

Pastos y Forrajes ISSN: 0864-0394 ISSN: 2078-8452 tania@ihatuey.cu Estación Experimental de Pastos y Forrajes "Indio Hatuey" Cuba

Composición proximal y propiedades físicas de frutos de siete variedades de Morus alba L.#

Lugo-Morales, Yudit; Díaz-Solares, Maykelis; Altunaga-Pérez, Nancy; Castro-Cabrera, Inelvis; Fonte-Carballo, Leydis; Cepero-Casas, Luis; González-Sierra, Liliet

Composición proximal y propiedades físicas de frutos de siete variedades de Morus alba L.#

Pastos y Forrajes, vol. 42, núm. 3, 2019

Estación Experimental de Pastos y Forrajes "Indio Hatuey", Cuba

Disponible en: http://www.redalyc.org/articulo.oa?id=269161718005

Composición proximal y propiedades físicas de frutos de siete variedades de Morus alba L.#

Proximal composition and physical properties of fruits from seven Morus alba L. varieties#

Yudit Lugo-Morales Universidad de Matanzas, Cuba yudit.lugo@ihatuey.cu Redalyc: http://www.redalyc.org/articulo.oa? id=269161718005

http://orcid.org/0000-0003-0193-1440

Maykelis Díaz-Solares Universidad de Matanzas, Cuba

Nancy Altunaga-Pérez Universidad de Matanzas, Cuba

Inelvis Castro-Cabrera Universidad de Matanzas, Cuba

Leydis Fonte-Carballo Universidad de Matanzas, Cuba

Luis Cepero-Casas Universidad de Matanzas, Cuba

Liliet González-Sierra Universidad de Matanzas, Cuba

> Recepción: 30 Julio 2019 Aprobación: 20 Agosto 2019

RESUMEN:

En Cuba se han desarrollado numerosas investigaciones acerca del uso de diferentes partes de la planta de Morus alba en la alimentación animal. Sin embargo, en estos estudios, el fruto no ha sido incluido. En la literatura internacional se ha informado que los frutos de M. alba presentan metabolitos secundarios y contienen nutrientes esenciales (fibras, vitaminas y minerales) que aumentan su valor nutricional y estimulan su uso en dietas balanceadas. El objetivo de este trabajo fue determinar las propiedades físicas y la composición bromatológica de los frutos de siete variedades de M. alba, cultivadas en la Estación Experimental de Pastos y Forrajes Indio Hatuey. Se evaluaron como indicadores físicos el peso, largo, ancho, grosor y número de semillas por fruto. En la composición proximal se estudió la materia seca, humedad y ceniza, así como el calcio, el magnesio, el fósforo y la fibra bruta. Para el procesamiento de los datos se utilizó un diseño completamente aleatorizado y se realizó un análisis de varianza. El peso de los frutos varió entre 1,3-3,7 g; el largo entre 1,6-3,0 cm y el ancho entre 0,8-1,6 cm. El número de semillas por fruto, entre 19,7 y 42,8. En las diferentes variedades, el porcentaje de materia seca, humedad, fibra bruta y ceniza estuvo entre 13,5-17,5; 82,5-86,5; 8,1-12,7 y 3,6-7,1 %, respectivamente. Mientras, el contenido de Ca, Mg y P se halló en el rango de 322,5-356,0; 176,5-201,0 y 40,5-52,5 mg/100g, respectivamente. La variedad Yu-62 mostró los mayores valores en el peso, largo y ancho de los frutos, así como en el contenido de materia seca y fibra bruta; mientras que la variedad Nueva alcanzó el mayor contenido de P y ceniza. En tanto, la Universidad mejorada presentó el porcentaje más alto de Ca y Mg.

PALABRAS CLAVE: alimentación complementaria, composición química, dieta.

