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Coad, A., Janzing, D., & Nightingale, P. (2018). Tools for causal inference
from cross-sectional innovation surveys with continuous or discrete variables:
Theory and applications. Cuadernos de Economia, 37(75), 779-808.

This paper presents a new statistical toolkit by applying three techniques for
data-driven causal inference from the machine learning community that are lit-
tle-known among economists and innovation scholars: a conditional independence-
based approach, additive noise models, and non-algorithmic inference by hand. We
include three applications to CIS data to investigate public funding schemes for
R&D investment, information sources for innovation, and innovation expenditures
and firm growth. Preliminary results provide causal interpretations of some previ-
ously-observed correlations. Our statistical 'toolkit' could be a useful complement
to existing techniques.

Keywords: Causal inference, innovation surveys, machine learning, additive noise
models, directed acyclic graphs.
JEL: 030, C21.

Coad, A., Janzing, D., & Nightingale, P. (2018). Herramientas para la inferencia
causal de encuestas de innovacion de corte transversal con variables continuas
o discretas: Teoria y aplicaciones. Cuadernos de Economia, 37(75), 779-808.

Este articulo presenta un nuevo conjunto de herramientas estadisticas al aplicar
tres técnicas de inferencia causal basada en datos tomadas de la comunidad del
aprendizaje automdtico (maching learning) y que son poco conocidas entre los
economistas y los académicos de la innovacién: un enfoque condicional basado
en la independencia, modelos de ruido aditivo e inferencia no algoritmica a mano.
Incluimos tres aplicaciones a los datos de la CIS —Ia encuesta de la comunidad
sobre la innovacion— para investigar los modelos de financiacion publica para
inversién en investigacidon y desarrollo, fuentes de informacién para la innova-
cidén, y gastos de innovacion y crecimiento empresarial. Los resultados prelimi-
nares proporcionan interpretaciones causales de algunas correlaciones observadas
previamente. Nuestro conjunto de herramientas estadisticas podria ser un comple-
mento Util a las técnicas existentes.

Palabras clave: inferencia causal, encuestas de innovacidn, aprendizaje automético
(machine learning), modelos de ruido aditivo, grafos aciclicos dirigidos.
JEL: 030, C21.

Coad, A., Janzing, D., & Nightingale, P. (2018). Outils pour I’inférence causale
d’enquétes d’innovation de bilan transversal avec des variables continues ou
discretes : Théorie et applications. Cuadernos de Economia, 37(75), 779-808.

Cet article présente un nouvel ensemble d’outils statistiques en appliquant trois
techniques d’inférence causale basée sur des données prises de la communauté de
I’apprentissage automatique (maching learning) et qui sont peu connues chez les
économistes et les spécialistes de I’innovation : une approche conditionnelle basée
sur I’indépendance, des modeles de bruit additif et inférence non algorythmique
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manuelle. Nous incluons trois applications aux données de la CIS —I’enquéte de
la communauté sur 1’innovation- pour étudier les modeles de financement public
pour I’investissement en recherche et développement, sources d’information pour
I’innovation, et dépenses d’innovation et de croissance entrepreneuriale. Les résul-
tats préliminaires fournissent des interprétations causales de certaines corrélations
observées antérieurement. Notre ensemble d’outils statistiques pourrait étre un
complément utile aux techniques existantes.

Mots-clefs: inférence causale, enquétes d’innovation, apprentissage automatique
(machine learning), modeles de bruit additif, graphes acycliques dirigés.
JEL: 030, C21.

Coad, A., Janzing, D., & Nightingale, P. (2018). Ferramentas para a inferén-
cia causal de pesquisas de inovaciao de corte transversal com variaveis conti-
nuas ou discretas: teoria e aplicacoes. Cuadernos de Economia, 37(75), 779-808.

Este artigo apresenta um novo conjunto de ferramentas estatisticas aplicando
trés técnicas de inferéncia causal baseadas em dados extraidos da comunidade
de aprendizado automadtico (maching learning) e que sdo pouco conhecidas entre
economistas e estudiosos da inovacdo: uma abordagem condicional baseada na
independéncia, modelos aditivos de ruido e inferéncia ndo algoritmica a mao.
Incluimos trés aplicativos para os dados da CIS — a pesquisa da comunidade
sobre inovagdo — para investigar os modelos de financiamento ptiblico para inves-
timento em pesquisa e desenvolvimento, fontes de informacdo para inovagéo e
gastos com inovagdo e crescimento de negdcios. Os resultados preliminares for-
necem interpretacdes causais de algumas correlagdes observadas anteriormente.
Nosso conjunto de ferramentas estatisticas pode ser um complemento 1til para as
técnicas existentes.

Palavras-chave: inferéncia causal, pesquisas sobre inovacdo, aprendizado auto-
matico (machine learning), modelos de ruido aditivo, graficos aciclicos dirigidos.
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INTRODUCTION

The design of effective policy recommendations requires an understanding of not
only the associations between key variables but also the causal relations govern-
ing the interactions of these variables (Spirtes, Glymour, & Scheines, 2000; Pearl,
2009; Peters, Janzing, & Scholkopf, 2017). However, a long-standing problem for
innovation scholars is obtaining causal estimates from observational (i.e. non-ex-
perimental) datasets (Nichols, 2007; Cassiman & Veugelers, 2002; Heckman,
2010). For a long time, causal inference from cross-sectional surveys has been
considered impossible. Nevertheless, advances in statistics and analysis of cau-
sality, combined with ‘big data’ and increases in computational power, have led
to dramatic improvements in the ability of researchers to obtain causal estimates
from observational datasets.

Hal Varian, Chief Economist at Google and Emeritus Professor at the University
of California, Berkeley, commented on the value of machine learning techniques
for econometricians:

My standard advice to graduate students these days is go to the compu-
ter science department and take a class in machine learning. There have
been very fruitful collaborations between computer scientists and statis-
ticians in the last decade or so, and I expect collaborations between com-
puter scientists and econometricians will also be productive in the future.
Hal Varian (2014, p.3).

This paper seeks to transfer knowledge from computer science and machine learn-
ing communities into the economics of innovation and firm growth, by offering an
accessible introduction to techniques for data-driven causal inference, as well as
three applications to innovation survey datasets that are expected to have several
implications for innovation policy.

