

Pastos y Forrajes

ISSN: 0864-0394 ISSN: 2078-8452 tania@ihatuey.cu

Estación Experimental de Pastos y Forrajes "Indio Hatuey"

Cuba

Ruz-Suarez, Fernando; Sánchez-Santana, Tania; Olivera-Castro, Yuseika; Rizo-Alvarez, Maritza; Morales-Querol, Dariel Evaluación agroproductiva de dos clones de Manihot esculenta Crantz en la provincia de Matanzas Pastos y Forrajes, vol. 44, 2021, Enero-Diciembre, pp. 1-8 Estación Experimental de Pastos y Forrajes "Indio Hatuey" Matanzas, Cuba

Disponible en: https://www.redalyc.org/articulo.oa?id=269169781001

Número completo

Más información del artículo

Página de la revista en redalyc.org

Sistema de Información Científica Redalyc

Red de Revistas Científicas de América Latina y el Caribe, España y Portugal Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto

Evaluación agroproductiva de dos clones de *Manihot esculenta* Crantz en la provincia de Matanzas

Agroproductive evaluation of two clones of Manihot esculenta Crantz in Matanzas province

Fernando Ruz-Suarez https://orcid.org/0000-0002-1206-7320, Tania Sánchez-Santana https://orcid.org/0000-0002-2634-830X, Yuseika Olivera-Castro https://orcid.org/0000-0002-330-2390, Maritza Rizo-Alvarez https://orcid.org/0000-0003-3880-0428 y Dariel Morales-Querol https://orcid.org/0000-0002-2935-7260

Estación Experimental de Pastos y Forrajes Indio Hatuey, Universidad de Matanzas, Ministerio de Educación Superior. Central España Republicana, CP 44280. Matanzas, Cuba. Correo electrónico: fernado.ruz@ihatuey.cu

Resumen

Objetivo: Evaluar las características agroproductivas de dos variedades de *Manihot esculenta* Crantz para su inclusión como alimento animal en la provincia de Matanzas, Cuba.

Materiales y Métodos: Se realizó un estudio en áreas de la Estación Experimental de Pastos y Forrajes Indio Hatuey. Se evaluaron dos variedades de *M. esculenta* (INIVIT Y-93-4 y Señorita). Se empleó un diseño de bloques al azar con tres réplicas. Se midió la altura, el número de raíces totales, comerciales y no comerciales y el número de pelos absorbentes por planta. Además, se determinó la longitud y el diámetro de las raíces tuberosas, el peso promedio de la raíz comercial, así como el rendimiento agrícola. La comparación se hizo mediante inferencia muestral para dos muestras independientes, a partir de una prueba T-student, con nivel de significación de p < 0,05. Además, se realizaron correlaciones y regresiones para conocer la interrelación entre la variable altura y los días de siembra.

Resultados: No se encontraron diferencias significativas para la variable altura entre las dos variedades (154,4 y 141,8 cm para Señorita y INIVIT Y-93-4, respectivamente). Sin embargo, se hallaron diferencias estadísticas en la longitud y peso de las raíces (p < 0,001). La variedad INIVIT Y-93-4 mostró el mayor número y peso de las raíces. En tanto, no se encontraron diferencias en el diámetro de las raíces (0,38 y 0,39 mm para Señorita y INIVIT Y-93-4, respectivamente). Ambas variedades tuvieron rendimientos por encima de las 15 t ha⁻¹, destacándose la variedad Señorita con 23 t ha⁻¹.

Conclusiones: Las dos variedades se desarrollaron y produjeron en las condiciones edafoclimáticas y de manejo concebidas para este estudio. No obstante, la variedad Señorita mostró mejor comportamiento que la INIVIT Y-93-4 en la mayoría de las variables morfoagronómicas.

Palabras clave: alimentación de los animales, altura, Manihot esculenta, rendimiento

Abstract

Objective: To evaluate the agroproductive characteristics of two varieties of *Manihot esculenta* Crantz for their inclusion as animal feedstuff in Matanzas province, Cuba.

Materials and Methods: A study was conducted in areas of the Pastures and Forages Research Station Indio Hatuey. Two M. esculenta varieties (INIVIT Y-93-4 and Señorita) were evaluated. A randomized block design was used with three replicas. The height, number of total roots, commercial and non-commercial and number of absorbent hairs per plant, were measured. The comparison was made through sample inference for two independent samples, from a Student's t-test, with significance level of p < 0.05. In addition, correlations and regressions were made to know the interrelation between the variable height and the planting days.