ABSTRACT:

In Cuba many studies have been conducted about the use of different parts of the Morus alba plant in animal feeding. However, in these studies, the fruit has not been included. In international literature the M. alba fruits have been reported to show secondary metabolites and contain essential nutrients (fibers, vitamins and minerals), which increase their nutritional value and stimulate their use in balanced diets. The objective of this work was to determine the physical properties and bromatological composition of

the fruits from seven M. alba varieties, cultivated at the Pastures and Forages Research Station Indio Hatuey. The weight, width, diameter and number of seeds per fruit were evaluated as physical indicators. In the proximal composition the dry matter, moisture and ash were studied, as well as calcium, magnesium, phosphorus and crude fiber. For the data processing a complete randomized design was used and variance analysis was performed. The fruit weight varied between 1,3 and 3,7 g; length, between 1,6 and 3,0 cm and width, between 0,8 and 1,6 cm. The number of seeds per fruit was 19,7-42,8. In the different varieties, the percentage of dry matter, moisture, crude fiber and ash was 13,5-17,5; 82,5-86,5; 8,1-12,7 and 3,6-7,1 %, respectively. Meanwhile, the Ca, Mg and P content was in the range of 322,5-356,0; 176,5-201,0 and 40,5-52,5 mg/100 g, respectively. The variety Yu-62 showed the highest values in fruit weight, length and width, as well as in the dry matter and crude fiber content; while the variety Nueva had the highest P and ash content. Meanwhile, Universidad mejorada showed the highest Ca and Mg percentage.

KEYWORDS: complementary feeding, chemical composition, diet.

Introducción

La planta de morera (Morus alba L.) se utiliza en la medicina tradicional china desde tiempos inmemoriales, debido a su composición química y función farmacológica. Pertenece al género Morus, de la familia Moraceae. Se trata de un árbol caducifolio, de crecimiento rápido. Aunque es originario de Asia, debido a su adaptación a diferentes condiciones climáticas se encuentra también en regiones templadas, subtropicales y tropicales de Asia, Europa, América del Norte y del Sur y África (Jiang y Nie, 2015).

Los frutos de morera se consumen frescos, en forma seca, como mermelada, en jugos y licores. También se emplean en tintes naturales y en la industria cosmética (Imran et al., 2007). El valor calórico de sus frutos es bajo, debido a su escaso aporte de hidratos de carbono. Son ricos en micronutrientes (vitamina C) y compuestos bioactivos, como ácidos orgánicos, compuestos fenólicos, azúcares y otros (Sánchez-Salcedo et al., 2015). Constituyen además, una reserva de sales minerales.

En la actualidad, la búsqueda de fuentes naturales es de gran interés para su utilización como complemento alimenticio y en la industria de la salud. En lo que respecta a esta última, los beneficios que se obtienen por el consumo de frutas se deben a sus compuestos bioactivos, que desempeñan una función provechosa para el organismo, siendo más importantes aquellos que tienen efecto antioxidante (Gundogdu et al., 2011).

El objetivo de este estudio fue determinar las propiedades físicas y la composición bromatológica de los frutos de siete variedades de M. alba.

Materiales y Métodos

Localización. Las muestras de los frutos se recolectaron del banco de germoplasma de la Estación Experimental de Pastos y Forrajes Indio Hatuey (EEPFIH), situada a los 22° 48' y 7" de latitud norte y 79° 32' y 2" de longitud oeste, a 19 msnm, en el municipio de Perico, provincia de Matanzas, Cuba.

El suelo de esta región corresponde al tipo Ferralítico Rojo lixiviado (Hernández et al., 2015). La topografía es llana, con pendiente de 0,5 a 1,0 %. La profundidad promedio hasta la roca caliza es de 1,50 m.

En el momento de la recogida de los frutos que se tomaron como muestra, la morera tenía cuatro años de plantada, con densidad de siembra de 0,60 x 1,30 m.

Tratamiento y diseño experimental. Se aplicó un diseño totalmente aleatorizado y se evaluaron siete variedades que constituyeron los tratamientos.

Procedimiento experimental. En lo que respecta al material vegetal, para los ensayos se utilizaron frutos de siete variedades de morera: Yu-12, Yu-62, Universidad, Acorazonada, Nueva, Cubana y Universidad mejorada.

Las plantas se seleccionaron al azar y los frutos se recolectaron manualmente (1 kg) en las primeras horas de la mañana, teniendo en cuenta que no presentaran daños físicos y que no estuvieran contaminados por

patógenos. Se guardaron en bolsas de polietileno e inmediatamente se trasladaron al laboratorio para su procesamiento.