The contribution of this paper is to introduce a variety of techniques (including very
recent approaches) for causal inference to the toolbox of econometricians and inno-
vation scholars: a conditional independence-based approach; additive noise mod-
els; and non-algorithmic inference by hand. These statistical tools are data-driven,
rather than theory-driven, and can be useful alternatives to obtain causal estimates
from observational data (i.e. instrumental variables techniques and regression dis-
continuity design). While several papers have previously introduced the conditional
independence-based approach (Tool 1) in economic contexts such as monetary pol-
icy, macroeconomic SVAR (Structural Vector Autoregression) models, and corn
price dynamics (e.g. Swanson & Granger, 1997; Moneta, 2008; Xu, 2017; see
also Kwon & Bessler, 2011 for a survey), nevertheless the conditional indepen-
dence-based approach has little been used in the context of the economics of inno-
vation. Tool 2, and also Tool 3 (except for LINGAM: see Moneta, Entner, Hoyer, &
Coad, 2013 and Lanne, Meitz, & Saikkonen, 2017), are new to the field of econo-
mics. A further contribution is that these new techniques are applied to three con-
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texts in the economics of innovation (i.e. funding for innovation, information
sources for innovation, and innovation expenditures and firm growth) to obtain sev-
eral interesting and policy-relevant results.

While most analyses of innovation datasets focus on reporting the statistical asso-
ciations found in observational data, policy makers need causal evidence in order
to understand if their interventions in a complex system of inter-related varia-
bles will have the expected outcomes. This paper, therefore, seeks to elucidate
the causal relations between innovation variables using recent methodologi-
cal advances in machine learning. While two recent survey papers in the Jour-
nal of Economic Perspectives have highlighted how machine learning techniques
can provide interesting results regarding statistical associations (e.g. classifica-
tion problems, regression trees, random forests, penalized regression, LASSO; see
Varian, 2014 and Mullainathan & Spiess, 2017), we show how machine learning
techniques offer interesting opportunities for causal inference.!

Section 2 presents the three tools, and Section 3 describes our CIS dataset. Section
4 contains the three empirical contexts: funding for innovation, information sources
for innovation, and innovation expenditures and firm growth. Section 5 concludes.

METHODOLOGY

The basic assumption relating statistics and causality is Reichenbach’s principle
(Reichenbach, 1956), which states that every statistical dependence between two
observed random variables X and Y indicate at least one of the following three
alternatives is true: 1) X influences Y , 2) there is a common cause Z influencing
X and', or, 3) Y influences X. In the second case, Reichenbach postulated that X
and Y are conditionally independent, given Z, i.e., their probability densities sa-
tisfy the equation:

p(x, ylz) = p(xlz)p(ylz) 9]

for all x, y, z. Henceforth, we will denote this by X independent of Y, given Z.

The fact that all three cases can also occur together is an additional obstacle for
causal inference. For this study, we will mostly assume that only one of the cases
occurs and try to distinguish between them, subject to this assumption. We are
aware of the fact that this oversimplifies many real-life situations. However, even
if the cases interfere, one of the three types of causal links may be more signif-
icant than the others. It is also more valuable for practical purposes to focus on
the main causal relations. After all, statements such as “every variable influences
every other variable” are not especially helpful as guidance for future policies.

! George, Haas, and Pentland (2014) emphasize that big data techniques must move from investi-
gating correlations to investigating causal effects.
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Figure 1.
Directed Acyclic Graph.

/ X,
Xz

Source: the authors.

Our causal analysis involves the analysis of Directed Acyclic Graphs (or DAGs,
see Figure 1). A graphical approach is useful for depicting causal relations between
variables (Pearl, 2009). Arrows denote the direction of causality, and we subscribe
to a “manipulation view” of causality (Kwon & Bessler, 2011, p.87) according to
the (highly hypothetical) scenario whereby an intervention on one variable has an
effect on another, while the remaining variables are kept at a fixed value. If we
take the example of x, in Figure 1, then its ‘children’ are x, and x, while its ‘par-
ents’ are Xx,, X,, X,, and x_. X, and x, have an indirect causal effect on x, operat-
ing via x,, but if we control for x, then [x, x,] and x, are independent: i.e. p(x|x,,
X,, X,) = p(xx,). The property that each variable is independent of its non-de-
scendants — conditional on its parents — is known as the causal Markov condition
(Spirtes, Glymour, & Scheines, 2000; Pearl, 2009). This condition implies that
indirect (distant) causes become irrelevant when the direct (proximate) causes are
known.

The density of the joint distribution p(x , X,, x6), if it exists, can therefore be rep-
resented in equation form and factorized as follows:

P(X;, X5 X0) = P(X).p(x,Ix ).p( X IX,) 2

Another important assumption is known as “faithfulness”, which allows us to infer
dependences from the graph structure. The faithfulness assumption states that only
those conditional independences occur that are implied by the graph structure.
This implies, for instance, that two variables with a common cause will not be ren-
dered statistically independent by structural parameters that — by chance, perhaps
— are fine-tuned to exactly cancel each other out. This is conceptually similar to
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the assumption that one object does not perfectly conceal a second object directly
behind it that is eclipsed from the line of sight of a viewer located at a specific view-
point (Pearl, 2009, p.48). In terms of Figure 1, faithfulness requires that the direct
effect of x, on x, is not calibrated to be perfectly cancelled out by the indirect effect
of x, on x, operating via x,.

In keeping with the DAG perspective on causality, we use an arrow to denote a
‘direct’ causal influence, but the reader should keep in mind that the distinction
between direct and indirect is only meant relative to the set of variables under con-
sideration: ‘direct’ means that the influence is not mediated by any of the other var-
iables in the DAG. Here we assume that an absolute distinction between ‘direct’
and ‘indirect’ influence is meaningless. This perspective is motivated by a physi-
cal picture of causality, according to which variables may refer to measurements
in space and time: if X, and X. are variables measured at different locations, then
every influence of X, on X requires a physical signal propagating through space.
Thus, we can replace the arrow X, — X, with an arbitrarily long chain of interme-
diate variables that refer to measurements along the way as the signal propagates.

Tool 1: Conditional Independence-based approach.

Unconditional independences

Insights into the causal relations between variables can be obtained by examin-
ing patterns of unconditional and conditional dependences between variables. For
example, although correlation does not equal causation, no causation can be taken
to imply no correlation (Kwon & Bessler, 2011, p.90), as implied by Reichen-
bach’s principle.

