste ciclo representa um possível mecanismo para a progressão das alterações neurodegenerativas observadas na doença de Alzheimer (27).

Na próxima fase da lesão aguda, uma série complexa de respostas é iniciada inflamações com comprometimento inicial da barreira hematoencefálica e infiltração deleucócitos polimorfonucleares, células T e macrófagos do sangue (28).

Os astrocitos e os oligodendrócitos participam ativamente de muitas das funções do sistema nervoso central e podem ter um papel proeminente na perpetuação dos processos inflamatórios pós-trauma (29). Essas células geralmente despolarizam (alteram seu potencial elétrico) em resposta a lesões diretas aos neurônios. Seu efeito é propagado porque essas células são unidas por junções de fenda (29).

A despolarização de astrocitos e oligodendrócitos altera a homeostase de íons, danosa mitocôndria e permite a aparência de degeneração axonal ao longo do tecidocérebro que contribui para a perda pós-traumática de matéria branca (29). A presença de oligodendrócitos está associada à degeneração da mielina (30). Em modelos animais com lesão axonal difusa, os astrocitos produzem infiltração do tálamo às quatro e oito horas após a lesão, com marcadores de dano máximo evidentes entre 48 horas e duas semanas após a lesão (18).

Na próxima fase da lesão aguda, uma série complexa de respostas é iniciada inflamações com comprometimento inicial da barreira hematoencefálica e infiltração de leucócitos polimorfonucleares, células T e macrófagos do sangue (28).

Os astrocitos e os oligodendrócitos participam ativamente de muitas das funções do sistema nervoso central e podem ter um papel proeminente na perpetuação dos processos inflamatórios pós-trauma (29). Essas células geralmente despolarizam em resposta a lesões diretas aos neurônios. Seu efeito é propagado porque essas células são unidas por junções de fenda (29).

A maioria dos traumas encefalo-cranianos tem reduções significativas no fluxo sanguíneo cerebral nas primeiras 12 horas pós-trauma.

A despolarização de astrocitos e oligodendrócitos altera a homeostase de íons, danosa mitocôndria e permite a aparência de degeneração axonal ao longo do tecidocérebro que contribui para a perda pós-traumática de matéria branca (29). O a presença de oligodendrócitos está associada à degeneração da mielina (30). Em modelos animais com lesão axonal difusa, os astrocitos produzem infiltração do tálamo às quatro e oito horas após a lesão, com marcadores de dano máximo evidentes entre 48 horas e duas semanas após a lesão (18).

Mudanças na permeabilidade vascular

As mudanças na permeabilidade vascular levam a alterações no fluxo sanguíneo cerebral, na difusão da água e na ruptura da barreira hematoencefálica, que se manifestam clinicamente com aparência de edema cerebral e hemorragias (<u>6</u>).

As mudanças no fluxo sanguíneo cerebral dependem do tamanho, localização e tipo de ferimento no tecido (<u>6</u>). A maioria dos traumas encefalo-cranianos tem reduções significativas no fluxo sanguíneo cerebral nas primeiras 12 horas pós-trauma. Foi relatado que os valores do fluxo sanguíneo cerebral podem atingir níveis isquêmicos que caem para 18-20 mL / 100 mL / min. após traumatismo cerebral-craniano grave (valores normais são 45-50 mL / 100 mL / min.) (<u>6</u>).

Após este período inicial, muitos pacientes experimentam hiperemia, enquanto que outros mostraram valores de fluxo sanguíneo cerebral baixos ou normais. Tem observou que a diminuição do fluxo sanguíneo cerebral pode levar a uma lesão cerebral isquêmica, que é a principal causa de morte após traumacranio cerebral intenso (6).

O edema cerebral é causado pelo acúmulo de líquido no cérebro. Depois de um trauma encefalo-craniano forma edema no local da lesão e pode incorporar o tecido circundante (<u>6</u>). Foram observados dois tipos de edema no trauma cerebral-craniano:

edema citotóxico e vasogênico. O edema citotóxico é produzido pelo acúmulo de água nas células devido à alteração do sódio e do potássio devido à falha das bombas de membrana celular (6). A retenção de íons e água pode afetar negativamente a função celular e até levar à apoptose. A barreira hematoencefálica permanece intacta nas células citotóxicas.

O edema vasogênico ocorre devido ao acúmulo de água no espaço extracelular e é causado pela interrupção da barreira hematoencefálica (6). Está associada a elevação da pressão intracraniana, mudanças no fluxo sanguíneo e compressão das estruturas cerebrais (6).

A hemorragia ocorre nas horas seguintes após trauma cerebral cerebral e resulta na expansão do dano tecidual devido ao aumento da pressão intracraniana, isquemia e hipoxia, a formação de radicais livres e a indução de inflamação (31).