Propiedades físicas. Por cada variedad, se tomaron al azar 20 frutos y se realizó la medición del peso, largo, ancho, grosor y número de semillas por fruto.

El peso (g) se determinó en una balanza digital marca Sartorius.

La longitud (cm) y el ancho (cm) se midieron con una regla, y el grosor (cm) se determinó con un pie de rey. Cada fruto se trituró de forma manual para obtener las semillas y posteriormente se efectuó el conteo.

Composición bromatológica. Se tomó una muestra homogénea de 300 g de frutos de cada variedad y se envió al Laboratorio de Análisis Químico de la EEPFIH, con el propósito de determinar su composición proximal (materia seca, humedad, ceniza, calcio, magnesio, fósforo y fibra bruta), según las técnicas descritas por AOAC (2000). Para la determinación del peso de la muestra se utilizó una balanza analítica de la casa comercial Sartorius.

Análisis estadístico. Se realizó un análisis de varianza (ANOVA) para el procesamiento de los datos, después del cumplimiento de los supuestos de homogeneidad de varianza (test de Levene) y normalidad (Shapiro Wilk). La comparación entre medias se realizó mediante la prueba de comparación múltiple de Duncan ($p \le 0.05$) mediante el paquete estadístico SSPS * Statistics 22.0.

Resultados y Discusión

La caracterización físico-química permite analizar el valor nutricional y la calidad de las frutas y hortalizas. En la tabla 1 se muestran los valores del peso, largo, ancho y número de semillas por fruto para cada una de las variedades. El peso de los frutos varió entre 1,3-3,7 g; el largo entre 1,6-3,0 cm, y el ancho entre 0,8-1,6 cm. El número de semillas por fruto estuvo entre 19,7 y 42,8. La variedad Yu-62 presentó los valores más altos para todas las variables estudiadas, mientras que la Acorazonada mostró los más bajos.

Media ± EE Variedad Ancho, cm Número de semillas /fruto Peso, g Largo, cm Yu-12 2.8 ± 0.147^{b} $2.7 \pm 0.147^{a,b}$ 1.2 ± 0.074^{b} $39.8 \pm 0.003^{a,b}$ Yu-62 3.7 ± 0.155^a $3,0\pm0,153^a$ 1.6 ± 0.103^{a} 42.8 ± 0.002^{a} Universidad 2.7 ± 0.123^{b} $2,7 \pm 0,043^{a,b}$ $1,2 \pm 0,043^{b}$ $39,9 \pm 0,002^{a,b}$ Acorazonada 1.3 ± 0.086^{d} 1.6 ± 0.074^{d} 0.8 ± 0.037^{c} $19.7 \pm 0.003^{\circ}$ Cubana $2,2 \pm 0,069^{c}$ $2,1 \pm 0,067^{c}$ 1.1 ± 0.033^{b} 20.3 ± 0.002^{b} Nueva 2.7 ± 0.166 ^{b,c} 2.8 ± 0.088^a 1.3 ± 0.035^{b} $38,4 \pm 0,002^a$ Universidad Mejorada $2,8 \pm 0,081$ b $2,4 \pm 0,068$ b,c $1,2 \pm 0,039$ ^b $23,1 \pm 0,003^{c}$

Tabla 1. Peso, largo, ancho y número de semillas/fruto de siete variedades de M. alba.

a, b, c, d: Valores con diferentes superíndices en cada fila difieren a p < 0,05.

Con respecto a la caracterización físico-química de los frutos de morera, Sánchez-Salcedo et al. (2014), en un estudio desarrollado en España con diferentes clones, informaron que el peso de los frutos de morera varió entre 2,3 y 4,2 g; el diámetro entre 1,3 y 1,6 cm, y la longitud entre 2,0 y 3,0 cm.

Jiang y Nie (2015) analizaron las propiedades físico-químicas de los frutos de morera (M. alba, M. alba var. tatarica y Morus nigra L) en la provincia china de Xinjiang. Estos autores encontraron que las frutas de M. alba presentaron el mayor peso con respecto al resto de las variedades, siendo superior a 3,5 g. Este valor resulta ligeramente inferior a lo informado en estudios realizados en otras regiones de China, en los que la variación del peso de la fruta estuvo entre 1,3-4,8 g (Liang et al., 2012).