Results: No significant differences were found for the variable height between the two varieties (154,4 and 141,8 cm for Señorita and INIVIT Y-93-4, respectively). However, statistical differences were noted in root length and weight (p < 0,001). The variety INIVIT Y-93-4 showed the highest root number and weight. Meanwhile, no differences were found in root diameter (0,38 and 0,39 mm for Señorita and INIVIT Y-93-4, respectively). Both varieties had yields over 15 t ha⁻¹, the variety Señorita standing out with 23 t ha⁻¹.

Conclusions: The two varieties were developed and produced under the edaphoclimatic and management conditions conceived for this study. Nevertheless, the variety Señorita showed better performance than INIVIT Y-93-4 in most of the morphoagronomic variables.

Keywords: animal feeding, height, Manihot esculenta, vield

Introducción

Los sistemas tropicales para rumiantes utilizan los pastos y forrajes como fuente de alimento. Sin

embargo, la calidad nutricional de los mismos varía en función de las condiciones climáticas, situación que genera déficit de materia seca durante el período

Recibido: 02 de octubre de 2020

Aceptado: 14 de diciembre de 2020

Como citar este artículo: Ruz-Suarez, F.; Sánchez-Santana, Tania; Olivera-Castro; Yuseika; Ritzo-Alvares, Maritza & Morales-Querol, D. Evaluación agroproductiva de dos clones de *Manihot esculenta* Crantz en la provincia de Matanzas. *Pastos y Forrajes*. 44:e01, 2021.

Este es un artículo de acceso abierto distribuido en Creative Commons Reconocimiento-NoComercial 4.0 Internacional (CC BY-NC4.0) https://creativecommons.org/licenses/by-nc/4.0/ El uso, distribución o reproducción está permitido citando la fuente original y autores.

poco lluvioso, lo que afecta el consumo y el comportamiento productivo de los animales.

Por su alto rendimiento en el trópico (16 000 kg/ha), *Manihot esculenta* Crantz es una alternativa viable en la alimentación animal (Hermida, 2015). Se considera una fuente energética con alto contenido de vitaminas, minerales y fibra (Herrera *et al.*, 2019).

Se trata de una planta tropical eficiente en la transformación de la energía solar. Se cultiva en América Latina, África y Asia y se encuentra entre los diez cultivos principales en el mundo, con aproximadamente 277 millones de toneladas producidas anualmente (FAOSTAT, 2016). En la región de las Américas, si se compara con otras raíces y tubérculos, *M. esculenta* presenta la mayor tasa de crecimiento de consumo anual (1,9 %) y, en términos de producción de forraje, aporta 0,95 % (Santos *et al.*, 2019).

En la actualidad, se utiliza *M. esculenta* para la alimentación bovina (Arce, 2015), de aves (Connolly-Juárez, 2017; Herrera *et al.*, 2019) y cerdos (Lezcano-Perdigón *et al.*, 2014), con resultados alentadores en el comportamiento productivo de los animales.

Según Milian et al. (2000), la colección de M. esculenta se conserva en Cuba, en el Instituto de Investigaciones en Viandas Tropicales de Villa Clara. Constituye el tercer banco de germoplasma de América, con 440 accesiones. La mayoría son autóctonas, con gran variabilidad fenotípica. El 60,6 % presenta raíces sabrosas

al paladar; 90,8 % tiene bajo contenido de fibra y 60,9 % es de pulpa suave a medianamente dura.

La introducción de nuevos clones y tecnologías ha posibilitado la extensión de formas de producción más exigentes en suelos e insumos, con el objetivo de aumentar la producción de *M. esculenta* para el consumo humano y animal. A pesar de que este cultivo tiene diversidad de clones, se desconocen en muchas ocasiones sus potencialidades productivas. A partir de estas condiciones, el objetivo de este estudio fue evaluar las características agroproductivas de dos variedades de *M. esculenta* en la provincia de Matanzas para su inclusión como alimento animal.

Materiales y Métodos

Localización. El estudio se realizó en áreas de la Estación Experimental de Pastos y Forrajes Indio Hatuey. Esta instalación se halla situada entre los 22° 48' 7" de latitud norte y los 81° 2' de longitud oeste, a 19,01 msnm, en el municipio Perico, provincia de Matanzas, Cuba.

Clima y suelo. Los datos de precipitaciones y temperatura se tomaron de la Estación de Meteorología ubicada en los predios de la Institución (tabla 1). Los valores registrados se encuentran en los rangos normales de estas variables para los meses en los que se desarrolló la investigación. El estudio se llevó a cabo sobre un suelo ferralítico rojo (Hernández-Jiménez *et al.*, 2015).

