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ABSTRACT:

The forests have a vital role in carbon capture from the atmosphere. Thus, this work has as its main objective to quantify and analyze
biomass of a forest fragment of a Pinus uncinata that belongs to Alinyd Mountain Natural Space, through of Light Detection
and Ranging (LIDAR) data tools. The natural area is located in the County of Figdls y Alinya, in the Lleida province, located
in Catalonia-Spain. In this sense, using the LIDAR data, the Digital Terrain Models were generated, and relevant statistical
calculations were made to subsequently calculate the forest biomass. The linear regression models for biomass had a satisfactory
correlation with the inventory data for 2 of the 5 areas considered. In this sense, it was possible to estimate these forest variables
for the study area. The calculation of forest biomass by LIDAR data resulted in 9.138.6 tons to an area of 69.04 ha, while the
inventory calculations resulted in 11.638.4 tons.

KEYWORDS: Forest Variables, Natural Resources, Remote Sensing, LIDAR.

REsumo:

/ Resumen

METODO DE ANALISE DE BIOMASSA EM UM FRAGMENTO FLORESTAL DE PINUS UNCINATA

As florestas tém um papel vital na captura de carbono da atmosfera. Por essa razio, este trabalho tem como objetivo principal
quantificar e analisar a biomassa de um fragmento florestal de um Pinus uncinata que pertence ao Alinya Mountain Natural Space,
através de ferramentas de dados Light Detection and Ranging . A drea natural esté localizada no municipio de Figols y Alinya, na
provincia de Lleida, localizada na Catalunha-Espanha. Usando os dados Light Detection and Ranging (LIDAR), os Modelos de
Terrenos Digitais foram gerados, e foram feitos cdlculos estatisticos relevantes para posteriormente calcular a biomassa florestal.
Como resultado, os modelos de regressao linear para biomassa tiveram uma correlagio satisfatéria com os dados de estoque para
2 das 5 4reas consideradas. Nesse sentido, foi possivel estimar essas varidveis florestais para a drea de estudo. O célculo da biomassa
florestal com dados LIDAR resultou em 9.138.6 toneladas para uma area de 69.04 ha, enquanto os célculos de estoque resultaram
em 11.638.4 toneladas.

PALAVRAS-CHAVE: Variaveis Florestais, Recursos Naturais, Sensoriamento Remoto, LIDAR.
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PALABRAS CLAVE: Variables Forestales, Recursos Naturales, Deteccion Remota, LIDAR
INTRODUCTION

In recent decades, their ability to acquire spatially continuous information about the geographicdisposition
of forest resources has made new remote sensing tools increasingly popular. Given the highcosts of
forest inventories and monitoring, remote detection has become an essential tool (J IMENEZ etal., 2016).
The Light Detection and Ranging (LiDAR), or Laser Scanner is among this new generation oftools. It
emits laser pulses to measure the returning time and directly estimate the height and structure offorests
(PILLODAR et al., 2017; LIU et al,, 2017). LiDAR has recently emerged as a powerfultechnology for
forest measurement applications, including ground and vegetation surfaces, to assess trecheight, volume, and
biomass measurements (EDSON & WING, 2011; KRAMER et al., 2016). Aboveall, LIDAR technology
provides a range of indirect data on the terrestrial elements used in statisticalmodels.

The technique's potential considers three-dimensional information, has greater data accuracy thanthe
Radar, and is not affected by the atmosphere, thus providing more specific data on terrestrial featuresthat
may serve as a basis for studies of the modification of the vegetation patterns in particular areas. Therefore,
this study was conducted in a forest fragment in the Alinya Mountain Nature Space, a distinctlandscape with
a diversity of flora and fauna, containing tracts of forest of great environmental interestas potential carbon
sinkholes. One of these is a Pinus uncinata forest fragment selected as the object ofstudy for this research to
quantify and analyze the forest biomass using LIDAR tools.

