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Leon, C., Martinez, C., & Cepeda, F. (2018). Short-term liquidity contagion in the
interbank market. Cuadernos de Economia, 38(76), 51-80.

We implement a modified version of DebtRank to recursively measure the conta-
gion effects caused by the default of a selected financial institution. For this paper,
contagion is a liquidity issue that is measured as the decrease in financial institu-
tions’ short-term liquidity position across the Colombian interbank network. We
find that contagion negative effects are concentrated in a few financial institutions.
However, as most of their impact is conditional on the occurrence of unlikely major
widespread illiquidity events, and due to the subsidiary contribution of the inter-
bank market to the local money market, their overall systemic importance is still
to be confirmed.

Keywords: Financial networks, contagion, default, liquidity, DebtRank.
JEL: G21, L14, C63.

Leén, C., Martinez, C., & Cepeda, F. (2018). Contagio de liquidez a corto plazo
en el mercado interbancario. Cuadernos de Economia, 38(76), 51-80.

Implementamos una versién modificada de DebtRank para medir de manera recur-
siva los efectos de contagio causados por la cesacion de pagos de una institucién
financiera. En nuestro caso, el contagio es un problema de liquidez, medido como
la caida en la liquidez de corto plazo de las instituciones en la red interbancaria
colombiana. Encontramos que sus efectos negativos estdn concentrados en pocas
instituciones. Pero como estos en su mayoria son condicionales a la ocurrencia de
eventos improbables de iliquidez generalizada, y debido a la contribucién subsidia-
ria del mercado interbancario al mercado monetario local, su importancia sistémica
total estd aun por confirmarse.

Palabras clave: redes financieras, contagio, cesacion de pagos, liquidez, DebtRank.
JEL: G21, L14, C63.

Leén, C., Martinez, C., & Cepeda, F. (2018). Contagion de liquidité a court
terme dans le marché interbancaire. Cuadernos de Economia, 38(76), 51-80.

On emploie une version modifiée de DebtRank pour mesurer de maniere récursive
les effets de contagion causés par le cessation de paiement d’une institution finan-
ciere. Dans notre cas, la contagion est un probleme de liquidités, mesuré comme
la chute dans la liquidité a court terme des institutions dans le réseau interbancaire
colombien. Nous constatons que les effets négatifs sont concentrés chez peu d’ins-
titutions. Mais comme ceux-ci dans leur majorité sont conditionnés par 1’occu-
rence d’événements improbables d’illiqudité généralisée, et dus a la contribution
subsidiaire du marché interbancaire au marché monétaire local, leur importance
systémique totale reste a confirmer.

Mots-clés: réseaux financiers, contagion, cessation de paiement, liquidité, Deb-
tRank.
JEL: G21, L14, C63.
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Leon, C., Martinez, C., & Cepeda, F. (2018). Contagio de liquidez a curto
prazo no mercado interbancario. Cuadernos de Economia, 38(76), 51-80.

Implementamos uma versdo modificada de DebtRank para medir de maneira
recursiva os efeitos de contdgio causados pela cessacdo de pagamentos de uma
institui¢do financeira. Em nosso caso, o contigio é um problema de liquidez,
medido como a queda na liquidez de curto prazo das institui¢des na rede interban-
céria colombiana. Constatamos que seus efeitos negativos estdo concentrados em
poucas institui¢des. Mas como estes, na maioria sdo condicionais a ocorréncia de
eventos improvaveis de iliquidez generalizada, e devido a contribuicdo subsididria
do mercado interbancario ao mercado monetario local, sua importincia sistémica
total ainda deve ser confirmada.

Palavras-chave: redes financeiras, contdgio, cessacdo de pagamentos, liquidez,
DebtRank.
JEL: G21, L14, C63.
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INTRODUCTION

One lesson from the global financial crisis is that the soundness of each financial
institution does not ensure the stability of the financial system, per se. Likewise,
it has been suggested that a financial institution’s liquidity is not ensured by the
liquidity position of each single institution, but that their interconnections may
determine whether they are able to fulfil their short-term liquidity needs. In this
sense, as Allen and Gale (2000) noted, interconnections between financial institu-
tions determine the possibility and extent of financial contagion.

Financial institutions’ interconnections comprise direct and indirect linkages
(Allen & Babus, 2009). Direct linkages are related to mutual exposures acquired
in financial markets (e.g. interbank lending, securities, and foreign exchange set-
tlements), whereas indirect linkages correspond to holding similar portfolios (as
in fire-sales) or sharing the same mass of depositors (as in deposit runs). We focus
on direct-linkage contagion.

Despite differing in their specific features and assumptions, most direct-linkage
contagion simulation models focus on how defaults on mutual exposures may
erode financial institutions’ solvency by affecting their capital buffer. From a net-
work perspective, the literature related to direct-linkage contagion is composed by
endogenous recovery models and exogenous recovery models.

The endogenous recovery models, as their name indicates, determine banks’
recovery rates that have been exposed to an insolvent counterparty in an en-
dogenous way (Elsinger, Lehar, & Summer, 2006). Based on the Eisenberg and
Noe (2001) model, this strand of the literature represents financial institutions as
nodes connected to each other by their interbank obligations to replicate the shock
transmission mechanism and assess the impacts that shocks imposed on an entity
may cause to the entire financial system. Related research using a similar frame-
work was proposed by Furfine (2003), who found that bilateral interbank expo-
sures in the U.S. are neither large enough nor distributed in a way that cause a great
risk of contagion by capital exhaustion. Very few cases of knock-on effects arise
from a financial institution failing. Similarly, Upper (2011) pointed out that direct
contagion based on actual interbank exposures is likely to be rare and can only
happen if interbank exposures are large relative to a lender’s capital.

Several extensions have been developed using the Eisenberg and Noe (EN) model.
From a theoretical point of view, Cifuentes, Ferrucci, and Shin (2005), used a sim-
ilar framework to EN, and found that small shocks can trigger contagious failures
via balance sheet interlinkages and asset prices. Rogers and Veraart (2013) pro-
posed another theoretical extension considering the costs of default along with
an incomplete refund of payments induced by a defaulting bank since this is pre-
cisely what can generate other collapses that may possibly end in financial con-
tagion. From an empirical point of view, the EN model has also been considered.
Elsinger, et al. (2006) included uncertainty and assessed the risk on system level
using macroeconomic risk factors. Glasserman and Young (2015) modified the EN
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model from a clearing model to a valuation model and estimated the amplification
of defaults and losses that may result from original shocks. Capponi, Chen, and
Yao (2015) included the bankruptcy costs and additionally proposed a method that
allows comparisons to be established between financial networks. Capponi and
Chen (2015) adjusted the algorithm of the baseline network model (EN) to exa-
mine the dynamic component of systemic risk, while Capponi and Larsson (2015)
analyse financial institutions’ reactions to changes in asset prices using the same
framework.