Tratamientos y diseño experimental. Se evaluaron dos variedades de *M. esculenta*: INIVIT Y-93-4

Tabla 1. Condiciones climatológicas durante la etapa experimental.

Mes/año	Temperatura, °C	Precipitación, mm
Enero, 2018	20,5	19,3
Febrero	22,8	11,8
Marzo	21,5	3,0
Abril	24,4	123,8
Mayo	24,8	668,1
Junio	26,5	183,2
Julio	27,1	141,4
Agosto	26,4	262,6
Septiembre	26,3	134,4
Octubre	25,4	97,1
Noviembre	23,9	5,9
Diciembre	22,4	38,0
Enero, 2019	20,0	59,8

Fuente: Estación meteorológica de Indio Hatuey (2019)

y Señorita, provenientes del Instituto de Investigaciones de Viandas Tropicales (INIVIT) de Santo Domingo, provincia de Villa Clara. Para el montaje del experimento se utilizó un diseño de bloques al azar, con tres réplicas.

La plantación se realizó, para ambas variedades, en enero de 2018. La duración dependió de la variedad: para Señorita fue de 12 meses porque es de ciclo largo, mientras que para INIVIT-Y-93-4 fue de 8 meses (ciclo corto).

Procedimiento experimental. La plantación fue manual. Se colocaron estacas de 15 cm de longitud y aproximadamente cinco yemas, de forma horizontal en el centro del surco. Se utilizaron siete surcos de 10 m de longitud, con un marco de plantación 0,90 x 1,00 m. El tamaño de cada parcela experimental fue de 70 m². No se utilizó riego ni fertilización.

Mediciones morfoagronómicas y del rendimiento. Al mes de haber sido plantadas las estacas, se midió la altura de la planta desde la base del tallo hasta la yema apical. Se realizó la medición en centímetros, con ayuda de una cinta métrica. Se hizo cada mes, en siete plantas por réplica, seleccionadas al azar e identificadas con una chapilla de zinc, previamente enumerada.

La determinación del número de raíces totales por planta, número de raíces comerciales por planta, número de raíces no comerciales y pelos absorbentes por planta, se realizó mediante el conteo del número total de raíces. Posteriormente, se separaron las raíces comerciales de las no comerciales. Se consideraron comerciales aquellas que presentaron más de 20 cm de longitud y pesaron más de 220 g.

La longitud de la raíz tuberosa se midió con una regla graduada en todas las plantas evaluadas en cada réplica, y posteriormente se promedió.

El diámetro de las raíces tuberosas se midió siete veces por réplica en la parte central de la raíz, y para ello se utilizó un pie de rey.

En el momento de la cosecha, se midió el peso promedio de la raíz comercial, para lo que se seleccionaron al azar 15 raíces comerciales (cinco por réplica) y se pesaron de forma individual. Se determinó, además, el rendimiento agrícola, que se calculó a partir del rendimiento de dos áreas de 6

m² en cada réplica y se estimó para una hectárea. En el caso de la variedad Señorita, la cosecha se realizó en enero de 2019 y para la INIVIT-Y-93-4, en septiembre de 2018.

Análisis estadístico. Los datos se procesaron mediante el paquete estadístico SPSS®, versión 22.0 para Windows. La comparación se hizo mediante inferencia muestral para dos muestras independientes, a partir de una prueba T-student, con nivel de significación de p < 0,05. Se utilizó el análisis de correlación y regresión para conocer la interrelación entre la variable altura y los días de siembra. Como norma de selección de la ecuación de mejor ajuste, se tomó en consideración, entre los criterios de Guerra et al. (2003), que el coeficiente de determinación (R²) real y ajustado fuera mayor que 0,70. Además, se consideró el nivel de significación.

Resultados y Discusión

En la tabla 2 se muestra la altura promedio durante el período experimental. No se encontraron diferencias significativas entre las dos variedades. Ello se pudo deber a que las dos variedades se manejaron en similares condiciones de manejo (clima, suelo, características de la plantación, ausencia de riego y fertilización), y ambas mostraron un crecimiento favorable para las condiciones imperantes en el estudio. Estos valores son inferiores a los informados por Pérez (2015), quien evaluó el comportamiento agroproductivo de cinco clones de M. esculenta (Señorita, CEMSA 74-6329, INIVIT Y-93-4, CCS El Vaquerito y Señora) en la provincia de Villa Clara, que alcanzaron una altura de hasta 245,7 cm. Sin embargo, los resultados del presente estudio están por encima de los referidos por Rodríguez-Cuevas et al. (2017), quienes estudiaron variedades que no sobrepasaron los 100,0 cm.