MATERIAL AND METHODSSTUDY AREA CHARACTERIZATION

The Alinya Mountain Nature Space covers 5352.13 ha in the municipality of Figols i Alinya inthe province
of Lérida, in the Autonomous Community of Catalonia, Spain. Its principal coordinates areE 1°25'22" and
N 42°10'49". Located between the Sierra del Cadi and the river Segre, this natural area isthe largest privately-
owned reserve in Catalonia, belonging to the Catalunya-La Pedrera Foundation (FCP, 2015).

The altitude ranges from 608 to 2739 meters. The slopes' relief and orientation give rise todifferent zones
with a characteristic pre-Pyrenean microclimate; the temperatures vary from 8 ° C to 16° C. These climatic
features include both a Euro-Siberian region and typically Mediterranean areas. Inthe low and medium
portions, the vegetation is distinguished by holm oak groves and Mediterraneanpine forests, among them the
wild pine (Pinus sylvestris). The higher section of the valley has asubalpine ecosystem, in which an herbaceous
substrate predominates (MOISES et al., 2004).

INVENTORY DATA

This study utilizes data from the Forest Inventory prepared by the Catalunya Foundation - LaPedrera from
June to September 2013, which has two main parts. First are the chief coordinates, radius,and total area
of the 123 circular plots grouped in zones, including the number of plants per diameterclass. Second is the
data referring to the biomass for each zone inventoried according to the CREAFmethodology (Centro de
Investigacion Ecoldgica y Aplicaciones Forestales) (Generalitat de Catalunya).

For the comparison with the LIDAR data and subsequent regression models, five zones (1a, 1b,1c, 1d,
and 3c) from homogeneous or predominantly Pinus uncinata forests were chosen. These are 60circular areas
with an average radius of 12 meters and an ideal surface of 452.39 m?; of these, 13 are inzone la, 12 in zone
1b, 9 in zone 1c, 16 in zone 1d, and 11 in zone 3c. Zone la was the forest fragmentselected to estimate the
biomass using the LIDAR data.
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PROCESSING THE LIDAR DATA

For the LiDAR data, the cartography from the laser scanning flight over the study area between 2009
and 2011 was acquired from the National Plan of Aerial Orthophotography (PNOA) of the National
Geographic Institute [of Spain]. During the LIDAR data processing, a correction was madeusing annual
growth factors of the National Forest Inventory 3 (IFN3).

The FugroViwer ™ (Fugro) free software was used to view the point cloud. Additionally, the FUSION /
LDV software developed by the Forest Service of the United States Department ofAgriculture - Forest
Service - USDA was used to filter and manage these points. Thus, the classesconsisted of the terrain, low
vegetation, medium vegetation, high vegetation, and the key point of themodel. Then, the lasclip tool was
used to select and extract the information in the (*.las) filecorresponding to the zone of interest.

Subsequently, a Digital Surface Model (DSM) was generated from the data in all the charts, sothat
information on the terrain could be separated from the information about the vegetation, followedby the
calculations corresponding to the forest biomass. A similar process was adopted to generate theDigital Model
of Vegetation Height (MDHYV or Canopy model), this time only for the zone la forestfragment. Both
models were then converted to the ASCII format to be sequenced in the data processing.

The next steps extracted and calculated the LiDAR statistic stack from the points relative to thecircular
plots, with similar radius to those delimited in the terrain (12 m radius and 542 m2 idealsurface), in the
60 selected each circumference's center was its respective point. This process used theFUSION Gridmetrics
command to obtain the LiIDAR data concerning the vegetation dimensions thatwere confronted with the
field-inventoried data to generate the linear models and equations.

This command calculates the statistical data on user-adjustable rectangular cells, in this case, 20m edges,
to obtain surfaces similar to the plots in the fields. However, FUSION made some errors whenrunning
Gridmetrics that resulted in corrupted cells, which were eliminated.

After this process, linear regression equations were calculated by modeling the relationshipbetween the
dependent variable (biomass) and the independent variables (LiDAR statistical data). Thefree R software
developed at the University of Auckland and under improvement by the R DevelopmentCore Team was
used to execute the models and create the equations to estimate the forest variables. Thisprogram tested the
correlation between the variables and refined the models until high coefficients ofdetermination and low
standard errors were reached.