Bryant, Bessler, and Haigh, (2009) and Kwon and Bessler (2011) show how the
use of a third variable C can elucidate the causal relations between variables A
and B by using three unconditional independences. Under several assumptions,?
if there is statistical dependence between A and B, and statistical dependence
between A and C, but B is statistically independent of C, then we can prove that
A does not cause B.

If X and Y attain one-dimensional numeric values (regardless of whether they
are continuous or discrete), they are independent if they are not causally related
and thus uncorrelated: corr(X, Y ) = 0. In principle, dependences could be only of
higher order, i.e., X and Y could be dependent without being correlated, if there
is non-linear dependence such as X? + Y2 = C. We therefore also use a type of
independence test that is able to detect higher-order dependences, namely the

2 Bryant, Bessler, and Haigh, (2009) assume that Reichenbach’s principle of common cause holds
true. They assume causal faithfulness (i.e. two variables that share a common cause will not ap-
pear to be statistically independent by structural parameters that are ‘fine-tuned’ so as to precisely
cancel each other out). They also assume that there are no causal cycles (suchasA - B — C —
A); however, they do not need to assume that all causally relevant variables are observed.
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Hilbert Schmidt Independence Criterion (HSIC) by Gretton, Bousquet, Smola, and
Scholkopf (2005) and Gretton, Herbrich, Smola, Bousquet, and Scholkopf (2005).
HSIC thus measures dependence of random variables, such as a correlation coef-
ficient, with the difference being that it accounts also for non-linear dependences.

Conditional independences

For multi-variate Gaussian distributions,’ conditional independence can be inferred
from the covariance matrix by computing partial correlations. Instead of using the
covariance matrix, we describe the following more intuitive way to obtain partial
correlations: let P(X, Y, Z) be Gaussian, then X independent of Y given Z is equi-
valent to:

corrX —aZ,Y-BZ)=0 3)

where ¢ and 3 are the structure coefficients obtained from least square regression
when regressing X on Z and Y on Z, respectively. Explicitly, they are given by:

a = Cov(X,Z)/Var(Z) 4)
B =Cov(Y,2)/Var(Z) (5)

Note, however, that in non-Gaussian distributions, vanishing of the partial corre-
lation on the left-hand side of (2) is neither necessary nor sufficient for X inde-
pendent of Y given Z. On the one hand, there could be higher order dependences
not detected by the correlations. On the other hand, the influence of Z on X and
Y could be non-linear and, in this case, it would not entirely be screened off by a
linear regression on Z. This is why using partial correlations instead of indepen-
dence tests can introduce two types of errors: namely accepting independence
even though it does not hold, or rejecting it even though it holds (even in the limit
of infinite sample size). Conditional independence testing is a challenging prob-
lem, and, therefore, we always trust the results of unconditional tests more than
those of conditional tests.

To partly overcome these limitations of conditional independence testing, we also
used ‘partial HSIC’ (we are not aware of any example of it in the literature, but it is
a straightforward replacement of partial correlation), that is, performing an HSIC
test on the residuals X — ¢ Z, Y -8 Z. If their independence is accepted, then X
independent of Y given Z necessarily holds. Hence, we have in the infinite sample
limit only the risk of rejecting independence although it does hold, while the sec-
ond type of error, namely accepting conditional independence although it does not
hold, is only possible due to finite sampling, but not in the infinite sample limit.

* A vector-valued variable (X, ... ,X ) is called multi-variate Gaussian if every linear combination
ZJ G Xj is Gaussian distributed.
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The conditional independence based approach can infer the causal direction
between two variables A and B based on whether a third variable C has specific
patterns of (in)dependency with A and B (Kwon & Bessler, 2011). Consider the
case of two variables A and B, which are unconditionally independent, and then
become dependent once conditioning on a third variable C. The only logical inter-
pretation of such a statistical pattern in terms of causality (given that there are no
hidden common causes) would be that C is caused by A and B (i.e. A — C « B,
pattern which is known as a ‘V-structure’ or ‘unshielded collider’, represented for
example by X, — X, < X, in Figure 1). Another illustration of how causal infer-
ence can be based on conditional and unconditional independence testing is pro-
vided by the example of a Y-structure in Box 1.

The conditional independence-based approach for causal identification seeks
to apply logical rules to suggest how observed dependencies between variables
should be causally oriented (see Pearl (2009) and Kwon & Bessler (2011) for sur-
veys). The conditional independence-based approach has been used in several eco-
nomic applications such as macroeconomic dynamics and vector autoregression
models (Swanson & Granger, 1997; Demiralp & Hoover, 2003; Perez & Siegler,
2006; Moneta, 2008) as well as the analysis of corn price dynamics (Xu, 2017).

The conditional independence-based approach can help to “reduce the class of
admissible causal structures among contemporaneous variables” (Moneta, 2008,
p.276) by disproving certain specific causal relations in some cases (Bryant et al.,
2009), although a drawback is that often it is not conclusive enough to deliver
a unique set of causal orderings between variables (Moneta, 2008; Xu, 2017).
Instead, ambiguities may remain and some causal relations will be unresolved. We
therefore complement the conditional independence-based approach with other
techniques: additive noise models, and non-algorithmic inference by hand. For
an overview of these more recent techniques, see Peters, Janzing, and Scholkopf
(2017), and also Mooij, Peters, Janzing, Zscheischler, and Scholkopf (2016) for
extensive performance studies.

Box 1: Y-structures

Let us consider the following toy example of a pattern of conditional independ-
ences that admits inferring a definite causal influence from X on 'Y, despite possi-
ble unobserved common causes (i.e. in the case of Y-structures there is no need to
assume causal sufficiency).

If the following four conditions are satisfied:
* Z, isindependent of Z,
* Z, and Z, become dependent when conditioning on X
* {Z,Z,} are dependent on Y without conditioning on X

* {Z,,Z,} are independent of Y when conditioning on X
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the figure below on the left (“Y-structure”) is an example of a DAG entailing this
pattern of conditional (in)dependences. Another example including hidden com-
mon causes (the grey nodes) is shown on the right-hand side. Both causal struc-
tures, however, coincide regarding the causal relation between X and Y and state
that X is causing Y in an unconfounded way. In other words, the statistical depend-
ence between X and Y is entirely due to the influence of X on' Y without a hid-
den common cause, see Mani, Cooper, and Spirtes (2006) and Section 2.6 in Pearl
(2009). Similar statements hold when the Y structure occurs as a subgraph of a
larger DAG, and Z, and Z, become independent after conditioning on some addi-
tional set of variables. Scanning quadruples of variables in the search for inde-
pendence patterns from Y-structures can aid causal inference.