Altuntas (2016) realizó un estudio de las propiedades volumétricas y geométricas de los frutos de M. alba en Tokat, Turquía. Este autor obtuvo valores de 1,1 g; 1,6 y 1,0 cm para el peso, largo y ancho del fruto, respectivamente.

En una evaluación del potencial nutracéutico de algunas frutas en Sikkim, Himalaya y la India, Bhutia et al. (2018) informaron que los frutos de M. alba presentaron peso, largo y ancho de 3,47 g, 2,5 y 1,3 cm, respectivamente, con abundante cantidad de semillas por frutos. Estos resultados coinciden con los obtenidos en la presente investigación para las variedades de M. alba.

Se plantea que las propiedades físicas pueden variar, cuando se trata de materiales vegetales diferentes y por la influencia de las condiciones climáticas y nutricionales a que se expone el material vegetal (Imran et al., 2010). En este estudio, las diferencias en las propiedades físicas se deben a que se analizaron variedades diferentes, pues el resto de las condiciones eran homogéneas.

Como parte del análisis proximal (tabla 2), el porcentaje de materia seca, humedad y fibra bruta de las diferentes variedades presentó diferencias significativas para p < 0,05. Los valores variaron entre 13,5-17,5; 82,5-86,5 y 8,1-12,7 %, respectivamente.

Variedad	$Media \pm EE$			
	Materia seca	Humedad	Fibra bruta	
Yu-12	$15,4\pm0,024^{d}$	84,6±0,024°	9,7 ± 0,047°	
Yu-62	$17,5 \pm 0,010^a$	$82,5 \pm 0,010^{f}$	$12,7 \pm 0,039$ a	
Universidad	13.8 ± 0.036^{e}	$86,2 \pm 0,036^{b}$	$9,6 \pm 0,025^{d}$	
Acorazonada	$17,0 \pm 0,067^{b}$	$83,0 \pm 0,067^{e}$	$9,4 \pm 0,017^{e}$	
Cubana	15.8 ± 0.061^{c}	$84,2 \pm 0,061^d$	$9,9 \pm 0,013^{b}$	
Nueva	$13,5 \pm 0,069^{f}$	$86,5 \pm 0,069^a$	$8,7 \pm 0,008^{f}$	
Universidad mejorada	13.8 ± 0.184 e,f	$86.3 \pm 0.184^{a,b}$	8.1 ± 0.018^{g}	

Tabla 2. Materia seca, humedad y fibra bruta en frutos de siete variedades de M. alba (%).

a, b, c, d, e, f: Valores con diferentes superíndices en cada fila difieren a p < 0,05

Yu-62 mostró mayor contenido de materia seca y fibra bruta y menor humedad, mientras que la variedad Nueva alcanzó el menor porcentaje de materia seca y, por ende, el mayor contenido de humedad. Universidad mejorada presentó menos fibra bruta.

En esta investigación, los valores máximos fueron ligeramente superiores a los informados por Imran et al. (2010) para cuatro especies de M. alba de Pakistán. El contenido de humedad y fibra bruta variaron entre 79,0-82,4 y 0,6-11,8 %, respectivamente. Esta diferencia se atribuye a que se trataba de especies diferentes. No obstante, estos resultados se corresponden con lo obtenido por Liang et al. (2012) en cultivares de morera en Jiangsu, China, y con lo informado por Sánchez-Salcedo et al. (2013) para diferentes clones de morera, en España.

En cuanto a los minerales, el contenido de ceniza varió entre 3,6-7,1 %. El de calcio, magnesio y fósforo estuvo entre 322,5-356,0; 176,5-201,0 y 40,5-52,5 mg/100 g, respectivamente (tabla 3). La variedad Nueva presentó mayor contenido de fósforo y ceniza. La Universidad mejorada tuvo el porcentaje más alto de calcio y magnesio, ambas con diferencias significativas con respecto al resto.