Pacientes com hemorragia óbvia associada à lesão axonal difusa têm pior prognóstico. Portanto, é importante identificar a presença e a posição pontual dos focos hemorrágicos para um diagnóstico mais preciso (32). Frequentemente, nenhum dano associado à lesão axonal difusa é identificado com tomografia computadorizada craniana (33). A ressonância magnética é muito mais sensível porque detecta lesões hemorrágicas e não hemorrágicas (33). Uma revisão descobre que a ressonância magnética é substancialmente mais sensível do que a tomografia para a detecção de lesões intraparenquimatosas, que são detectadas em 50% dos pacientes por tomografia computadorizada e em 75% por ressonância magnética.

A ressonância magnética é muito mais sensível porque detecta lesões hemorrágicas e não hemorrágicas.

A taxa de detecção da lesão axonal difusa não associada à hemorragia: é detectada em 0% dos pacientes por tomografia computadorizada e 11% por ressonância magnética. Da mesma forma, a taxa de lesão axonal difusa associada à hemorragia é detectada em 22% dos pacientes por tomografia computadorizada e 47% por ressonância magnética (33).

Conclusão

O dano cerebral em pacientes está relacionado à manifestação focal e difusa. As sequelas neurológicas estão relacionadas a mudanças primárias e secundárias sofridas como mecanismo de trauma, afetando funções neurológicas e neuropsicológicas. As lesões cerebrais estão cada vez mais associadas à excitabilidade, alterações de cálcio, resposta neuroinflamatória e mudanças de permeabilidade sofridas por neurônios e células gliais, levando a um maior compromisso ao longo do tempo. O futuro da atividade cerebral está diretamente relacionado ao controle de mecanismos fisiopatológicos para poder conhecer e processar o tratamento de pacientes após o trauma encefalocraneal.

Conflito de interesses

Não há conflitos de interesses para nenhum dos autores, neste relatório científico.

Fontes de financiamento

Os autores não declararam qualquer fonte de financiamento para este relatório científico.

Bibliografia

- 1. SuleimanGH. Trauma craneoencefálico severo: Parte I. Medicrit. 2005;2(7):107-148.
- 2. Yaneth GT, Alicia RU, Liliana ZB, Alicia RU, Gabriela DM, Jaime CP, et al. Guía de práctica clínica para el diagnóstico y tratamiento de pacientes adultos con trauma craneoencefálico severo. Ministerio de Salud y Protección Social Colciencias. 2014.
- 3. Faul M, Xu L, Wald M, Coronado Vi G. Traumatic brain injury in the United States. Emergency Departament Visits, Hospitalizations and Deaths 2002-2006. [Internet]. Atlanta, GA: Centers for Disease Control and Prevention; 2010. Available from: http://www.cdc.gov/traumaticbraininjury/pdf/blue-book.pdf
- 4. Reis C, Wang Y, Akyol O, Ho W, Li R, Stier G et al. What's New in Traumatic Brain Injury: Update on Tracking, Monitoring and Treatment. Int J Mol Sci. 2015;16(6):11903–11965.
- 5. Blennow K, Hardy J, Zetterberg H. The Neuropathology and Neurobiology of Traumatic Brain Injury. Neuron. 2012;76(5):886-899.
- Salehi A, Zhang JH, Obenaus A. Response of the cerebral vasculature following traumatic brain injury. J Cereb Blood Flow Metab. [internet] 2017;Vol. 37(7) 2320–2339. Disponible en: http://journals.sagepub.com/doi/pd-f/10.1177/0271678X17701460
- 7. Chelly H, Chaari A, Daoud E, Dammak H, Medhioub F, Mnif J et al. Diffuse axonal injury in patients with head injuries: an epidemiologic and prognosis study of 124 cases. J Trauma. 2011;71(4):838-846.
- 8. Johnson CP, Juranek J, Swank PR, Kramer L, Cox CS, Ewing-Cobbs L. White matter and reading deficits after pediatric traumatic brain injury: A diffusion tensor imaging study. NeuroImage Clin. 2015;9:668-677.
- 9. Mu J, Song Y, Zhang J, Lin W, Dong H. Calcium signaling is implicated in the diffuse axonal injury of brain stem. Int J Clin Exp Pathol. 2015;8(5):4388.
- 10. Tang-Schomer MD, Patel AR, Baas PW, Smith DH. Mechanical breaking of microtubules in axons during dynamic stretch injury underlies delayed elasticity, microtubule disassembly, and axon degeneration. FASEB J. 2010;24(5):1401-1410.
- 11. Yang T, He G, Zhang X, Chang L, Zhang H, Ripple MG, et al. Preliminary Study on Diffuse Axonal Injury by Fourier Transform Infrared Spectroscopy Histopathology Imaging. J Forensic Sci. 2014;59(1):231-235.
- 12. Davceva N, Basheska N, and Balazic J. Diffuse Axonal Injury-A Distinct Clinicopathological Entity in Closed Head Injuries. Am. J. Forensic Med. Pathol. 2015;36: 127–133.
- 13. Farkas O, Povlishock JT. Cellular and subcellular change evoked by diffuse traumatic brain injury: a complex web of change extending far beyond focal damage. Prog. Brain Res. 2007; 161:43–59.
- 14. Raghupathi R, Graham DI and McIntosh TK. Apoptosis after traumatic brain injury. J. Neurotrauma, 2000; 17(10): 927–938.