¥

The figure on the left shows the simplest possible Y-structure. On the right,
there is a causal structure involving latent variables (these unobserved variables
are marked in grey), which entails the same conditional independences on the
observed variables as the structure on the left.

Implementation

Since conditional independence testing is a difficult statistical problem, in particu-
lar when one conditions on a large number of variables, we focus on a subset of
5-8 variables. We first test all unconditional statistical independences between X
and Y for all pairs (X, Y) of variables in this set. Then we test all conditional inde-
pendences between X and Y, conditional on Z, for all possible triples (X, Y, Z). To
avoid serious multi-testing issues and to increase the reliability of every single test,
we do not perform tests for independences of the form X independent of Y con-
ditional on 7.2, .7, with n>1. We then construct an undirected graph where
we connect each pair that is neither unconditionally nor conditionally independent.
Whenever the number d of variables is larger than 3, it is possible that we obtain too
many edges, because independence tests conditioning on more variables could ren-
der X and Y independent. We take this risk, however, for the above reasons. In some
cases, the pattern of conditional independences also allows the direction of some of
the edges to be inferred: whenever the resulting undirected graph contains the pat-
tern X —Z —Y, where X and Y are non-adjacent, and we observe that X and Y are
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independent but conditioning on Z renders them dependent, then Z must be the com-
mon effect of X and Y (i.e., we have a “v-structure” at Z, denoted as X — Z < Y).
For this reason, we perform conditional independence tests also for pairs of vari-
ables that have already been verified to be unconditionally independent. From the
point of view of constructing the skeleton, i.e., the DAG with undirected edges, the
conditional independence tests would be redundant, but for orienting edges the con-
ditional independence tests can be helpful. This argument, like the whole procedure
above, assumes causal sufficiency, i.e., the absence of hidden common causes. It is
therefore remarkable that the additive noise method below is in principle (under cer-
tain admittedly strong assumptions) able to detect the presence of hidden common
causes, see Janzing et al. (2009).

Tool 2: Additive Noise Models (ANM)

Our second technique builds on insights that causal inference can exploit statisti-
cal information contained in the distribution of the error terms, and it focuses on
two variables at a time. Causal inference based on additive noise models (ANM)
complements the conditional independence-based approach outlined in the previ-
ous section because it can distinguish between possible causal directions between
variables that have the same set of conditional independences. With additive noise
models, inference proceeds by analysis of the patterns of noise between the varia-
bles (or, put differently, the distributions of the residuals).

Figure 2.
For y = f(x) + e, the ‘width’ of the noise is constant in one direction only, for
non-linear f.

l f(x)

g X

Source: Mooij, Peters, Janzing, Zscheischler, and Scholkopf (2016).

In particular, ANM is able to distinguish between X — Y and Y — X from the
joint distribution P, alone (Hoyer, Janzing, Mooij, Peters, & Scholkopf, 2009).
ANMs can also be applied to discrete variables (Peters, Janzing, & Scholkopf,
2011) although at present there is no extensive evaluation of their performance.
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Assume'Y is a function of X up to an independent and identically distributed (IID)
additive noise term that is statistically independent of X, i.e.,

Y=f (X)+N,

where N, is independent of X. It can be shown that there is no additive noise
model from Y to X in the ‘generic case’®, i.e., there is no function f, such that,

X =f(Y)+N,

with N, independent of Y. Figure 2 visualizes the idea showing that the noise can-
not be independent in both directions.

To see a real-world example, Figure 3 shows the first example from a database
containing cause-effect variable pairs for which we believe to know the causal
direction.’ Up to some noise, Y is given by a function of X (which is close to linear
apart from at low altitudes). Moreover, if we try to describe the altitude as a func-
tion of the temperature, the error term is not close to additive, but has a somewhat
‘complex’ structure, especially in the region of the y-axis corresponding to alti-
tude zero (sea level). Phrased in terms of the language above, writing X as a func-
tion of Y yields a residual error term that is highly dependent on Y. On the other
hand, writing Y as a function of X yields the noise term that is largely homogene-
ous along the x-axis. Hence, the noise is almost independent of X. Accordingly,
additive noise based causal inference really infers altitude to be the cause of tem-
perature (Mooij et al., 2016), which is certainly true: fixing a thermometer to a bal-
loon would confirm that the temperature changes with the altitude, while heating
a place would not change its altitude. Furthermore, this example of altitude caus-
ing temperature (rather than vice versa) highlights how, in a thought experiment of
a cross-section of paired altitude-temperature datapoints, the causality runs from
altitude to temperature even if our cross-section has no information on time lags.
Indeed, are not always necessary for causal inference®, and causal identification
can uncover instantaneous effects.

The practical method for inferring causal directions works as follows:

(1) Perform a linear regression of Y on X, that is, find the function f,, with
f, x) := E[Y Ix].

(2) compute the residual variable N, :=Y - f (X), and

4 The precise meaning of ‘generic’ here is complicated, see Hoyer, Janzing, Mooij, Peters, and
Scholkopf, 2009; Peters, Janzing, and Scholkopf, 2017.

5 Database with cause effect pairs: https://webdav.tuebingen.mpg.de/cause-effect}. Copyright for

variable pairs can be found there.

¢ Granger causality is, under some conditions, also able to uncover instantaneous effects, see Figure
10.8b) and the corresponding explanations on page 207 in Peters, Janzing, and Scholkopf (2017).
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(3) test whether N, is independent of X. Then do the same exchanging the roles of
X and Y. If independence of the residual is accepted for one direction but not the
other, the former is inferred to be the causal one. If independence is either accepted
or rejected for both directions, nothing can be concluded. If a decision is enforced,
one can just take the direction for which the p-value for the independence is larger.

Figure 3.
Scatter plot showing the relation between altitude (X) and temperature (Y) for pla-
ces in Germany
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Source: Mooij et al. (2016). Example taken from the database of cause effect pairs at
Wwebdav.tuebingen.mpg.de/cause-effect].