Variedad -	$Media \pm EE$				
	Ceniza, %	Ca, mg/100g	Mg, mg/100g	P, mg/100g	
Yu-12	5,0 ± 0,031°	349,0 ± 0,015 b	$187,0 \pm 0,015^{d}$	46,5± 0,010 ^{c,d}	
Yu-62	$4,7 \pm 0,011^d$	$341,0 \pm 0,008^{b}$	$185,0 \pm 0,005^{d}$	$48,0 \pm 0,004^{b,c}$	
Universidad	$5,4 \pm 0,022^{b}$	$332,0 \pm 0,059^{c}$	$181,0 \pm 0,005^{e}$	$46,0 \pm 0,002^{c}$	
Acorazonada	$5,3 \pm 0,046$ ^b	$322,5 \pm 0,007^{d}$	$176,5 \pm 0,008^{f}$	$49,5 \pm 0,004^{b}$	
Cubana	$4,5 \pm 0,131^{e}$	$345,0 \pm 0,009$ b	$191,0 \pm 0,005^{c}$	$46,5 \pm 0,005^{c,d}$	
Nueva	$7,1 \pm 0,047^a$	$345,0 \pm 0,009^{b}$	$195,0 \pm 0,006^{b}$	$52,5 \pm 0,006^a$	
Universidad meiorada	3.6 ± 0.023^{f}	356.5 ± 0.006^{a}	201.0 ± 0.005^{a}	40.5 ± 0.003e	

Tabla 3. Contenido de ceniza, Ca, Mg y P en frutos de siete variedades de M. alba.

a, b, c, d, e, f: Valores con diferentes superíndices en cada fila difieren a p < 0,05.

El contenido de ceniza se corresponde con lo informado por Liang et al. (2012) en un estudio realizado para cultivares de morera en Jiangsu, China. Estos autores refirieron valores entre 3,5 y 6,6 %. Son similares a los obtenidos por Lee y Hwang (2017), quienes describieron que el contenido de ceniza varió entre 4,3 -8,3 %, y disminuyó con el incremento de la maduración de los frutos de M. alba en una región de Corea.

En cuanto al contenido de calcio y magnesio, en el presente estudio, los resultados fueron superiores a los de Jiang y Nie (2015) y Lee y Hwang (2017). Sin embargo, se corresponden con los obtenidos por Sánchez-Salcedo et al. (2015), quienes informaron que los valores de Ca y Mg variaron entre 190-340 y 120-190 mg/100 g, respectivamente, para diferentes clones de esta especie en España.

El contenido de fósforo fue inferior al que refieren Sánchez-Salcedo et al. (2015), pero se corresponde con lo informado por Nurhan et al. (2017) en estudios con frutos de M. alba en dos regiones de Turquía.

La composición mineral de las frutas depende no solo de las especies o variedades, sino de las condiciones de crecimiento, el estado del suelo y las características geográficas. En este estudio, se encontró predominio de Ca, seguido de Mg y P. La presencia de estos minerales convierte a los frutos de morera en un valioso producto hortícola por su rica composición nutritiva, que resulta muy beneficiosa, por lo que se puede considerar la inclusión de estos frutos en cualquier tipo de dieta (Rodrigues et al., 2019).

Conclusiones

La variedad Yu-62 mostró los mayores valores en el peso, largo y ancho de los frutos, así como en el contenido de materia seca y fibra bruta; mientras que la variedad Nueva alcanzó el mayor contenido de P y ceniza. En tanto, la Universidad mejorada presentó el porcentaje más alto de Ca y Mg.

AGRADECIMIENTOS

Se agradece al Fondo Financiero de Ciencia e Innovación (FONCI) por el financiamiento del proyecto: "Desarrollo de nuevas tecnologías para el uso de la morera en los sistemas agropecuarios de Cuba" (2019-2023).

REFERENCIAS

Altuntas, E. The volumetrical, geometrical and frictional properties of white mulberry (Morus alba L.) fruits. TURJAF. 4 (11):987-990, 2016.