RESULTS AND DISCUSSION DIGITAL TERRAIN MODELS

The processed information obtained from the LiDAR flight was used to create the Digital TerrainModels
of the Surfaces and the Vegetation Heights. Figure 1 corresponds to the Digital Model ofSurfaces of the
elevations in zone 1a, generated by the FUSION GridsurfaceCreate tool.
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FIGURE 1

The Digital Surface Model of Zone 1a.

The study area is 315.29 meters high; its highest point is 2135.46 meters above sea level. In Figure 1, the
colors correspond to the altitude and show that the eastern section is the highest part ofzone 1a, in brown.

The altitudinal values decrease towards the west, and the lower levels are shown in light pink.Zone laisa
sloping area facing west and is crossed longitudinally by a valley in its central section.Similarly, another valley
runs through the south of the zone.

THE CANOPY MODEL

Figure 2 corresponds to the Digital Model of Vegetation Height or canopy model of the study areacreated
by the FUSION CanopyModel function.
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FIGURE 2
Digital Model of Vegetation Height of Zone 1a.

The color gradation corresponding to vegetation heights in Figure 2 evidences that theconcentrations of
the highest masses of vegetation are distributed in four parts: in the extreme north-eastof the zone, in the
central part north of the valley, in the central portion to the south of the valley, andthe extreme south of
the zone.

The lowest altitudes are along the thalwegs of the two valleys that cross the zone, and the highestpoints
are in the eastern portion. Besides specifying the altitudes, the model provides more visual detailof the area
through the color classification of the entire forest mass.

The Digital Surface Model was essential in developing the study since it was only possible tocalculate
the LiDAR variables once the vegetation had been distinguished from the soil. The DSM alsoserved as a
parameter of comparison with the other products when the forest mass was analyzed.

THE CALCULATION OF STATISTICAL MODELS BASED ONTHE LIDAR
DATA

Initially, the linear models were tested with points 1a, 1b, l¢, 1d, and 3c in all 60 zones. However,the
correlations were unsatisfactory, reaching an average R square value of 0.5. Then, new tests wereperformed,
excluding one zone at a time, or considering the points of two zones. Zone la was alwaysincluded in this
process since it is the subject of this study.

Finally, when generating models with the points of zone 1a and 1d, an R square value of 0.82 wasreached,
with a high degree of significance for most parameters. The "union" of the points of these two zones resulted
in a total of 29 circular plots.
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In the studies of Zhao et al. (2009), Salas et al. (2010), and Zolkos et al. (2013), regressionmethods
are useful for modeling biomass with metrics derived from airborne sensors. In these cases, theallometric
equations related the forest biomass field measurements with the trees' physicalcharacteristics provided by
LiDAR data.

However, to understand the low earlier correlations, a hypothesis was proposed that the forestbiomass
values for zones l1a and 1d could, in fact, relate to tree height since the LIDAR data mainlyrefer to elevation.
Inversely, the other zones' biomass values could be associated with the number oftrees per plot. Therefore,
the mean values of the biomass inventory and the maximum elevationgenerated by the LIDAR data were
calculated separately and then compared to each other (Table 1).

"~ Fone | Forest Biomass T Max, Elevation
1z | I 14,36 m
b | 11.00m )
e | 4,89 tons [ 1Z.16m
| 631 s | 1392m
3c I l‘J.IM Pinins [ 1603 m

TABLE 1
Average biomass values and maximum elevation.

Table 1 shows that zones 1a and 1d have the highest biomass and maximum elevation values ofthe zones
belonging to group 1. However, according to the LIDAR data, zone 3¢ has the most forestbiomass and the
tallest vegetation.

As the tests for zone 3¢ did not result in a satisfactory correlation, the hypothesis suggested wasdiscarded.
Once the linear forest biomass model of zones 1a and 1d had been determined, similar modelswere used to
estimate the carbon content, considering that the other three parameters' correlation wasalso satisfactory,
with an R* average of 0.82.