The exogenous recovery models are mainly composed by default cascades models
and the DebtRank method. Within default cascades models, the theoretical works
of Nier, Yang, Yorulmazer, and Alentorn, (2007) and Gai and Kapadia (2010)
investigate how financial systems’ structure and capitalization affect systemic risk
using artificial networks. They found that contagion decreases with capitalization,
but increases with concentration or with the size of interbank liabilities. In terms
of connectivity, they found that the relationship with contagion is non-monotonic:
when connectivity is low (high), an increase in the number of links increases
(decreases) the likelihood of knock-on defaults. Battiston, Gatti, Gallegati, Green-
wald, and Stiglitz (2012a) find that systemic risk will be reduced as long as the
network density increases; while for Roukny, Bersini, Pirotte, Caldarelli, and Bat-
tiston (2013), the network topology only (but substantially) matters when financial
markets are under stress (e.g. illiquid).

A recent development on direct-linkage contagion simulation models is DebtRank
(Battiston, Puliga, Kaushik, Tasca, & Caldarelli, 2012b). Inspired by feedback
centrality, DebtRank recursively measures the impact of the default of a selected
financial institution on the capital buffer of financial institutions across the entire
financial network. DebtRank serves to determine the size of the contagion caused
by the initial default of a financial institution; it also provides an assessment of
the systemic importance of each financial institution based on the severity of its
impact on the system. However, unlike previous direct-linkage contagion models
based on default cascade dynamics, the impact from default is not limited to those
cases in which the capital buffer is exhausted: partial impact on solvency is quan-
tified and accumulated recursively. There are some implementations of DebtRank
on actual data (e.g. Battiston, Caldarelli, D’Errico, & Gurciullo, 2016; Poledna,
Molina-Borboa, Martinez-Jaramillo, van der Leij, & Thurner, 2015; Tabak, Souza,
& Guerra, 2013).

Most research on direct-linkage contagion focuses on the subsequent failure of
other financial institutions through the exhaustion of capital buffers (a solvency
issue). Nevertheless, liquidity is also a key factor. Furfine (2003) concludes that
the liquidity effect, in the form of the unwillingness to lend money due to the ina-
bility to borrow, may be greater than the solvency effect in the U.S. interbank mar-
kets. Miiller (2006) concludes that direct linkages affect solvency and liquidity
substantially in the Swiss interbank market, and that both sufficient capital and
liquidity buffers are necessary to mitigate spill-overs. Cepeda and Ortega (2015)
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find that liquidity contagion in the Colombian large-value payment system is mit-
igated when considering the stock of high-quality assets available as a potential
source of liquidity.

We implement a modified version of DebtRank in order to recursively measure the
impact of the default of a selected financial institution on the short-term liquidity
position of financial institutions across the entire interbank network. We construct
the financial network based on actual interbank (i.e. non-collateralized) data from
the Colombian financial market. We use the local version of the Liquidity Cover-
age Ratio (LCR),' the Liquidity Risk Indicator (RL for its acronym in Spanish), as
the initial short-term liquidity position of financial institutions. Our modified ver-
sion of DebtRank allows for determining the size of short-term liquidity contagion
caused by the default of a designated financial institution and for assessing the sys-
temic importance of each of these institutions based on the severity of its impact
over the short-term liquidity of the system.

Consistent with most related literature (e.g. Furfine, 2003; Roukny et al., 2013;
Upper, 2011) we find that —ceteris paribus— in the Colombian interbank market
the effects of contagion are not themselves a threat to the stability of the system.
Unless a major —but unlikely— drop in the short-term liquidity position of all par-
ticipants precedes contagion, we find that the effects of contagion are rather small.
It is most likely that the small size of Colombian interbank market exposures,
with respect to the short-term liquidity position of financial institutions (about
1.5% of IRL), along with the subsidiary contribution of interbank loans to liquid-
ity exchanges between financial institutions (about 9.68%), explain why contagion
effects alone are trivial.

Our results support a salient feature of the past financial crisis reported by Upper
(2011): the vast majority of banking crises were followed by shocks that hit se-
veral banks simultaneously rather than domino effects from idiosyncratic fail-
ures. Our methodological proposal provides a quantitative assessment of finan-
cial institutions’ systemic importance based on their potential contagion effect on
the short-term liquidity position of the remaining financial institutions across the
Colombian interbank network. Moreover, based on the potential effect on the sys-
tem’s liquidity, our results may provide a quantitative assessment of the liquid-
ity that should be obtained from other available sources in case of a default by
a financial institution such as collateralized borrowing (e.g. from other financial
institutions or the central bank), selling financial assets, or increasing deposits.
However, as our results are limited to the local interbank market, conclusions are
to be weighted according to their contribution to the money market and to the size
of the financial system.

! The purpose of the LCR is to ensure that each financial institution has an adequate stock of unen-
cumbered high-quality liquid assets that can be easily and immediately convertible into cash, in
private markets, so as they can meet their liquidity needs for a thirty-calendar-day stress scenario
(see Basel Committee in Banking Supervision, 2013).
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METHODOLOGY

There is a rather recent interest in using network analysis in finance and eco-
nomics, which places great emphasis on systemic risk and financial stability.
Using this approach, financial institutions are nodes that participate in a system
(e.g. large-value payment, securities settlement) or market (e.g. interbank, deri-
vatives), that have exposures or payments as their links. In a formal setting, finan-
cial institutions as well as their connections are represented in a network of mutual
claims or flows, with elements arranged in a squared and potentially non-symmet-
ric matrix (i.e. non-reciprocal) that has elements in the main diagonal equal to zero
due to self-connections’ absence or lack of economic interest.