La altura fue similar a la hallada por João *et al.* (2016), cuando analizaron las variedades venezolana y M-Tai, que variaron entre 134 y 187 cm, al ser tratadas con micorrizas arbusculares. Cuando *M. esculenta* tiene una altura por encima del 1,50 m; se hace más fácil la cosecha de las ramas si se destina a la producción forrajera; además de que forma un cultivo con copa más uniforme, lo que facilita las labores (Brito *et al.*, 2013).

Tabla 2. Altura promedio de las plantas.

Indicador	Tratamientos	Media	$EE \pm$	Valor- P	
Altura	Señorita	154,4	4,052	0,52	
	INIVIT Y-93-4	141,8	5,061		

En las figuras 1 y 2 se muestra la correlación existente entre la altura y los días en la variedad Señorita y INIVIT Y-93-4, respectivamente. En ambas variedades, la altura mostró una tendencia creciente a medida que transcurrían los días de siembra, proceso fisiológico que debe acontecer cuando las condiciones imperantes favorecen el crecimiento del cultivo. La altura de la planta es un descriptor morfológico fundamental, relacionado con la expresión del carácter genotípico (Fukuda y Guevara, 1998; Beovides-García et al., 2014). Por lo tanto, este es un indicador de la expresión genética y de que las condiciones imperantes fueron favorables en este estudio, ya que no hubo afectaciones fisiológicas que pudieran afectar el crecimiento de las plantas. Ello coincide con lo informado por Santos *et al.* (2019) en un estudio sobre la fisiología de este cultivo.

En la variedad Señorita, el modelo que explicó con mayor bondad de ajuste esta relación fue la ecuación polinómica de tercer orden, con coeficiente $R^2 = 0.824***y R^2$ ajustado= 0.822****.

En la variedad INIVIT Y-93-4, el modelo que explicó con mayor bondad de ajuste esta relación fue la ecuación polinómica de tercer orden, con coeficiente de determinación superior a 0,90 (R² = 0,963*** y R² ajustada= 0,962***).

En la tabla 3 se muestran los indicadores morfológicos de las raíces por variedad. Se encontraron diferencias estadísticas significativas en la longitud y el peso de las raíces (p < 0,001). La variedad INIVIT Y-93-4 mostró mayor longitud y peso de

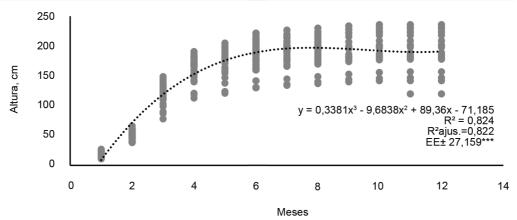


Figura 1. Curva de ajuste de la altura (cm) en función del tiempo (días) por cada bloque en estudio en la variedad Señorita. p < 0,001

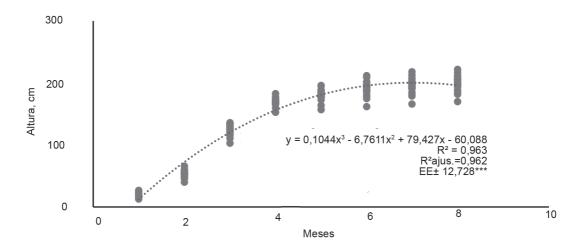


Figura 2. Curva de ajuste de la altura (cm) en función del tiempo (días) por cada bloque en estudio en la variedad INIVIT Y-93-4 p < 0,001

Tubia 5. Indicadores morrologicos de las faices.				
Indicador	Variedades	Media	EE ±	Valor – P
Longitud de la raíz, cm	Señorita	24,9	0,4723	0,000
	INIVIT Y-93-4	27,8	0,5035	
Diámetro de la raíz, cm	Señorita	4,39	0,0572	0,889
	INIVIT Y-93-4	4,38	0,0505	
Peso de la raíz, kg	Señorita	0,33	0,0114	0,000
	INIVIT Y-93-4	0,39	0,0121	0,000

Tabla 3. Indicadores morfológicos de las raíces.

las raíces. Sin embargo, no se encontraron diferencias significativas en el diámetro de las raíces, cuyos valores fueron de 4,38 y 4,39 para Señorita y INIVIT Y-93-4, respectivamente.