This, however, seems to yield performance that is only slightly above chance level
(Mooij et al., 2016). Otherwise, setting the right confidence levels for the inde-
pendence test is a difficult decision for which there is no general recommendation.
Conservative decisions can yield rather reliable causal conclusions, as shown by
extensive experiments in Mooij et al. (2016). It should be emphasized that addi-
tive noise based causal inference does not assume that every causal relation in real-
life can be described by an additive noise model. Instead, it assumes that if there is
an additive noise model in one direction, this is likely to be the causal one. Hence,
causal inference via additive noise models may yield some interesting insights into
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causal relations between variables although in many cases the results will proba-
bly be inconclusive.

For a justification of the reasoning behind the likely direction of causality in Addi-
tive Noise Models, we refer to Janzing and Steudel (2010). The idea is that a joint
distribution P, | that admits an additive noise model from X to Y is unlikely to
be generated by the causal structure Y — X because this requires atypical adjust-
ments between P, and P, .. To show this, Janzing and Steudel (2010) derive a dif-
ferential equation that expresses the second derivative of the logarithm of p(y) in
terms of derivatives of log p(xly). Therefore, for a given conditional P, ., only very
specific choices of P, generate an additive noise model from X to Y.

X1y’

Mooij et al. (2016) provide a recent extensive evaluation of additive noise based
inference on real and simulated data. They also make a comparison with other causal
inference methods that have been proposed during the past two decades.” Addition-
ally, Peters et al. (2011) discuss additive noise models in the context of variables
that are not continuous but also discrete. In this paper, we apply ANM-based causal
inference only to discrete variables that attain at least four different values.

To our knowledge, the theory of additive noise models has only recently been
developed in the machine learning literature (Hoyer et al., 2009; Janzing & Steu-
del, 2010; Peters et al., 2011, 2017; Mooij et al., 2016) and has not yet been intro-
duced into economics or business research. However, given that these techniques
are quite new, and their performance in economic contexts is still not well-known,
our results should be seen as preliminary (especially in the case of ANMs on dis-
crete rather than continuous variables).

Further novel techniques for distinguishing cause and effect are being developed.
Bloebaum, Janzing, Washio, Shimizu, and Scholkopf (2018), for instance, infer
the causal direction simply by comparing the size of the regression errors in least-
squares regression and describe conditions under which this is justified. Extensive
evaluations, however, are not yet available.

Tool 3: Non-algorithmic inference by hand

The approach introduced in this section is more of a ‘meta-method’ than a method,
which introduces techniques that are not fully automated, but used on a case-by-
case, manual basis.

Since the innovation survey data contains both continuous and discrete variables,
we would require techniques and software that are able to infer causal directions
when one variable is discrete and the other continuous. Unfortunately, there are
no off-the-shelf methods available to do this. Sun et al. (2006) and Janzing et al.
(2009) propose a method that has been applied to a very limited number of data

7 The real-world data experiments refer to the benchmark data set http://webdav.tuebingen.mpg.de}

ause-effec
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sets. In the absence of methods for automated causal discovery, we can try to get
hints on the causal direction by using our intuition and arguments that rely on
the Principle of Algorithmically Independent Conditionals (Janzing & Scholkopf,
2010; Lemeire & Janzing, 2012). For the special case of a simple bivariate causal
relation with cause and effect, it states that the shortest description of the joint
distribution P is given by separate descriptions of P and P This

cause,effect cause effectlcause”

implies, in particular, that describing P in terms of P_and P is

cause,effect cause effectlcause
‘simpler’ than describing it in terms of P, and P_ & To illustrate this prin-
ciple, Janzing and Scholkopf (2010) and Lemeire and Janzing (2012) show the
two toy examples presented in Figure 4. In both cases we have a joint distribution
of the continuous variable Y and the binary variable X. On the left-hand side, P,
is a mixture of two Gaussians, each of which can be assigned to the cases X =0
and X = 1, respectively. This joint distribution P, | clearly indicates that X causes
Y because this naturally explains why P, is a mixture of two Gaussians and why
each component corresponds to a different value of X. When the same distribution
is generated via the causal structure Y — X there is, at first, no explanation of why
P,, consists of two modes and, second, no explanation is provided of why each of
the Gaussians corresponds to one value of X.” Moreover, the distribution on the
right-hand side clearly indicates thatY causes X because the value of X is obtained
by a simple thresholding mechanism, i.e., P, , is a ‘machine’ receiving continuous
inputY and generating the output X =0 or X = 1, depending on whetherY is above
a certain threshold. To generate the same joint distribution of X and Y when X is
the cause and Y is the effect involves a quite unusual mechanism for P, . Then,
P, . would be a ‘machine’ with binary input X whose output is one of the two sides

YIX
of a truncated Gaussian, depending on the input X.

The examples show that joint distributions of continuous and discrete variables
may contain causal information in a particularly obvious manner. There are, how-
ever, no algorithms available that employ this kind of information apart from
the preliminary tools mentioned above. We therefore rely on human judgements
to infer the causal directions in such cases (i.e. human-assisted or “supervised”
machine learning, as emphasized in Mullainathan and Spiess, 2017). Below, we
will therefore visualize some particular bivariate joint distributions of binaries and
continuous variables to get some, although quite limited, information on the causal
directions. Although we cannot expect to find joint distributions of binaries and

8 A recent proposal to implement this principle in practice can be found in Budhathoki, Vreeken,
and Origo (2018).
° To understand the last argument the reader may verify that for two overlapping Gaussians it requi-

res quite sophisticated tuning of the conditional P(XIY) in order to achieve that both conditional
distributions P(YIX=0) and P(YIX=1) become Gaussians.
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continuous variables (in our real data) for which the causal directions are as obvi-
ous as for the cases in Figure 4, we will still try to get some hints.!°

Figure 4.
Left: visualization of a joint distribution of a binary variable X and a continuous
variable Y for which it is reasonably clear that the causal direction reads X — Y.
Right: joint distribution for which it is reasonably clear that the causal direction
isY — X.

p(y, x=0) p(y,x=1)

y

Figures are taken from Janzing and Scholkopf (2010), Janzing et al. (2009), and Lemeire
and Janzing (2012).