Several methods or measurements belonging to the realm of network analysis
have been used to assess the extent to which a default or failure-to-pay by a finan-
cial institution may affect others in a network environment. A natural choice is
to use centrality measures as proxies for financial institutions’ systemic impor-
tance, and to use these measures to estimate their contagion potential in the net-
work being analysed.

FROM CENTRALITY TO DEBTRANK

The simplest measures of centrality, namely degree centrality and strength cen-
trality, corresponding to the number of links and their weight, are not particularly
useful for quantifying contagion dynamics. They are local (non-global) measures
of centrality (i.e. non-adjacent nodes are not considered), thus they do not allow
to estimate impacts on a network-wide level. Path dependent centrality measures,
namely closeness centrality and betweenness centrality, may take into account
non-adjacent nodes by calculating how far nodes are in terms of the number of
links that compose the shortest paths between them, and the fraction of those
shortest paths that run through each node, respectively. However, measuring cen-
trality based on the shortest path between financial institutions may be difficult to
interpret in a financial contagion context (see Soraméki & Cook, 2013).

Feedback centrality refers to all those measures in which the centrality of a node
depends recursively on the centrality of the neighbours (Battiston, Puliga, Kau-
shik, Tasca, & Caldarelli, 2012c). The simplest measure of feedback centrality is
eigenvector centrality (Bonacich, 1972), whereby the centrality of a node is pro-
portional to the sum of the centrality of its adjacent nodes. Thus, the eigenvector
centrality of a financial institution is the weighted sum of all other financial insti-
tutions’ centrality at all possible order adjacencies (see Newman, 2010). Eigen-
vector centrality’s analytical value to measure contagion dynamics is illustrated
by Soraméki and Cook (2013), who depict eigenvector centrality as the proportion
of time spent visiting each node during an infinite random walk through the net-
work. Other popular feedback centrality measures based on eigenvector centrality
are PageRank (Brin & Page, 1998), which is the algorithm behind Google’s search
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engine; hub centrality and authority centrality (Kleinberg, 1998); and SinkRank
(Soramiki & Cook, 2013).

All feedback centrality measures share a common drawback when applied to con-
tagion dynamics: in the presence of a cycle (i.e. a loop) in the network there is
an infinite number of reverberations of a node’s impact on the others and back
to itself, which impedes simple and measurable economic interpretations (Batti-
ston et al., 2012b). That is, despite them being useful by providing relative mea-
sures (i.e. scores) of the importance of each node, feedback centrality measures
fall short when a monetary value of contagion size is required.

DebtRank (Battiston et al., 2012b) is a centrality measure inspired by feedback
centrality that overcomes this drawback by not allowing an infinite number of
reverberations through the network. By excluding walks in which one or more
links are repeated, it has a measurable economic interpretation (see Appendix 1).
As defined by Poledna et al. (2015), it is a quantity that measures the fraction of
the total economic value in the financial network that is potentially affected by the
distress of an individual node or a set of nodes. Moreover, DebtRank also accounts
for the fact that when a default does not propagate in the form of a subsequent
default, there is still a contagion effect in the form of a reduction in the robustness
(i.e. solvency) of those directly affected and potentially in the robustness of the
entire network. These two features allow DebtRank to provide a simple and eco-
nomically meaningful measurement of the size of the contagion dynamics follow-
ing the default of a designated financial institution and a forthright measurement
of its systemic importance.

Our methodological approach to determine the size of contagion caused by the
default of a financial institution in an interbank exposures network is closely
related to DebtRank. However, our approach does not rely on how the exposure
among financial institutions may affect their capital buffer (i.e. a solvency issue)
in case of a default by a designated financial institution but on how it may affect
their short-term liquidity. Hence, in our case, we measure the depletion of short-
term liquidity when financial institutions face failure-to-pay by a participant of the
interbank claims network. A straightforward by-product is assessing the systemic
importance of financial institutions in the local interbank market.

THE INPUTS

Two main inputs are used in our approach: a proxy for the short-term liquidity of
financial institutions participating in the interbank market and the actual network
of interbank financial claims.

The first input, a proxy for the estimated short-term liquidity position of the i-finan-
cial institution (]:_ ), is our individual measurement of financial robustness —instead
of a proxy for solvency. We use the coverage provided by financial institution i’s
high-quality liquid assets to meet the estimated net liquidity requirements for a
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7-day horizon (IRL) as reported by local financial institutions to the Colombian
Financial Superintendency. Hence, /, (t) denotes the estimated short-term liquidity
position of financial institution 7 at time .

The calculation of the high-quality liquid assets and the estimated net liquid
requirements for regulatory purposes in the Colombian case is intricate and has
several non-linear features (see Annex 1 - Circular Externa 017 de 2014 of the
Colombian Financial Superintendency). Nevertheless, for analytical purposes, we
use the reported value of the expected short-term liquidity position ([Ai ) as a proxy
of the short-term liquidity position of each financial institution, and we affect it in
a linear manner: for example, not collecting $1 in interbank loans due to counter-
party’s default will decrease the short-term liquidity position by $1. This simpli-
fication not only allows a generalized version of the algorithm to be designed, but
it also makes changes in liquidity tractable, while preserving the analytical sub-
stance of the model.

The second main input in our approach is a directed weighted network in which
nodes represent financial institutions participating in the interbank market with
links representing non-collateralized financial claims. Let C be the weighted
matrix representing the network of interbank claims, with G, containing the out-
standing amount that financial institution i owes to j.

If financial institution i is unable to refund an interbank loan to j, then j faces an
unexpected reduction of its robustness, [: . It is an unexpected reduction because j
could not anticipate i’s failure to pay when estimating its short-term liquidity posi-
tion; that is, j had estimated its short-term liquidity position under the assump-
tion that i would fulfill its commitment to refund. The unexpected reduction in

short-term liquidity faced by i’s counterparties (i.e. the system) is C; = Z G-
J

As bankruptcy procedures may be rather lengthy (see Battiston et al., 2012b; Tabak
et al., 2013), we assume that in the short-run there are no recoveries of any losses.
Likewise, as netting in interbank borrowing is not a common practice in the local
market, we also assume that no netting of claims is available.