Al determinar el peso de las raíces comerciales por planta, los mayores valores se alcanzaron en el clon INIVIT-Y-93-4, que fue estadísticamente superior al Señorita. Los valores se encuentran en el rango referido por León *et al.* (2013), quienes caracterizaron desde el punto de vista morfológico y agronómico 101 clones de yuca en el campo experimental de la Universidad Central de Venezuela. Estos autores refirieron que las raíces presentaron pesos que variaron entre 0,3 y 4,66 kg/planta.

Estas variaciones en las características morfológicas de la raíz (largo, diámetro y peso) de *M. esculenta* dependen de la expresión de los genotipos, como respuesta a las condiciones ambientales que pueden influir en el comportamiento de las variables diámetro y longitud de los tallos y raíces, número y altura de las ramificaciones y el tallo (Gabriel *et al.*, 2014). Sin embargo, en este estudio no se le atribuye dicho comportamiento a las condiciones climáticas, pues ambas variedades estuvieron sometidas a un régimen de manejo similar, como antes se describió. Por lo tanto, las variaciones en ambas variedades se pueden deber, principalmente, a la expresión genotípica que puede expresar cada una de ellas.

En la tabla 4 se muestra la cantidad de raíces totales, comerciales y pelos absorbentes por variedad. La variedad Señorita difirió estadísticamente en las variables número de raíces totales, número de raíces comerciales (p < 0.001) y pelos absorbentes (p < 0.05).

Shindoi *et al.* (2018) evaluaron el comportamiento de diez cultivares de *M. esculenta*, colectadas por productores de Argentina, y hallaron entre 10-15 raíces totales y 9-11 raíces comerciales. Estos valores son similares a los obtenidos en esta investigación, excepto en las raíces comerciales de la INI-VIT Y-93-4, que dejaron ver resultados inferiores.

León-Pacheco *et al.* (2019) en dos zonas productoras de Venezuela realizaron la evaluación de 16 genotipos, seleccionando variables de tipo vegetativo. Estos autores informaron, en los estados de Aragua y Cojedes, valores de 10,35 y 7,41 y 2,75 y 4,23 para el número de raíces totales y comerciales, respectivamente, que son inferiores a los obtenidos en este experimento. Sin embargo, el peso de la raíz total mostró cifras superiores (2,0-2,6 kg) a las que se registraron en el presente estudio (0,3 kg).

Este comportamiento se puede atribuir a las características propias de los clones evaluados, y coincide con lo expresado por Coqueiro (2013), quien señaló que el comportamiento de las variables agronómicas depende de la respuesta genotipo-ambiente. Se pudiera afirmar entonces, que las condiciones en que se desarrolló este estudio pudieron favorecer la expresión de producción y desarrollo en la Señorita. Este cultivar ha tenido excelente aceptación, no solo por su potencial productivo, sino por su estabilidad y adaptabilidad. Esta diferencia en

Tabla 4. Cantidad de raíces totales, comerciales y pelos absorbentes por variedad

Tabla 4. Cantidad de falces totales, conferences y pelos absorbentes por variedad.				
Indicadores	Variedades	Media	EE ±	Valor - P
Raíces totales	Señorita	16,2	0,953	0,00
	INIVIT Y-93-4	9,8	0,559	
Raíces comerciales	Señorita	11,1	0,611	0,00
	INIVIT Y-93-4	6,9	0,516	
Raíces no comerciales y pelos absorbentes	Señorita	19,1	2,325	0,042
	INIVIT Y-93-4	13,9	0,843	

las variables antes mencionadas también se mostró en el rendimiento (fig. 3).

La figura 3 muestra el rendimiento agrícola de ambas variedades. La variedad Señorita alcanzó mayor valor (23 t/ha), y estuvo por encima de la media nacional informada para este cultivo (19 t/ha) según informes de Beovides *et al.* (2013). INIVIT Y-93-4 mostró un rendimiento similar a la media nacional.

Beovides et al. (2014) al realizar una caracterización morfológica y agronómica de 50 cultivares cubanos de M. esculenta, procedentes de la colección cubana de germoplasma que conserva el Instituto de Investigaciones de Viandas Tropicales (INIVIT), y donde estaban incluidas las dos variedades del presente estudio, comprobaron que los rendimientos pueden sobrepasar 39 t/ha. Los autores citados señalaron que las variedades CPA Victoria de Girón, Crema-1 y Señora fueron las de mejor comportamiento, con 39,4; 34,0 y 31,7 t/ha, respectivamente. No obstante, la FAO (2018) refiere que hay un gran potencial, con nuevos clones, para que ocurran aumentos de la producción en condiciones óptimas, y que los rendimientos de la yuca pueden llegar a 80 t/ha, en comparación con el actual rendimiento promedio mundial de solo 11,3 t/ha.