Based on these models, Microsoft Excel equations were set up to estimate the forest biomass ofall 29 points
considered in this step. Table 2 presents equations 1 and 2 resulting from the linearregressions performed
between the forest biomass data and the inventory's carbon content data from LiDAR.

Forest Riomass Model Equations

Comelations

Residual standard error = 0.753  Forest biomass = —8420533 — (17.284783 = Elev.mean) +
Multiple R-squared = (L8235 (0.090872 « FCO) + (3321942 « Elev. Kurtosis) +

Adjusted Resquared = (0693 (4383122 = Elev.p?0) + (3582299 « Elev.p50) —

(1322206 « Elev.p95) 4+ (4407623 « Elev.p05) +
{3.959646 « Elev.p?5) + (2871198 « Elev.po0) -
(1757112 = Elev.p01) + (0.00Z2919 »
All returns above mean) + (6.719745 «

Canopy relicf ratio) (1)
Carbon Content Model
Correlations
Residual standard error = 00389 Carbon content = =45731132 + (1,B312510 «
Multiple R-squared = 0,817 Elev. Kurtosis) = (96776788 + Elev.mean) — (0,5139935 «
Adjusicd R-squared = 0,680 Elev. PO1) + (21626610 « Elev.P05) + (22162177 =

Elev. P50} + (2,7347885 + Elev.P70) + (1,7112347 »
Elev. P75) + (17414060 = Elev.P90) — (0,7976353 =
Elev. P95) + (0,0450736 « FCC) + (D.0015026 «

All returns above mean) + ( 29105467 =
Canopy rellef ratio) 12y
TABLE 2

Equations to estimate the forest parameters and their respective correlations.

In Table 2, both the R-squared and the adjusted R-squared values of the three variables wereclose; those
for the forest biomass were highest at 0.825 and 0.693, respectively. Estornell et al. (2012) obtained similar
results for the correlations of allometric calculations of biomass, with an R-squared 0f0.87 and adjusted R-
squared of 0.79 in the Mediterranean region.

Table 3 shows the values of the forest inventory's variables and the values estimated by theequations
referring to forest biomass, basal area, and carbon content.
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Forest Forest Basal Basal Carbon Carbon
Fone points Biomass Biomzass Area Area Stock Stock
Inventory Model Inventory Muodel Inventory Muodel
lal 853 833 2,16 2.21 4.40 4.49
la2 593 6,02 1.57 1.63 330 3.37
la3 7.82 6,98 211 1.50 4,28 384
la4 6,00 6,53 1,65 1,712 3,34 3.51
las 7,60 7.26 206 1.97 4,16 3,98
laf 481 5.08 1.35 1.45 2,73 292
la7 6,63 7.39 1,80 200 367 4,06
lak 5.98 6,68 1.64 1.84 3,33 3,76
la9 7.38 829 1,98 2,28 4,05 4,62
lal) 4.71 4.00 1.32 1.19 2,68 242
lall 6,37 592 1.73 1.70 353 344
lal2 8,34 7.32 2.22 203 4,54 4,15
lal3 9,16 8,69 2,44 231 4,97 4,69
1d2 5.90 6,20 1.71 1.77 3,46 3,58
Id3 6,26 572 120 1.63 3.65 328
1d4 4,26 5.51 1,3] 1,58 2.61 3.18
1d5 4,00 4,51 1.24 1,38 248 2.76
1d6 831 8.59 2,31 2.34 4,71 4,74
1d7 4.96 4,97 1,48 1,47 2,98 2,95
1d8 5,74 6,72 1.68 1,90 3,38 186
1d9 582 543 1.68 1.54 342 310
1d10 6,30 577 1.81 1,62 1.67 33
1d11 879 8,55 2,45 2.36 4,95 4,79
1d12 6,89 6,77 1,97 1,92 397 388
1d13 664 6,38 1.90 1.79 3584 3.63
1d14 792 7.76 2,22 2,11 4,51 4,31
1d135 6.05 6,01 1.57 1.61 3,12 3,22
1d16 .14 6,77 204 1.98 4,10 3.99
1d17 6.03 6,17 1.76 1.74 3,53 3.51
TABLE 3

Biometric values for the inventory and the results of the LIDAR calculations.