THE DYNAMICS

Whenever financial institution i fails to pay j the outstanding amount Cl.j at moment
t, the liquidity position of j is unexpectedly affected: ] ; (t —H) =1 ; (t)—C,-j. The
aftermath of the updated short-term liquidity position of j depends on the choice

of a short-term liquidity threshold that allows j to be considered as imposing (or
not) a significant risk for the system. Let y be this short-term liquidity threshold, j
fails to pay its counterparties as a consequence of the failure of i to refund the out-
standing amount ¢, whenever / ; (t + 1) < y. Insuch case, j defaults (i.e. it is unable

2 However, netting may be appropriate to examine other types of financial exposures, say derivatives.
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to pay), and the process continues recursively. On the other hand, if i i (t+ 1) =y

Jj is affected but it does not default: j is able to fulfil its commitments to refund its
counterparties, but its short-term liquidity position and that of the entire system
have decreased (i.e. the robustness of j means the system has weakened).

A natural choice for the short-term liquidity threshold is y = 0. A financial institu-

tion i with a short-term liquidity position below zero may be considered to be on
the limit of failing to fulfil its immediate commitments to pay: liquidating the stock
of high-quality liquid assets would not suffice to face estimated short-term net
liquidity requirements. Technically speaking this does not mean that i is in default
or that it is unable to pay; it may still be able to get new funds from financial insti-

tutions or the central bank in order to roll-over existing loans or to increase de-
posits. Nonetheless, [, <0 is a rather clear signal of substantial exposure to a
potential liquidity risk, and it should force certain actions from the financial insti-
tution. Hence, for analytical purposes, we set y = 0 to determine the tipping point

of the default cascade, which is the threshold that determines the transition from
undistressed to distressed.?

Formally, analogous to DebtRank, the dynamics are as follows: [: is the short-
term liquidity position of financial institution i, which is a continuous variable
with /; € [—oo,oo]. s, is a discrete variable with three possible states, undistressed
(U), distressed (D), and inactive (1), corresponding to institutions able, currently
unable (i.e. in default), and already unable (i.e. defaulted earlier or with l: <0)
to refund their interbank loans, respectively (s; € {U,D,1}). Let I;(0) denote the
actual value of 1: (i.e. the reported IRL), x be the set of financial institutions un-
able to pay (i.e. distressed or inactive) at # = 1, and y the selected short-term liquid-
ity threshold that determines the ability to pay. The initial conditions (z = 1) are:*

L(1)=1(0)Viex s;()=UVigx

A

L(1)=yViex s;()=DViex ¢))

At a later stage (i.e. ¢t = 2), the dynamics of [ and s, are determined by the speci-
fication below (in (2) and (3)). As usual, the dynamlcs depend on the initial con-

ditions, namely the initial allocation of robustness (li( )), the structure of the

3 Technically, a financial institution with a negative 7-day /RL may be able to pay its counterparties,
and it may also be solvent. Likewise, in DebtRank it is arguable that a financial institution may
be viable (e.g. able to pay) even after the capital buffer against shocks is exhausted. In fact, as
balance sheets are updated on a monthly basis, financial institutions may continue to function for
days or weeks before the capital buffer is officially reported as exhausted. Another case is also
possible: as in Miiller (2006), solvent financial institutions may find themselves in default be-
cause they have no liquid assets to refund their borrowing.

4 This means that at t = 1 two types of institutions may be unable to pay: Those selected as unable
to pay by forcing their situation as distressed irrespective of their short-term liquidity position
(i.e. designated financial institutions), and those that already have a short-term liquidity position
below the selected threshold (i.e. /; < 0).
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interbank claims network (C!/-), and the initial choice of financial institutions in
distress (x). The key in the dynamics is that the sum in (2) (i.e. the liquidity impact)
arises from those j financial institutions that entered in distress during the preced-
ing period (i.e. those j that are neither undistressed nor inactive).

() =maxiph(t-1)- Y Cjrle=2 )

J \s/(t—l):D

and

D ifl;(t) < yands; (t—1)#1
si(1)=1 1 ifs;(t-1)=D 3)

s;(¢-1) otherwise.

The process continues recursively, and it is repeated for each financial institution
that has commitments to refund. The process for each i-financial institution stops
at time 7 when all financial institutions are either inactive or undistressed (i.e. no
distressed institutions pending to impact the system). The measurement of the dis-
tress (in (4)) caused by the set x is the change in the overall short-term liquidity
position of the system from # = 1 to 7. If x is a single financial institution, such
change is denoted F, and it gauges the impact of that i-financial institution in
the system’s ability to pay as measured by the variation in the short-term liquid-
ity position of its counterparties (i.e. the initial distress in x is not considered). In
this case, the nominal value of F' : and its contribution to all financial institutions’

impact (F)) are, respectively,
=Y 1(1)-37(1) @)
J J

F=F/%F )

As expected, F,and }_71 provide a straightforward assessment of the systemic impor-
tance of financial institution i in the interbank funds market. The higher the dis-
tress caused by a financial institution in the robustness of its counterparties (i.e.
their short-term liquidity position), the greater its systemic importance in the inter-
bank funds market.

As pointed out by Tabak et al. (2013), it should be noted that adding the systemic

importance of all financial institutions into a single figure (F =2}Fl_) may not
1

be considered a measurement of systemic risk or the financial system’s impact.

As this is the sum of financial institutions’ individual potential stress, it should

be considered a proxy for financial system’s stress. As usual, measuring systemic
risk would require multiplying the size of the individual potential stress (F) by the
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probability of its occurrence over a determined time horizon (as in Poledna et al.,
2015; and Tabak et al., 2013).

THE DATA

Interbank exposures in C are estimated by implementing Furfine’s algorithm (Fur-
fine, 1999) using data from the Colombian large-value payment system (see Ledn,
Cely, & Cadena, 2016). Daily interbank exposures networks are available with
daily frequency for the April 1, 2013 — December 30, 2014 period (i.e. 428 obser-
vations). During this period, 33 financial institutions participated in the market.’
Despite many other types of financial institutions being authorized to borrow and
lend in the interbank funds market (e.g. investment funds, broker-dealer firms),
actual participants are credit institutions only. As usual in non-collateralized funds
markets around the world, most loans have a low time-to-maturity at inception:
78.9% are overnight loans with an average maturity of about 2.6 calendar days.

Figure 1 exhibits a graph representing C for a randomly selected date. Nodes rep-
resent financial institutions, with their height (width) corresponding to financial
institutions’ contribution to the total value of claims as a lender (borrower). The
direction of the arrows represents the existence of an interbank claim (i.e. from the
lender to the borrower), whereas their width represents its contribution to the total
value of claims in the system. Interbank exposures in C allow us to follow the path
of direct linkages considered by the algorithm.