El comportamiento de las dos variedades pudo estar influenciado por las precipitaciones, que fueron de 1 748,4 mm durante todo el ciclo experimental. Según Pastrana *et al.* (2015), para obtener los mejores rendimientos y desarrollo de este cultivo, la disposición de agua debe ser, aproximadamente, 1 247 mm durante el ciclo del cultivo. Este comportamiento pudo estar relacionado también con las condiciones edáficas y la variedad.

Los clones estudiados, por su comportamiento agronómico, se pueden usar como alimento humano y animal. No obstante, con respecto a la alimentación

animal, es importante señalar que resulta costoso obtener alimento convencional (concentrado), y *M. esculenta* puede formar parte de la alimentación alternativa, principalmente en la época de escasez de alimento. Para su preservación, se puede conservar en forma de ensilaje (Miranda-Yuquilema *et al.*, 2018), utilizando las raíces y el follaje. También se puede combinar con otras materias primas que ayuden a obtener un alimento con mejor calidad nutricional para los animales.

La raíz de *M. esculenta* es una fuente de energía y, en particular, de almidón. Es rica en carbohidratos, posee alto contenido de amilopectinas y presenta entre 3,0 y 5,0 % de azúcares totales. Su contenido de lípidos es muy reducido, al igual que el de fibra bruta y otros componentes de la fibra dietética (Valdivié-Navarro *et al.*, 2011; Aranda-Baños, 2019).

En Cuba, la utilización de *M. esculenta* puede sustituir los cereales importados para la fabricación de alimentos balanceados destinados a la alimentación animal, con aporte de carbohidratos en la ración. Por esta razón constituye una opción para pequeños y medianos productores.

Conclusiones

Los dos clones se desarrollaron y produjeron en las condiciones edafoclimáticas y de manejo concebidas en el estudio. La variedad Señorita mostró mejor comportamiento que la INIVIT Y-93-4 en la mayoría de las variables morfoagronómicas. Se recomienda hacer ensayos de ensilabilidad de las raíces, los forrajes y/o mezclado para su posible uso como alimento animal.

Agradecimientos

Se agradece al proyecto «Estrategias sostenibles de suplementación para mejorar la eficiencia productiva y reproductiva de rebaños lecheros en sistemas silvopastoriles», que forma parte del Programa Nacional de

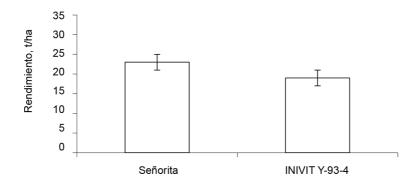


Figura 3. Rendimiento agrícola de las variedades.

Producción de Alimento Animal, del Ministerio de Ciencia, Tecnología y Medio Ambiente (CITMA).

Contribución de los autores

- Fernando Ruz-Suarez. Ejecutó los experimentos con las mediciones correspondientes y buscó información bibliográfica.
- Tania Sánchez-Santana. Generó la idea de la investigación, buscó información bibliográfica y revisó el manuscrito.
- Yuseika Olivera-Castro. Generó la idea de la investigación, buscó información bibliográfica y revisó el manuscrito.
- Maritza Rizo-Alvarez. Contribuyó a la ejecución de los experimentos con las mediciones correspondientes y buscó información bibliográfica.
- Dariel Morales-Querol. Contribuyó a la ejecución de los experimentos con las mediciones correspondientes y buscó información bibliográfica.

Conflictos de intereses

Los autores declaran que no existe conflicto de intereses entre ellos.