Finally, another tool that could help causal inference in the case of continuous
variables is the Linear Non-Gaussian Acyclic Model (LINGAM) developed by
Shimizu, Hoyer, Hyvarinen, and Kerminen, 2006 (see e.g. Shimizu, 2014 for an
overview) and introduced into economics by Moneta et al. (2013) and Lanne et
al. (2017). LINGAM uses statistical information in the (necessarily non-Gauss-
ian) distribution of the residuals to infer the likely direction of causality. LINGAM
analysis was pursued by Xu (2017) to help to orient the DAG’s causal relations
which had remained unresolved after an initial analysis using the conditional inde-
pendence-based approach. LINGAM will be applied ‘manually’ on a case-by-case
basis to obtain further insights into causal relations where possible.

DATA

We analyse data taken from the Community Innovation Surveys (CIS), which are
based on the OECD’s Oslo Manual, and were administered in several European

10Although from a different context, the following example of causal relations between a binary
and a continuous variable may be of interest. There is an obvious bimodal distribution in data
on the relationship between height and sex, with an intuitively obvious causal connection; and
there is a similar but much smaller bimodal relationship between sex and body temperature, par-
ticularly if there is a population of young women who are taking contraceptives or are pregnant.
In contrast, Temperature-dependent sex determination (TSD), observed among reptiles and fish,
occurs when the temperatures experienced during embryonic or larval development determine
the sex of the offspring. In one instance, therefore, sex causes temperature, and in the other,
temperature causes sex, which fits loosely with the two examples (although we do not claim that
these gender-temperature distributions closely fit the distributions in Figure 4).
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countries to gather information on the innovative activities of firms. The CIS ques-
tionnaire can be found online.!!

CIS data is perhaps the best-known dataset on firm-level innovative activity; it
has been extensively analysed and mined by economists and innovation schol-
ars (Mairesse & Mohnen, 2010; Hall & Jafte, 2012). While previous datasets on
firm-level innovation focused on R&D expenditures and patent counts, CIS data
has shed valuable light on other aspects of firm-level innovative activity although
it also has a number of drawbacks, such as being cross-sectional in nature (thus
impeding the investigation of lagged effects, or controlling for time-invariant
firm-specific heterogeneity), and also having few variables that can serve as valid
instrumental variables.

Mairesse and Mohnen (2010) write:

“Basically innovation survey data are of a cross-sectional nature, and it is
always problematic to address econometric endogeneity issues and make sta-
tements about directions of causality with cross-sectional data. ... we have
very few exogenous or environmental variables that can serve as relevant and
valid instruments.” (p.1138)

Moreover, data confidentiality restrictions often prevent CIS data from being
matched to other datasets or from matching the same firms across different CIS
waves. In addition, at time of writing, the 2008 wave was already rather dated.
Finally, another caveat is that many CIS questionnaire responses are evaluated
subjectively, and there may be an individual-specific common cause that is cor-
related across a respondent’s questionnaire responses, which could be a further
obstacle to causal search.

Given these strengths and limitations, we consider the CIS data to be ideal for our
current application, for several reasons:

e Itis a very well-known dataset — hence the performance of our analytical
tools will be widely appreciated

» It has been extensively analysed in previous work, but our new tools have
the potential to provide new results, therefore enhancing our contribution
over and above what has previously been reported

» Standard methods for estimating causal effects (e.g. instrumental variables,
regression discontinuity design, panel data econometrics) are difficult or
impossible to apply

* Most variables are not continuous but categorical or binary, which can be
problematic for some estimators but not necessarily for our techniques

e (Causal estimates based on CIS data will be valuable for innovation policy

'See http://ec.europa.eu/eurostat/web/microdata/community-innovation-survey| [last accessed June
15, 2017].
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To be precise, we focus on the 2008 wave of the CIS, with our raw data covering
16 countries: Bulgaria (BG), Cyprus (CY), Czech Republic (CZ), Germany (DE),
Estonia (EE), Spain (ES), Hungary (HU), Ireland (IE), Italy (IT), Lithuania (LT),
Latvia (LV), Norway (NO), Portugal (PT), Romania (RO), Slovenia (SI), and Slo-
vakia (SK).

Our data have been deliberately noise-contaminated to anonymise the firms (Mai-
resse & Mohnen, 2010, p1148; see also Eurostat, 2009). This was done by cap-
ping the continuous variables relating to sales and R&D expenditure, and, for the
largest values, the true values are not reported, but instead the largest values are
approximated. These countries are pooled together to create a pan-European data-
base. This reflects our interest in seeking broad characteristics of the behaviour of
innovative firms, rather than focusing on possible local effects in particular coun-
tries or regions.

Observations are then randomly sampled. We do not try to have as many obser-
vations as possible in our data samples for two reasons. First, due to the com-
putational burden (especially for additive noise models). Second, our analysis is
primarily interested in effect sizes rather than statistical significance. We believe
that in reality almost every variable pair contains a variable that influences the
other (in at least one direction) when arbitrarily weak causal influences are taken
into account. However, we are not interested in weak influences that only become
statistically significant in sufficiently large sample sizes. Therefore, our data sam-
ples contain 2000 observations for our main analysis, and 200 observations for
some robustness analysis.'?

The CIS databases of the sixteen countries differ in terms of number of firms,
hence the representativeness of the country’s overall economy (in terms of repre-
sentativeness of firms of different sizes, and firms in manufacturing vs. services
sectors, etc.). There is slight variation across countries regarding which ques-
tions are asked and the order in which they appear in the questionnaire (Mai-
resse & Mohnen, 2010). Furthermore, the data does not accurately represent the
proportions of innovative vs. non-innovative firms across European countries. We
focus on firms with non-zero in-house R&D expenditure. We do not make spe-
cific efforts to distinguish between firms in different sectors for two reasons: pre-
vious research has emphasized the heterogeneity of innovation patterns within
the same sector, and sector of activity has a low explanatory power in explaining
firm-level innovation behaviour (Leiponen & Drejer, 2007; Srholec & Verspagen,
2012)." In keeping with the previous literature that applies the conditional inde-
pendence-based approach (e.g. Swanson & Granger, 1997; Xu, 2017) and additive

"2In the machine learning literature, it is not unusual to throw away observations in order to save
computational time. Google throws away 99.9% of observations when it does analysis on its own
data (see Varian, 2014, p4: “At Google, for example, I have found that random samples on the
order of 0.1 percent work fine for analysis of business data.”)