The proxy variable we use for the short-term liquidity position is the 7-day IRL
calculated by the Colombian Financial Superintendency based on reports from
financial institutions. This indicator, which measures financial institutions’ liquid-
ity risk, is available on a weekly basis (each Friday) from January 4, 2013 to
December 26, 2014 (i.e. 104 observations).® As the proxy for the short-term liquid-
ity position has the lowest frequency (i.e. weekly) and the least number of obser-
vations, this variable determines the period and the frequency of data used in the
exercise. Thus, the sample period goes from April 5, 2013 to December 26, 2014,
which corresponds to 90 weekly observations (n = 90).

In Colombia, the short-term liquidity position (7-day IRL) exceeds the interbank
(i.e. non-collateralized) exposures by two orders of magnitude (see Table 1). The
mean (and maximum) interbank exposure is about 1.5% the mean (and maximum)
short-term liquidity position. This is expected because the size of the local inter-
bank funds market is rather small. Most liquidity exchanges between financial
institutions in the money market consists of collateralized lending in the form
of sell/buy backs (i.e. simultdneas) and repos, with the interbank (i.e. non-col-
lateralized) market contributing with about 9.68% of the total (see Banco de la

> The number of participating financial institutions is lower in some days.

¢ An alternative proxy for short-term liquidity may be the net liquid assets (i.e. liquid financial
assets minus current liabilities), or some other balance-sheet measure of short-term liquidity;
however, as balance-sheet is a low-frequency source of data (e.g. monthly) our choice appears to
be superior in terms of opportunity.
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Republica, 2015).” Despite the size of the interbank exposures appearing to be
negligible and incapable of resulting in sizeable liquidity contagion, examining
how the short-term liquidity position is affected is relevant for analytical purposes.

Figure 1.
Interbank claims network for a randomly selected date

Nodes (in rectangles) correspond to participating financial institutions. The height (width)
of each node corresponds to its contribution to the total claims of the market as a lender
(borrower). The direction of the arrows represents the existence of an interbank claim (i.e.
from the lender to the borrower), whereas their width represents its contribution to the
total value of claims in the system. Non-connected nodes (in the right border of the graph)
correspond to financial institutions without outstanding lent or borrowed amounts in the
selected date.

Source: Ledn et al. (2016).

7 Intraday interbank lending is not considered because it does not involve financial exposure at the
end of the day.
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Table 1.
Descriptive Statistics for Interbank Exposures and Short-Term Liquidity Position
Datasets

In Million COP Interbank Short-term
(on daily data) exposures liquidity position
Mean 16,299 1,098,813
Standard deviation 2,731 2,195,172
Maximum 215,500 14,391,923
Minimum 50 156

Measured in millions of Colombian pesos (COP) and based on daily data for the 90 days being
analysed. The short-term liquidity position exceeds the interbank exposures by two orders of
magnitude. Only data with values greater than zero were used to estimate the statistics.
Source: Authors’ calculations.

Other research works do not limit their analysis to non-collateralized borrowing
as we do. For instance, it is unclear whether Battiston et al. (2012b) distinguish
between collateralized or non-collateralized investments (i.e. funding) among
financial institutions. However, in the case of collateralized funding (e.g. repos,
sell/buy backs) the default would be followed by a rather swift process of liqui-
dating and collecting the cash value of the pledged collateral, thus rendering direct
contagion as an unlikely outcome. Consequently, despite collateralized borrowing
could make contagion effects sizeable, they should have a negligible impact on
our examination of direct contagion: the main impact arising from a default (i.e.
principal risk) is minimized by pledged collateral.® The same argument applies for
foreign exchange and securities transactions that are settled under exchange-for-
value arrangements (e.g. delivery-versus-payment).

Accordingly, instead of including collateralized funding or exchange-for-value
transactions to magnify and examine the dynamics of liquidity contagion under
debatable assumptions, we consider short-term illiquidity scenarios. We choose
to examine the dynamics of liquidity contagion following an ex-ante general-
ized reduction in the short-term liquidity position equivalent to a fraction of the
observed short-term liquidity position (IRL). Let & be a fraction (7 € [O,(IL99] ),

and [™ is the short-term liquidity scenario after a drop of x/, with ™= (1 - w)i .
We expect that illiquidity scenarios, consisting in reducing the short-term liquidity
position of financial institutions, will reveal how the dynamics of liquidity conta-
gion may occur in a hypothetical stress setup.’

8 However, other risks related to collateralized lending —not considered here- would remain, such
as replacement cost risk arising from collateral with a market value below the refund value and a
potential fire-sale risk arising from the widespread liquidation of collaterals to face the default.

 Moreover, the illiquidity scenarios considered, from 100% to 1% of 7-day IRL, allow particularly

interesting short-term liquidity levels to be implicitly evaluated. For instance, as reserve require-
ments are representative when calculating the IRL (i.e. the mean ratio of reserve requirements to



Short-term liquidity contagion in the interbank market Carlos Ledn et al. 65

MAIN RESULTS

We choose to examine the dynamics of liquidity contagion following an ex-ante
generalized reduction in the short-term liquidity position. 100 scenarios are
selected, starting with a base scenario consisting of a null reduction (™0 =1.00/).
This is a scenario consisting of a short-term liquidity reduction equivalent to 99%
of observed IRL (i”:'99 = 0.0li) with 1% increases (7 = 0,0.01,0.02,...0.99). We
expect the first scenario (7 = 0 ) to show slight contagion effects —if any. Regard-
ing the other 99 scenarios, we expect results to be monotonically increasing in the
size of the reduction in short-term liquidity: the higher 7 (i.e. the size of ex-ante
liquidity reduction), the higher the contagion effects.

First, we report the effect of contagion. For each day and scenario, we examine
the average and maximum change in the short-term liquidity position of the sys-
tem and the number of financial institutions defaulting as a result of contagion.
Second, as we are concerned about financial institutions’ systemic importance, we
report how designated individual financial institutions contribute to the contagion
effect estimated for each day and illiquidity scenario.