- AOAC. Official methods of analysis of AOAC International. Gaithersburg, USA: Association of Official Analytical Communities, 2000.
- Bhutia, K. D.; Suresh, C. P.; Pala, N. A.; Gopal, G. & Chakravarty, S. Nutraceutical potential of some wild edible fruits of Sikkim, Himalaya, India. Ethno Med. 12 (2):106-112, 2018. DOI: http://doi.org/10.1080/09735070.2017.1421132.
- Gundogdu, M.; Muradoglu, F.; Gazioglu-Sensoy, R. I. & Yilmaz, H. Determination of fruit chemical properties of Morus nigra L., Morus alba L. and Morus rubra L. by HPLC. Sci. Hortic., Amsterdam. 132:37-41, 2011. DOI: https://doi.org/10.1016/j.scienta.2011.09.035.
- Hernández-Jiménez, A.; Pérez-Jiménez, J. M.; Bosch-Infante, D. & Castro-Speck, N. Clasificación de los suelos de Cuba 2015. Mayabeque, Cuba: Instituto Nacional de Ciencias Agrícolas, Instituto de Suelos, Ediciones INCA, 2015.
- Imran, M.; Khan, H.; Shah, M.; Khan, R. & Khan, F. Chemical composition and antioxidant activity of certain Morus species. J. Zhejiang Univ. Sci. B. 11 (12):973-980, 2010. DOI: http://doi.org/10.1631/jzus.B1000173.
- Imran, M.; Talpur, F. N.; Jan, M. S.; Khan, A. & Khan, I. Analysis of nutritional components of some wild edible plants. Jour. Chem. Soc. Pak. 29 (5):500-508, 2007.
- Jiang, Y. & Nie, W. J. Chemical properties in fruits of mulberry species from the Xinjiang province of China. Food Chem. 174:460-466, 2015. DOI: http://doi.org/10.1016/j.foodchem.2014.11.083.
- Lee, Y. & Hwang, K. T. Changes in physicochemical properties of mulberry fruits (Morus alba L.) during ripening. Sci. Hortic., Amsterdam. 217:189-196, 2017. DOI: https://doi.org/10.1016/j.scienta.2017.01.042.
- Liang, L.; Wu, X.; Zhu, M.; Zhao, W.; Li, F.; Zou, Y. et al. Chemical composition, nutritional value, and antioxidant activities of eight mulberry cultivars from China. Pharmacogn. Mag. 8 (31):215-224, 2012. DOI: http://doi.org/10.4103/0973-1296.99287.
- Rodrigues, Elisana L.; Marcelino, Gabriela; Silva, Gabriela T.; Figueiredo, Priscila S.; Garcez, W. S.; Corsino, J. et al. Nutraceutical and medicinal potential of the Morus species in metabolic dysfunctions. Review. Int. J. Mol. Sci. 20 (2):301, 2019. DOI: http://doi.org/10.3390/ijms20020301.
- Sánchez-Salcedo, Eva M.; Calín-Sánchez, A.; Carbonell-Barrachina, A. A.; Melgarejo, P.; Hernández, Francisca & Martínez-Nicolás, J. J. Physicochemical characterisation of eight Spanish mulberry clones: Processing and fresh market aptitudes. Int. J. Food Sci. Tech. 49 (2):477-483, 2014. DOI: https://doi.org/10.1111/ijfs.12325.
- Sánchez-Salcedo, Eva M.; Mena, P.; García-Viguera, Cristina; Martínez, J. J. & Hernández, Francisca. Phytochemical evaluation of white (Morus alba L.) and black (Morus nigra L.) mulberry fruits, and starting point for the assessment of their beneficial properties. J. Funct. Foods. 12:399-408, 2015. DOI: https://doi.org/10.1016/j.jff.2014.12.010
- Uslu, N.; Doğu, S.; Ceylan, D.; Özcan, M. M. & Dursun, N. The effect of drying on total phenol, antioxidant activity, and mineral contents of white and black mulberry fruits. J. Agroaliment. Processes Technol. 23 (1):31-35, 2017. DOI: https://doi.org/10.1080/10942910701558652.

Notas

- # Trabajo presentado en la V Convención Internacional Agrodesarrollo 2019 celebrada del 22 al 26 de octubre del 2019. Centro de Convenciones Plaza América. Varadero, Cuba.
- # Paper presented in the 5th International Convention Agrodesarrollo 2019 celebrated on October 22-26, 2019. Plaza America Convention Center. Varadero, Cuba