13Srholec and Verspagen (2012) summarize thus: “[h]eterogeneous, not sectoral or national, is the
adjective that should be used to describe patterns of how firms innovate.” (p.1247)
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noise models (Mooijj et al., 2016) and LINGAM (Moneta et al., 2013), and in con-
trast to the usual linear regression approach, we do not include control variables
in our analysis. This is for several reasons. First, the predominance of unexplained
variance can be interpreted as a limit on how much omitted variable bias (OVB)
can be reduced by including the available control variables because innovative
activity is fundamentally difficult to predict.

Mairesse and Mohnen (2010) found the following:

“the unexplained residual, that is, the measure of our ignorance in matters
of innovation, is larger than the explained part of the share of total sales due
to new products, even more in low tech than in high tech sectors.” (p.1142)

Second, including control variables can either correct or spoil causal analysis
depending on the positioning of these variables along the causal path, since condi-
tioning on common effects generates undesired dependences (Pearl, 2009). Third,
in any case, the CIS survey has only a few control variables that are not directly
related to innovation (i.e. exporting status, sector and region dummies, and busi-
ness group affiliation).

For ease of presentation, we do not report long tables of p-values (see instead Jan-
zing, 2016), but report our results as DAGs.

Hence, we are not interested in international comparisons.'* Nevertheless, we
argue that this data is sufficient for our purposes of analysing causal relations
between variables relating to innovation and firm growth in a sample of innova-
tive firms.

ANALYSIS

In this section, we present the results that we consider to be the most interesting on
theoretical and empirical grounds. The three tools described in Section 2 are used
in combination to help to orient the causal arrows. Our results are presented in the
form of (partially) Directed Acyclic Graphs (DAGs), following Pearl (2009) and
Spirtes et al. (2000). (To be precise, we present partially directed acyclic graphs
(PDAGs) because the causal directions are not all identified.) Random variables
X, ...X are the nodes, and an arrow from X t0X indicates that interventions on X
have an effect on X (assuming that the remaining variables in the DAG are adjusted
to a fixed value). Arrows represent direct causal effects, but note that the distinc-
tion between direct and indirect effects depends on the set of variables included in
the DAG. Here, we assume that there is no absolute distinction between ‘direct” and
‘indirect’ influence. A line without an arrow represents an undirected relationship —
i.e. a statistical association rather than a causal effect — where the direction of cau-
sality was not clearly resolved.

14See Mairesse and Mohnen (2010), “it is heroic to make international comparisons when the ques-
tionnaires differ in their content, the order of the questions and their formulations, and when the
sampling of respondents differs across countries.” (p.1140)
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Case 0: sanity check

We begin with a ‘sanity check’ to verify that our data-driven analysis does not
deliver results that are theoretically nonsensical. We investigate the causal rela-
tions between two variables where the true causal relationship is already known:
i.e. that a firm’s sales in 2006 cause a firm’s sales in 2008 and not vice-versa.
Indeed, the causal arrow is suggested to run from 2006 sales to 2008 sales, which
is in line with expectations."

Mooijj et al. (2016, Appendix D) provide further sanity checks for simulated data,
as well as real-world variable-pairs where the direction of causality is obvious,
such as altitude — precipitation; latitude — temperature; age — wage per hour;
day of the year — temperature; size of apartment — monthly rent; and age —
relative spinal bone mineral density. They conclude that Additive Noise Models
(ANM) that use HSIC perform reasonably well, provided that one decides only in
cases where an additive noise model fits significantly better in one direction than
the other.

Case 1: funding for innovation

A large literature in the economics of innovation has sought to evaluate the effec-
tiveness of public schemes to provide funding for firms’ innovative activity and,
more specifically, R&D investments. While R&D investing firms are often asso-
ciated with receipt of funding, the crucial question is whether funding causes
R&D investment, or whether R&D investment causes receipt of funding. Stand-
ard econometric tools for causal inference, such as instrumental variables, or
regression discontinuity design, are often problematic. The empirical literature
has applied a variety of techniques to investigate this issue, and the debate rages
on. Wallsten (2000) applies a three-stage least squares model and finds that R&D
grants totally crowd out firm-financed R&D spending. Aerts and Schmidt (2008)
reject the crowding out hypothesis, however, in their analysis of CIS data using
both a non-parametric matching estimator and a conditional difference-in-differ-
ences estimator with repeated cross-sections (CDiDRCS). Hussinger (2008) finds
that public R&D subsidies have a positive effect on treated firms’ R&D intensity,
using parametric and semiparametric two-step selection models. Howell (2017)
applies a sharp regression discontinuity design (RDD) approach and observes that
early-stage R&D grants have significant causal effects on firms’ outcomes, while
the performance of later stage R&D grants is rather disappointing.

Our analysis, in Figure 5, shows that in-house R&D causes EU-level funding,
rather than vice versa. This suggests that EU-level funding has no additional-
ity — instead funding is given as windfalls to firms that have already made their
R&D investments. In-house R&D, and also total sales, are positively associated
with government funding, but there is no evidence that it is funding that improves

SDetails are in Janzing (2016, Section 6.5).
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the performance of these firms rather than vice versa. Interestingly, and in line with
previous research (see Hashi & Stojcic, 2013, p359, who analyse CIS4 data for six-
teen European countries), unlike funding from European or national government
sources, funding from regional authorities seems quite disconnected (and perhaps
irrelevant) for firm size and innovative activity.

Figure 5.

Partially directed graph resulting from the independence pattern of rrdinx (in-
house R&D), turnO8m (turnover in 2008), funeu (EU funding for innovation),
fungmt (central government funding for innovation), funloc (local authority fun-
ding of innovation).

In-house
/ R&D
Turnover
2008
Local
authority
funding for
innivation
Eu funding for Govt
innovation funding for
innovation

Source: Authors’ own analysis.