CONTAGION EFFECTS

Figure 2 shows the average contagion effects. Each (blue) line in Figure 2 cor-
responds to one of the 90 n-day estimated average contagion effects initiated by
all financial institutions with outstanding claims in the interbank market. That is,
lines display the average percent drop in a financial system’s short-term liquidity

(y-axis) as a function of the selected illiquidity scenario (]7=0-0-01.0.02,:-:0.99) The

bold (red) line is the average of the 90 lines.

As expected, the average contagion effect monotonically increases. In terms of
the average contagion effect for the base case scenario (/ ™0 —1.001), effects are
bound to a rather negligible reduction in short-term liquidity: between 0.00% and
0.11%. The greatest n-day average contagion effect in our sample is equivalent
to a reduction of aboqt 5.90% in slAlort-term liquidity; however, this occurs in the
worst-case scenario (/™" = 0.017). It is straightforward that average contagion
effects in short-term liquidity become relevant only after extreme illiquidity sce-
narios are considered (e.g. / m>80)

Studying the average contagion may hinder identifying interesting effects in net-
works that are characterized by an inhomogeneous connective structure. It is
well-documented that most real-world networks are inhomogeneous and have par-
ticularly skewed distributions of their connections (i.e. degree) and their weights,
allegedly following a power law distribution in the form of a scale-free network.
Actual financial networks have also been characterized as particularly skewed,
either following a power-law distribution of linkages (see Bech & Atalay, 2010;

IRL is about 24% for the selected sample), illiquidity scenarios corresponding to about 76% of the
short-term liquidity are interesting to examine.
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Boss, Elsinger, Summer, & Thurner, 2004; Inaoka, Ninomiya, Tanigushi, Shimizu,
& Takayasu, 2004; Soramiki, Bech, Arnold, Glass, & Beyeler, 2007) or some other
type of skewed distribution (see Craig & von Peter, 2014; Fricke & Lux, 2014; and
Martinez-Jaramillo, Alexandrova-Kabadjova, Bravo-Benitez, & Solérzano-Mar-
gain, 2012). In the Colombian case, actual financial networks —including interbank
networks- have been characterized as approximately following a power-law distri-
bution of linkages and their weights (see Cepeda, 2008; Le6n & Berndsen, 2014;
and Leon, Machado, & Sarmiento, 2018).

Figure 2.
Average Contagion Effects

Each line corresponds to one of the 90 n-day estimated average contagion effects caused by
all financial institutions with outstanding claims in the interbank market (y-axis) as a function

0,0.01,0.02,---0.99

of the selected scenario i = . The bold line is the average of the 90 lines.

Source: Authors’ calculations.

Consequently, by focusing on the average effect, we are implicitly relying on the
existence of a typical financial institution. This is a misleading approach due to the
well-documented heterogeneous distribution of linkages and their weights among
institutions participating in financial networks. As it is advisable to study extreme
cases in particularly heterogeneous systems —such as financial systems-, Figure 3
exhibits the maximum contagion effects.



Short-term liquidity contagion in the interbank market Carlos Ledn et al. 67

Maximum contagion effect also increases monotonically. The maximum conta-
gion effect for the base case scenario (/ ™0 —1.00/ ) is bound to a reduction in
short-term liquidity between 0.00% and 1.21%, which is —once more— rather neg-
ligible. The greatest n-day maximum contagion effect in our sample is equivalent
to a short-term liquidity reduction of about 45.78%, but it occurs —again— only
after a rather extreme and very unlikely illiquidity scenario (/™" = 0.017).

Figure 3.
Maximum Contagion Effects

Each line corresponds to one of the 90 n-day estimated maximum contagion effects caused
by all financial institutions with outstanding claims in the interbank market (y-axis) as a func-

tion of the selected scenario 1”20’0'01’0'02""0'99 . The bold line is the mean of the 90 lines.
Source: Authors’ calculations.

Figure 4 compares the distribution of the average and maximum contagion effects
for all financial institutions and all illiquidity scenarios. Similarly to the previ-
ous situation, the average contagion effect is negligible, below 6% of the initial
short-term liquidity for any financial institution or illiquidity scenario. The distri-
bution of the maximum contagion effects displays sizeable reductions in short-
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term liquidity, but they correspond to extreme illiquidity scenarios that appear to
be implausible at best.!

Figure 4.
Distribution of Average and Maximum Contagion Effects

The average contagion effect is negligible, below 3% of the initial short-term liquidity for
any financial institution or illiquidity scenario. The distribution of the maximum contagion
effects displays sizeable reductions in short-term liquidity, but they correspond to extreme
illiquidity scenarios that appear to be implausible at best.

Source: Authors’ calculations.

The time-series dynamics of potential contagion effects may be illustrative for
monitoring purposes by financial authorities. For instance, tracking the dynamics
of the average and maximum contagion effect for the base scenario (/™" =1.00/)
may help to identify changes in the potential outcomes of a default for the inter-
bank market, and the potential liquidity needs that the system may face in such
event. Correspondingly, Figure 5 presents the dynamics of the estimated aver-
age and maximum contagion effects throughout the sample in the absence ex-ante
liquidity reductions. Consistent with previous results, in the base case scenario, the

19Tt is quite likely that financial authorities will avoid these extreme scenarios by any means neces-
sary (e.g. last-resort lending facilities, emergency acquisitions, or bail outs, etc.).
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interbank market would face an average drop in short-term liquidity of between
0.00%-0.11%, whereas the maximum drop would be between 0.00%-1.21%. Once
again, contagion in this type of base case scenario appears to be minor, but their
time-series dynamics may be worth monitoring by financial authorities.

Figure 5.
Contagion Effects Throughout the Sample

This figure displays the average and maximum contagion effect arising from the default of
a financial institution for each day in the sample in the base case scenario (i =0 _1.00/ ).
Consistent with previous results, in this scenario, the interbank market would face an aver-
age drop in short-term liquidity of between 0.00%-0.11%. The maximum drop would be
between 0.00%-1.21%.

Source: Authors’ calculations.