In Table 3, the values resulting from the LIDAR data equations approximate the forest variablesprovided
by the La-Pedrera Foundation Inventory. Dispersion graphs were generated between the values(by plot)
of the variables from the inventory and those generated by the LIDAR data statistical model toverify this
correlation.

There is a good correlation between the forest biomass inventory values and the carbon contentand the
applied models' results, at 0.825, 0.817, and 0.817, respectively. Thus, forest biomass is thevariable with the
highest correlation between the data, while the R-squared carbon content has closeresults.

The cellslocated in the study area are the points with the information produced by theGridMetrics LIDAR
variables. Each cell is 400 m?, and for those in zone 1a, the equations were appliedto estimate forest biomass.

FOREST BIOMASS

Excluding those that presented errors, 1,727 cells in zone 1a have an area equal to 69.08 ha.Taking this
dimension as a reference and considering the inventory plots as samples, the area's totalforest biomass was
estimated at 11,638.4 tons, using data from the La-Pedrera Foundation. On the otherhand, when the areas’
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total biomass was computed, applying the equation to the LIDAR data, 9,138.6tons of forest biomass were
calculated.

When comparing the total forest biomass in the study area, the two results are approximate values,with
the model indicating 2.499.8 fewer tons. This difference is probably due to this method usingsample plots to
calculate the zone's biomass, which includes parts of the forest with smaller trees are andeven spaces without
arboreal vegetation, as was evident in the Canopy model.
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Forest biomass distribution in zone 1a

Studies were also carried out by Silva et al. (2015a) on the importance of estimating biomassthrough
remote sensors and Silva et al. (2015b) on using new technologies to conserve natural resources

Thus, the LIDAR data's importance as the most reliable projection of the study's object is clear as thesensor
captures information about the zone as a whole, including different vegetation cover. In contrast,the
inventory plots are samples that tend to homogenize the information about the space in question. Therefore,
Figure 3 presents the forest biomass distribution map by quadrat throughout the study area.

An analysis of Figure 3 shows that the higher concentrations of forest biomass are not condensedin
a particular region of the zone but are distributed in several locations. A high forest biomass
extendsthroughout the north-central part of the zone, although it does not occur uniformly. To the
south of thedivision made by the valley bottom, there is also a denser biomass distribution, and a
similarlyconcentrated densification of forest biomass is apparent at the southern end of the zone.

It is also evident that there is a concentration of forest biomass in the northeast of the zone, aroundthe
coordinates 1°29'50" E and 42°10'30" N. In the areas corresponding to the thalwegs, which cross thecentral
and southern portions of the zone, there is a significant absence of forest biomass caused by thepedological
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structure in these areas, with accumulations of rocky debris carried by natural agents addedto the action of
gravity.

Additionally, there is a low concentration of biomass between the north-central and northeastportion of
the zone, including the site's highest areas, possibly due to the shallow soil and rockyoutcrops, which impede
the development of arboreal vegetation. In this area, there is the presence ofrocky outcrops near the eastern
part of the zone. The comparisons made in the studies of Montero et al.(2005) indicated a carbon content
for the biomass of black pine (Pinus nigra) of 50.9%, while forSpanish juniper (Juniperus communis) and
holm oak (Quercus ilex), the carbon content was estimated at47, 5% of the total biomass.

CONCLUSION

Firstly, the study found that the canopy model is a viable product to analyze the forest biomassstructure since
it distinctly differentiates between the trees’ heights.

Furthermore, the statistical results of the LIDAR data related to the Forest Inventory informationwere
useful as the former had a satisfactory correlation with the Inventory data for the 29 plots in zonesla and
1d, with R-squared values above 0.8. Consequently, they enabled the creation of an equation toestimate the
forest biomass of the study area.

Finally, research using LiDAR is advantageous as it works with non-destructive biometricmeasures.
However, Light Detection and Ranging data application methods need to be developed to fitthe diverse
realities of biomes and forests worldwide.
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