Case 2: information sources for innovation

Our second example considers how sources of information relate to firm perfor-
mance. In the age of open innovation (Chesbrough, 2003), innovative activity is
enhanced by drawing on information from diverse sources. However, the rela-
tionships between external information sources, R&D investment, and innovation,
are complex and not well understood (Laursen & Salter, 2006). Previous research
on this issue using CIS data has reported associations but not causal effects
(Laursen & Salter, 2006; Vega-Jurado, Gutiérrez-Gracia, & Ferndndez-de-Lucio,
2009). One policy-relevant example relates to how policy initiatives might seek to
encourage firms to join professional industry associations in order to obtain val-
uable information by networking with other firms. A German initiative requires
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firms to join a German Chamber of Commerce (IHK), which provides support and
advice to these firms,'® perhaps with a view to trying to stimulate innovative activ-
ities or growth of these firms. However, our results suggest that joining an industry
association is an outcome, rather than a causal determinant, of firm performance.
Figure 6 shows that having professional and industry associations as a source of
information is caused by sales growth, and is positively associated with R&D
intensity. This is in contrast with Yam, Lo, Tang, and Lau (2011), who observe
a statistical relationship between sources of innovation and R&D capability, and
rely on theoretical assumptions to interpret this as evidence that it is the source of
information that causes R&D capability.

Conferences, as a source of information, have a causal effect on treating scientific
journals or professional associations as information sources.

Figure 6.

Partially directed graph resulting primarily from the independence pattern of rdint (R&D
intensity), gr_sales (sales growth), scon (sources of information: conferences, trade fairs,
exhibitions), sjou (sources of information: scientific journals and trade/technical publica-
tions), spro (professional and industry associations). The edge scon-sjou has been directed
via discrete ANM.

R&D
intensity
Sales /
growth
Professional
and industry
asociations
Conferences, | Scientific
trade fairs, "] journals
exhibitions

Source: Authors’ own analysis.

16 All German companies registered in Germany, with the exception of handicraft businesses, the
free professions, and farms, are required by law to join a chamber of commerce. See
Hihk.de/er] (last accessed June 20th, 2017).
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Case 3: innovation expenditures

Although R&D investment is often the first choice of indicator of innovative activ-
ity, only a small subset of firms will have positive R&D expenditure, which has
led scholars to consider other useful indicators of innovation such as acquisi-
tion of machinery/equipment/software, and training (Hall & Jaffe, 2012). In this
example, we take a closer look at the different types of innovation expenditure, to
investigate how innovative activity might be stimulated more effectively. Previ-
ous research has shown that suppliers of machinery, equipment, and software are
associated with innovative activity in low- and medium-tech sectors (Heidenreich,
2009). Indeed, acquisition of machinery, equipment, and software plays an impor-
tant role in firm-level innovation, accounting for between 30% and 90% of innova-
tion expenditures across sectors (see Hughes & Mina, 2012, p5 for UK evidence).
However, the Open Innovation paradigm suggests that innovative activity is sti-
mulated by external R&D and external knowledge acquisition (Chesbrough, 2003).
The following question therefore arises: should firms be encouraged to acquire
external knowledge or machinery/equipment/software? Our results suggest the
former. Acquisition of external knowledge has knock-on effects on acquisition
of machinery/equipment/software, as well as on training; and training in turn has
an impact on acquisition of machinery/equipment/software. Furthermore, external
R&D and market introduction of innovations both have causal effects on acquisi-
tion of machinery/equipment/software, but this latter has no causal effect on the
other variables investigated in this case. Hence, attempts to stimulate expenditures
on machinery/equipment/software would not be an effective policy, because these
expenditures are stimulated by other innovation expenditures anyway, and because
they have no further impacts on other variables.

CONCLUSION

For a long time, causal inference from cross-sectional innovation surveys has been
considered impossible. This article introduced a toolkit to innovation scholars by
applying techniques from the machine learning community, which includes some
recent methods. In particular, three approaches were described and applied: a con-
ditional independence-based approach, additive noise models, and non-algorithmic
inference by hand. These techniques were then applied to very well-known data on
firm-level innovation: the EU Community Innovation Survey (CIS) data in order
to obtain new insights. Three applications are discussed: funding for innovation,
information sources for innovation, and innovation expenditures and firm growth.
Our results — although preliminary — complement existing findings by offering
causal interpretations of previously-observed correlations. Regarding funding for
innovation, our results suggest that in-house R&D is a cause, rather than an effect,
of receiving EU funding. Regarding information sources, we found that inter-
est in professional & industry associations is caused by sales growth and confer-
ences / trade fairs / exhibitions (and this latter is a cause of interest in scientific
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journals). Regarding innovation expenditures, we find a number of results, in par-
ticular that acquisition of machinery / equipment / software occurs towards the end
of the causal ordering, being causally influenced by several other dimensions of
innovation expenditure.

Figure 7.

Partially directed graph resulting from the independence pattern of rrdex (exter-
nal R&D), rmac (acquisition of machinery, equipment, software), roek (acquisi-
tion of external knowledge), rtr (training for innovative activities), rmar (market
introduction of innovations), gr_sales. Inference was also undertaken using dis-
crete ANM.
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Source: Authors’ own analysis.

Future work could extend these techniques from cross-sectional data to panel data.
This will presumably be a relatively trivial extension — considering that the most
challenging task when identifying a panel regression model such as a structural
vector autoregression is first identifying the matrix of instantaneous causal effects
in the cross-section (Hyvarinen, Shimizu, & Hoyer, 2008; Moneta et al., 2013).
Future work could also investigate which of the three particular tools discussed
above works best in which particular context.

Our analysis has a number of limitations, chief among which is that most of our
results are not significant. In most cases, it was not possible, given our conservative
thresholds for statistical significance, to provide a conclusive estimate of what is
causing what (a problem also faced in previous work, e.g. Moneta, 2008; Xu, 2017).
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Nevertheless, we maintain that the techniques introduced here are a useful com-
plement to existing research. We consider that even if we only discover one causal
relation, our efforts will be worthwhile.!” Another limitation is that more work
needs to be done to validate these techniques (as emphasized also by Mooijj et al.,
2016), to better understand their reliability. Other limitations, that constitute areas
for further research, would be to investigate whether our results are sensitive to
our choice of sample (in particular, our focus on R&D investors) or whether our
results vary across sectors or across countries.

This paper sought to introduce innovation scholars to an interesting research tra-
jectory regarding data-driven causal inference in cross-sectional survey data. Our
aim is to draw attention to these techniques, in the hope that they will be further
applied and developed, as another tool in the econometrician’s toolbox. Given the
perceived crisis in modern science concerning lack of trust in published research
and lack of replicability of research findings, there is a need for a cautious and
humble cross-triangulation across research techniques. We hope to contribute to
this process, also by being explicit about the fact that inferring causal relations
from observational data is extremely challenging. We should in particular empha-
size that we have also used methods for which no extensive performance studies
exist yet.
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