Estimating the effects caused by each financial institution defaulting under each
illiquidity scenario for each of the 90 days in the sample yields 138,900 observa-
tions (i.e. number of days (90) times the scenarios (100) times the number of finan-
cial institutions with outstanding borrowing in the interbank market in each day).
98.97% correspond to dynamics not leading to any default; that is, irrespective of
the designated default or the illiquidity scenario, subsequent defaults caused by
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contagion are particularly rare. As exhibited in Figure 6, 1,197 (0.86%) obser-
vations correspond to one financial institution defaulting. Cascades consisting of
two, three, four, five, and six defaulting institutions are rare as well, and they
are observed on 172 (0.12%), 44 (0.03%), 17 (0.01%), 3 (0.00%), and 1 (0.00%)
occasions, respectively. Consequently, as expected from the size of the Colombian
interbank market, contagion effects are rat@er minor, and they tend to occur as the
illiquidity scenario becomes tougher (e.g. /™).

Figure 6.
Number of Financial Institutions Defaulting as a Result of Contagion

This figure displays the number of financial institutions that defaulted because of contagion
dynamics (y-axis) for each one of the illiquidity scenarios (x-axis) for each of the 90 days
in the sample. Each dot may represent more than one observation. Most of the observations
(98.97%) correspond to no defaults.

Source: Authors’ calculations.

All in all, it is rather evident that contagion effects by themselves are not a threat
to the stability of the system under analysis. Irrespective of the metric employed
(i.e. the reduction in short-term liquidity or the number of institutions default-
ing), results tend to display negligible or non-substantial contagion effects. Unless
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a major drop in the short-term liquidity of all participants precedes the conta-
gion dynamics, we consistently find that the interbank network is rather robust
to average events (i.e. the default of an average financial institution). Likewise,
most maximum contagion events are far from substantial, whereas a major —but
unlikely— drop precedes those that may be important for the short-term liquidity
of all participants.

This result may be related to the size of the interbank market and its correspond-
ing claims network. This lack of substantial contagion effects in the Colombian
financial market is not limited to this study. Cepeda and Ortega (2015) also find
that contagion in the Colombian large-value payment system is mitigated once
high-quality assets are considered as potential sources of liquidity. Upper (2011)
suggests that contagion due to exposures in the interbank loan market is an
unlikely event in the sense that it happens in only a small fraction of the scenar-
ios considered. In the same vein, Roukny et al. (2013) report that contagion effects
in financial networks are not substantial if no additional sources of distress (e.g.
deposit runs, fire-sales, credit runs) are considered. Battiston et al. (2015) suggest
that as financial regulation recommends that financial institutions keep individual
credit exposures to a manageable limit (e.g. with respect to equity or total credit
exposure), it is very unlikely that a single initial financial institution’s default will
trigger any other default. Therefore, our results regarding the limited impact of
contagion effects on the local interbank market is an already documented trait of
other financial markets.

SYSTEMIC IMPORTANCE OF FINANCIAL
INSTITUTIONS

The previous section concluded that contagion effects are non-substantial. The
number of financial institutions defaulting as a consequence of contagion dyna-
mics is low, and it is a rather exceptional outcome that involves unlikely extreme
illiquidity scenarios. Also, most reductions in short-term liquidity caused by con-
tagion are non-substantial, and those that are non-negligible also involve implau-
sible extreme illiquidity scenarios. However, examining how individual financial
institutions contribute to the occurrence of defaults and the reduction in short-
term liquidity may reveal important information about their systemic importance.
Hence, the higher the contribution of financial institution i to defaults and short-
term liquidity drops, the higher its systemic importance.

Figure 7 displays to what extent each financial institution (y-axis) contributes to
the contagion-related total short-term liquidity reduction for all illiquidity sce-
narios. It is evident that the default of financial institution #26 contributes the
most to reductions in the system’s short-term liquidity: about 14.2%. Accordingly,
financial institution #26 may be easily deemed as the most systemically impor-
tant for the interbank network under analysis in terms of its short-term liquidity
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effects. Financial institutions #24, 28, and 20 belong to a second tier of systemi-
cally important financial institutions and contribute about 8%-9% each, whereas
those remaining contribute less than 7% each.

Figure 7.
Financial Institutions’ Individual Contribution to the System’s Short-Term Liqui-
dity Reduction for All Illiquidity Scenarios

Financial institution #26’s default contributes the most to reductions in the system’s short-
term liquidity: about 14.2%.
Source: Authors’ calculations.

Regarding the contribution to the total number of defaults caused by contagion
effects, Figure 8 shows that financial institution #24 is the most representative
(21.2%), and, hence, it may be considered the most systemically important finan-
cial institution in the Colombian interbank market in terms of subsequent defaults.
The second most representative financial institution is #11 (17.6%). Financial
institutions #17 and 26 are part of the third tier of systemic importance, con-
tributing about 11% and 10%, respectively. The remaining financial institutions
contribute less than 6% each.
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Figure 8.
Financial Institutions’ Individual Contribution to the System’s Total Defaults for
All Illiquidity Scenarios

Financial institution #24’s default contributes 21.2% of the defaults.
Source: Authors’ calculations.

As expected when assessing financial institutions’ systemic importance, we find
that the negative effects resulting from contagion are decidedly concentrated in
just a few financial institutions: namely #26, 24, and 11. However, as most conta-
gion effects portrayed here are conditional on the occurrence of major —but very
unlikely— scenarios of generalized illiquidity, conclusions about the systemic
importance of these financial institutions for the entire financial system may be
unjustified. Furthermore, their systemic importance is bounded to the local inter-
bank network, which, in the Colombian case, is not particularly representative of
the whole financial system.

FINAL REMARKS

We used the DebtRank methodology (Battiston et al., 2012b) in order to examine
how the default of a selected financial institution in the current Colombian inter-
bank network impacts the short-term liquidity position of its counterparties and
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the system as a whole. Instead of focusing on the impact that default has on finan-
cial institutions’ capital buffer (i.e. their solvency), we focused on how an initial
default eroded their ability to refund interbank loans (i.e. their short-term liquid-
ity) and eventually forced them into default.

Consistent with the literature on direct-linkage financial contagion (Furfine, 2003;
Roukny et al., 2013; Upper, 2011), contagion effects resulting from an initial
default in the interbank market are non-substantial. Unless contagion dynamics
are preceded by a major —but unlikely— drop in the short-term liquidity position of
all participants, we consistently find that contagion effects on individual and sys-
tem’s short-term liquidity are negligible. Our results are consistent with reported
features of banking crises, which tend to be caused by shocks that hit several banks
simultaneously rather than domino effects from idiosyncratic failures (see Upper,
2011). Likewise, our results concur with those reported by Roukny et al. (2013),
who find that the network topology matters only when financial markets are under
stress (e.g. illiquid).