Referencias bibliográficas

- Aranda-Baños, F. M. Alternativas nutricionales en cerdos, en etapa de crecimiento, para disminuir los costos de producción. Componente práctico del examen de grado de carácter complexivo, presentado al H. Consejo Directivo de la Facultad, como requisito previo para obtener el título de Ingeniero Agropecuario. Babahoyo, Ecuador: Facultad de Ciencias Agropecuarias, Universidad Técnica de Babahoyo, 2019.
- Arce, J.; Rojas, A. & Poore, M. Efecto de la adición de pollinaza sobre las características nutricionales y fermentativas del ensilado de subproductos agroindustriales de yuca (*Manihot esculenta*). *Agron. Costarricense*. 39 (1):131-140. https://www.scielo.sa.cr/pdf/ac/v39n1/a10v39n1.pdf, 2015
- Beovides-García, Y.; Milián-Jiménez, Marilys D.; Coto-Arbelo, O.; Rayas-Cabrera, Aymé; Basail-Pérez, Milagros; Santos-Pino, Arletys *et al.* Caracterización morfológica y agronómica de cultivares cubanos de yuca (*Manihot esculenta* Crantz). *Cultivos Tropicales.* 35 (2):43-50. https://www.redalyc.org/articulo.oa?id=193230070006, 2014.
- Beovides-García, Y.; Milián-Jiménez, Marilys D.; Rodríguez-Pérez, D.; Gálvez, L.; Fernández, K.; Rodríguez, M. I.; Molina, A. *et al.* Cultivares cubanos de yuca (*Manihot esculenta* Crantz) con rendimiento y potencial genético para la agroindustria. *Centro Agrícola.* 40 (3):71-78. http://cagricola.uclv.edu.cu/descargas/pdf/V40-Numero_3/cag123131934.pdf, 2013.
- Brito, Carmem L. L.; Viana, A. E. S.; Barbosa, Greice M.; Lopes, S. C.; Santos, V. da S. & Silva,

- Virgiane A. Caracterização de clones de mandioca (*Manihot esculenta* Crantz) por meio de descritores morfológicos em Cândido Sales-Bahia. *Anais do XV Congresso Brasileiro de Mandioca*. Salvador, Brasil: Sociedade Brasileira de Mandioca. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/95814/1/CARACTERIZACAO-DE-CLONES-152-pratica-21468-VAN-DERLEI.pdf, 2013.
- Connolly-Juárez, D. S. Inclusión de harina de follaje y raíz de yuca (Manihot esculenta crantz), en la alimentación de pollos de engorde y su efecto en el comportamiento productivo. Tesis para optar por el requisito parcial para optar al título profesional de Ingeniero Zootecnista. Managua: Facultad de Ciencia Animal, Universidad Nacional Agraria, 2017.
- Coqueiro, G. R. Avaliação de variedades de mandioca no nordeste do Estado do Pará. Tese apresentada para obtenção do título de Doutor em Agronomia (Agricultura). Botucatu, Brasil: Faculdade de Ciências Agronômicas, Universidade de Estadual Paulista Júlio de Mesquita Filho, 2013.
- FAO. Estadísticas mundiales de yuca. Roma: FAO https://blogagricultura.com/estadisticas-yuca-produccion/, 2018.
- FAOSTAT. *Manihot esculenta* Roma: FAO. http://faostat.external.fao.org/, 2016.
- Fukuda, Wania M. G. & Guevara, Claudia L. *Descritores* morfológicos e agronômicos para a caracterização de mandioca (Manihot esculenta *Crantz*). Cruz das Almas, Brasil: EMBRAPA-CNPMF, 1998.
- Gabriel, Luana F.; Streck, N. A.; Uhlmann, Lilian O.; Silva, M. R. da & Silva, Stefanía D. da. Mudança climática e seus efeitos na cultura da mandioca. *Rev. bras. eng. agríc.* 18 (1):90-98, 2014. DOI: https://doi.org/10.1590/S1415-43662014000100012.
- Guerra, Caridad W.; Cabrera, A. & Fernández, Lucía. Criterios para la selección de modelos estadísticos en la investigación científica. *Rev. cubana Cienc. agríc.* 37 (1):3-10. https://www.redalyc.org/pdf/1930/193018072001.pdf, 2003.
- Hermida, H. Inclusión de harina de raíz de yuca en la dieta de pollos camperos K-53. *Pastos y Forrajes*. 38 (2):207-212. http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S0864-03942015000200009&Ing=es&nrm=iso, 2015.
- Hernández-Jiménez, A.; Pérez-Jiménez, J. M.; Bosch-Infante, D. & Castro-Speck, N. *Clasificación de los suelos de Cuba 2015*. Mayabeque, Cuba: Instituto Nacional de Ciencias Agrícolas, Instituto de Suelos, Ediciones INCA, 2015.
- Herrera, Magdalena; Solís, T.; Godoy, V. & Benitez, Mileisys. Meal of cassava (*Manihot esculenta* Crantz) leaves in diets for naked neck broilers (Gen Nana). *Cuban J. Agric. Sci.* 53 (1):59-64. scielo.sld.cu/pdf/cjas/v53n1/2079-3480-cjas-53-01-59.pdf, 2019.