- 15. Talavage TM, Nauman EA, Leverenz LJ. The Role of Medical Imaging in the Recharacterization of Mild Traumatic Brain Injury Using Youth Sports as a Laboratory. Front Neurol. 2016;6:273.
- 16. Knoferle J, Koch JC, Ostendorf T, Michel U, Planchamp V, Vutova P, et al. Mechanisms of acute axonal degeneration in the optic nerve in vivo. Proc Natl Acad Sci. 2010;107(13):6064-6069.
- 17. Kobeissy F, Moshourab RA. Autoantibodies in CNS and neuropsychiatric disorders: A new generation of biomarkers. En Kobeissy FH. Brain Neurotrauma: Molecular, Neuropsychological, and Rehabilitation Aspects. 2015.
- 18. Barkhoudarian G, Hovda DA, Giza CC. The Molecular Pathophysiology of Concussive Brain Injury. Clin Sports Med. 2011;30(1):33-48.
- 19. Kumar A, Loane DJ. Neuroinflammation after traumatic brain injury: Opportunities for therapeutic intervention. Brain Behav Immun. 2012;26(8):1191-1220.
- 20. Beppu K, Sasaki T, Tanaka KF, Yamanaka A, Fukazawa Y, Shigemoto R, et al. Optogenetic Countering of Glial Acidosis Suppresses Glial Glutamate Release and Ischemic Brain Damage. Neuron. 2014;81(2):314-320.
- 21. Rovegno M, Soto PA. Sáez JC, von Bernhardi R. Biological mechanisms involved in the spread of traumatic brain damage. Med intensiva. 2012; 36(1): 37-44.
- 22. Baş MK, kaya A, Doğan, JD, Roths T, Demps E. Traumatic brain injury down -regulates glial glutamate transporter (GLT-1 and GLAST) proteins in rat brain. J. Neurochem. 1998; 70:2020–2027.
- 23. Chamoun R, Suki D, Gopinath SP, Goodman JC, Robertson C. Role of extracellular glutamate measured by cerebral microdialysis in severe traumatic brain injury: Clinical article. J Neurosurg. 2010;113(3):564-570.
- 24. Loane DJ, Byrnes KR. Role of microglia in neurotrauma. Neurotherapeutics. 2010;7(4):366-377.
- 25. Lin Y, Wen L. Inflammatory Response Following Diffuse Axonal Injury. Int J Med Sci. 2013;10(5):515-521.
- 26. Smith C, Gentleman SM, Leclercq PD, Murray LS, Griffin WST, Graham DI, et al. The neuroinflammatory response in humans after traumatic brain injury: Neuroinflammation after brain injury. Neuropathol Appl Neurobiol. 2013;39(6):654-666.
- 27. Griffin WST, Sheng JG, Royston MC, Gentleman SM, McKenzie JE, Graham DI, et al. Glial-neuronal interactions in Alzheimer's disease: The potential role of a 'cytokine cycle'in disease progression. Brain Pathol. 1998;8(1):65–72.
- 28. Johnson VE, Stewart JE, Begbie FD, Trojanowski JQ, Smith DH, Stewart W. Inflammation and white matter degeneration persist for years after a single traumatic brain injury. Brain. 2013;136(1):28-42.

- 29. Armstrong RC, Mierzwa AJ, Sullivan GM, Sanchez MA. Myelin and oligodendrocyte lineage cells in white matter pathology and plasticity after traumatic brain injury. Neuropharmacology. 2015;10(Pt B):654-659.
- 30. Su E, Bell MJ, Kochanek PM, Wisniewski SR, Bayır H, Clark RSB, et al. Increased CSF Concentrations of Myelin Basic Protein After TBI in Infants and Children: Absence of Significant Effect of Therapeutic Hypothermia. Neurocrit Care. 2012;17(3):401-407.
- 31. Mckee AC, Daneshvar DH. The neuropathology of traumatic brain injury. Handb Clin Neurol. 2015;127: 45-66.
- 32. Tao J, Zhang W, Wang D, Jiang C, Wang H, Li W, et al. Susceptibility weighted imaging in the evaluation of hemorrhagic diffuse axonal injury. Neural Regen Res. 2015;10(11):1879-1881.
- 33. Provenzale JM. Imaging of Traumatic Brain Injury: A Review of the Recent Medical Literature. Am J Roentgenol. 2010;194(1):16-19.