The methodological contribution of our work is relevant. By modifying DebtRank
to recursively measure contagion effects in the short-term liquidity position of
financial institutions, we supplement financial authorities’ monitoring tools. In this
sense, we capture the advantages of DebtRank to conveniently measure how con-
tagion may affect financial institutions’ ability to refund interbank loans in the
short-term.

Despite the lack of systemic impact of contagion effects in the base case sce-
nario, our results are also valuable for financial authorities. The numerical
outcomes provide an economically meaningful quantitative assessment of the sys-
temic importance of financial institutions based on their potential effect on finan-
cial institutions’ short-term liquidity. Moreover, based on the potential effect on
the system’s liquidity, our results provide a quantitative assessment of the liquid-
ity that should be obtained from other available sources in case of a default by
a financial institution, such as collateralized borrowing (e.g. from other finan-
cial institutions or the central bank), selling financial assets, or increasing de-
posits. Nevertheless, as most contagion effects here portrayed are conditional on
the occurrence of major —but unlikely— scenarios of generalized illiquidity, conclu-
sions about the systemic importance may be unjustified. Consequently, it is impor-
tant to emphasize that systemic importance resulting from this exercise is bounded
to the local interbank network, which may not be particularly representative of the
whole financial system in the Colombian case.

Due to the aim and scope of our research, there are several issues that should
be addressed in order to enhance the examination of financial contagion in the
Colombian case. For instance, as in Miiller (2006), it is advisable to simultane-
ously examine the impact of default contagion on solvency and liquidity. Estimat-
ing how financial institutions react to their counterparties’ defaults (see Martinez
& Cepeda, 2015) and incorporating such reactions in the contagion dynamics may
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also enrich the analytical reach of the model; additionally, it may be interesting to
consider financial authorities’ reactions. Moreover, as in Tabak et al. (2013) and
Poledna et al. (2015), it is imperative to articulate this type of systemic importance
assessment by estimating default probabilities to assess systemic risk of finan-
cial systems’ expected impact over a determined time horizon. Furthermore, as
illustrated in the multi-layer financial exposures network model by Poledna et al.
(2015), it is convenient to associate different sources of exposures among finan-
cial institutions (e.g. derivatives, security cross-holdings) in order to have a com-
prehensive measure of direct-linkage contagion; therefore, it is likely that the
non-substantial contagion effects reported here may be due to underestimating
systemic impact that results from focusing on the interbank market only. Finally,
it is also convenient to couple direct- (e.g. mutual exposures) and indirect-linkage
(e.g. fire-sales, deposit runs, credit runs) contagion models with the aim of attain-
ing a comprehensive measure of financial contagion.
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APPENDIX 1: DEBTRANK

As noted by Battiston et al. (2012b), there are two variables associated with each
node in a financial exposures network. One measures each financial institution’s
level of distress (h,) and the other (S)) denotes three possible states that this finan-
cial institution may take: undistressed (U), distressed (D) and inactive (I). The
individual level of distress (k) is a continuous variable that takes a value in the
zero-one closed interval: [0,1]. Thus, hi (t) = 0 corresponds to an undistressed
financial institution whereas h,(2) = 1 belongs to a defaulting financial institution:

By (t) = minLh (e=1)+ > Wyh, (=1 ©)

Jls;(t=1)=D

For a given point in time 7 the dynamics for the i — #h node (financial institution)
are given by the minimum value between one and its updated level of distress.
This updated level depends on its own level of distress registered in the previous
period (%,(¢ — 1)) and on the distress level that financial institution i received from
its counterparties (represented by the summation of the impacts caused by all the
J — th institutions that became distressed in the former period (hi (t-1).

The weights matrix (W), required to compute the individual level of distress (%,(t)) ,
contains impacts (W,.j) that are measured as the minimum value between one (1) and
A
the liabilities-to-capital ratio for financial institution i (A, /E,): W, = min 1,?']}.
i
Hence, if node j defaults, node i suffers a loss equal to Aii. As long as the level of
capital overpasses loss (E, > A, the impact of node j on node i is given by the lia-
bilities-to-capital ratio, otherwise, the impact is equal to one (indicating that node
i defaulted).

The individual level of distress (given by equation 6) can be computed only for f = 2.
For ¢ = 1, an initial condition should be imposed in order to make this expression
mathematically possible. This initial condition consists of setting #; (1) =¢,VieS,,
where the (assumed) initial level of distress is 1, and S, is the set of distressed nodes
at t = 1. It is also assumed that 1/16[0,1}, and that y = 1 represents the distressed
node (Battiston et al., 2012b). Therefore, for + = 2 equation (6) determines the
DebtRank dynamics, which can be understood as the cases based on impacts that
affect the nodes (financial institutions) irrespective of whether an event of default
occurred (Battiston et al., 2015). The procedure continues computing impacts until
all nodes (financial institutions) in the network are either undistressed (U) or inac-
tive (). At that point, the dynamics stop, and the DebtRank (DR) measure can be
calculated as:

DR = Zh.f (T)v, =Zh; (1)v, %)
7
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In equation (7) the economic value of a node is given by v, and is computed by
a financial institution’s assets invested as a fraction of the total assets invested in

the market| v = A : / ZA il Hence, DebtRank measures the distress of the entire

J
system, excluding the initial (assumed) level of distress (second term in equation
7). In economic terms, this measure computes the total loss in the system (in mone-
tary terms) that is generated by the assumed initial default (Battiston et al., 2012b).

Several authors have remarked on the advantages of DebtRank in contrast to
other measures of systemic distress in a network (Battiston et al., 2012b; Tabak
et al., 2013; and Thurner & Poledna 2013). In particular, the DebtRank mea-
sure has an economic interpretation in monetary terms and, also, it is considered a
good early-warning indicator. Likewise, the computation of distress by means of
DebtRank excludes the possibility of double-counting the impacts of a shock
(default). In other words, once a shocked financial institution has affected its coun-
terparties, it enters into an inactive state (), which allows the institution to be
impacted by shocks coming from other participants in the market; however, it
blocks the re-transmission of these shocks. For this reason, unlike eigenvector
centrality or PageRank, it is recognized that under the DR measure, cycles have a
finite reverberation (Battiston et al., 2012b).