- João, J. P.; Espinosa-Cuellar, A.; Ruiz-Martínez, L.; Simó-González, J. & Rivera-Espinosa, R. Efectividad de cepas de HMA en el cultivo de la yuca (*Manihot esculenta* Crantz) en dos tipos de suelos. *Cultivos Tropicales*. 37 (1):48-56. http://scielo.sld.cu/pdf/ctr/v37n1/ctr07116.pdf, 2016.
- León, R.; Polanco, Delia; Zárraga, P.; Zambrano, Marisela; Ramos, E.; Perdomo, Dinaba *et al.* Caracterización morfológica y agronómica de un banco de germoplasma de yuca (*Manihot esculenta* Crantz). *Rev. Fac. Agron., UCV.* 39 (2):93-104. http://saber.ucv.ve/ojs/index.php/rev_agro/article/view/7197, 2013.
- León-Pacheco, R. I.; Fuenmayor-Campos, Francia C.; Rodríguez-Izquierdo, A. J.; Montilla, J.; Pinto, O.; Flores, Yadira *et al.* Selección de clones promisorios de yuca provenientes del programa de mejoramiento genético del INIA-CENIAP, Venezuela. *Bioagro.* 31 (2):143-150. https://revistas.uclave.org/index.php/bioagro/article/view/2642, 2019.
- Lezcano-Perdigón, P.; Berto, D. A.; Bicudo, S. J.; Curcelli, Felipe; Gonzáles-Figueiredo, Priscila & Valdivié-Navarro, M. I. Yuca ensilada como fuente de energía para cerdos en crecimiento. *AIA*. 18 (3):41-47. https://www.researchgate.net/publication/342697169_Yuca_ensilada_como_fuente_de_energia_para_cerdos_en_crecimiento. 2014.
- Milian, M. D.; Sánchez, I.; Rodríguez, S.; Ramírez, T.; Cabrera, M.; Medero, V. et al. Caracterización, evaluación y conservación de la colección cubana de germoplasma de yuca (Manihot esculenta Crantz). Proceeding IV International Scientific Meeting Cassava biotechnology Network. Brasilia. p. 626, 2000.
- Miranda-Yuquilema, J. E.; Marín-Cárdenas, A.; González-Pérez, Mabel & Valla-Cepeda, Angélica

- P. Efecto de un biopreparado sobre las características fisicoquímicas y microbiológicas del ensilaje de yuca con caupí. *The Biologist.* 16 (2):251-260, 2018. DOI: http://dx.doi.org/10.24039/rtb2018162246.
- Pastrana, F. E.; Alviz, H. & Salcedo, J. Respuesta de dos cultivares de yuca a la aplicación de riego en condiciones hídricas diferentes. *Acta Agronómica*. 64:48-53, 2015. DOI: https://doi.org/10.15446/acag.v64n1.43935.
- Pérez, H. Evaluación agroproductiva de cinco clones de yuca (Manihot esculenta Crantz.) en la CCS "El Vaquerito". Tesis para aspirar al título de Ingeniero Agrónomo. Santa Clara, Cuba: Facultad de Ciencias Agropecuarias, Universidad Central "Marta Abreu" de Las Villas, 2015.
- Rodríguez-Cuevas, M.; Sumano-López, D.; López-López, R.; Dios-López, M. O. & García Sánchez, A. Características vegetativas de cultivares de yuca (Manihot esculenta Crantz) del banco de germoplasma del campo experimental Huimanguillo, Tabasco. México, 2017.
- Santos, J. A.; Narváez, L.; Salcedo, Saula; Acevedo, Alba N.; Mercado, L. C. & Salcedo, J. G. Fisiología del cultivo de yuca en el bosque seco tropical de Sucre, Colombia. *Temas Agrarios*. 24 (1):17-26, 2019. DOI: https://doi.org/10.21897/rta. v24i1.1774.
- Shindoi, M. M.; Avico, Eda L. & Sarco, Pamela C. Comportamiento agronómico de diez cultivares de mandioca (*Manihot esculenta* Crantz) en Colonia Benítez, Chaco. *Agrotecnia*. 27:9-13, 2018. DOI: http://dx.doi.org/10.30972/agr.0272039.
- Valdivié-Navarro, M.; Curcelli, F.; Bicudo, S. J.; Bernal, H. & Rodriguez, B. A raiz de mandioca. En: M. I. Valdivié-Navarro y S. J. Bicudo, eds. *Alimentação de animais monogastricos*. Campus de Botucatu, Brasil: FEPAF-UNESP. p. 13-32, 2011.