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Abstract

In the past few decades structural optimization through metaheuristics has gain recognition in the scientific community;
non the less, to guarantee good results we require a good selection of metaheuristic’s parameters. In this paper we
propose a multi-chromosome genetic algorithm with self-adaptive parameters, to optimize steel trusses in a three-
dimensional space. The design variable are the sections assign to each truss element of the structure. The optimization
objective is the minimize the weight of the structure, considering the displacement y maximum stress as constrains.
The propose algorithm was applied to the optimization of two trusses, obtaining designs that had a 35% less weight
than the initial designs and comparable to results obtained in other papers. However, the adaptation of the parameters
allows a more robust optimization process when analyzing different types of trusses and eliminates the initial runs of
the optimization algorithm required to calibrate the initial parameters.

Keywords: design of truss structures, genetic algorithms, parameters self-adaptation, special coding, structural
optimization.

Resumen

En las tltimas décadas, la optimizacion estructural mediante metaheuristicas gan6 acogida en la comunidad cientifica;
sin embargo, para garantizar buenos resultados se requiere una correcta seleccion de los pardmetros de la
metaheuristicas. En este trabajo se propone un algoritmo genético multi-cromosoma auto-adaptado para optimizar
armaduras de acero tridimensionales. Las variables de disefio corresponden a las secciones asignadas a cada elemento
en la armadura. El objetivo es la minimizacion del peso de la armadura, considerando desplazamientos y esfuerzos
méaximos como restricciones. El algoritmo propuesto se aplicé a la optimizacion de dos armaduras, produciendo
disefios que pesan hasta un 35% menos que el mejor disefio inicial y son valores comparables al resultado obtenidos
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en otros trabajos. No obstante, la adaptacién de los parametros permite mayor robustez cuando se desea optimizar
diferentes tipos de armadura y evita las ejecuciones del algoritmo de optimizacién que son necesarias para la

calibracion de sus parametros.

Palabras clave: algoritmos genéticos, auto-adaptacién de parametros, disefio de armaduras tridimensionales,
optimizacion de estructuras, representaciones especiales.

1. Introduction

On a civil engineering project, a structural
designer must guarantee that the structure must
have an adequate behavior regarding the
resistance and service, cost-effective and
complies with the architectonic and construction
requirements. To archive this, the engineer should
go through a “manual process” that modifies
iteratively the initial structural configuration,
considering the stablished design codes and the
experience of the designer. Typically, few
iterations are made during the design process,
therefor, the following question is valid: does the
guantity of iterations made guaranties that the
structural configuration is the lowest cost? A way
to improve the quality of the design (in terms of
cost-efficiency) consist in the automatization of
the design process through the realization of the
denominated Structural Optimization, which is
divided in the following categories ¢?" 1) element
section optimization, Il) material optimization,
I11) shape optimization and V) topologic
optimization.

The solution to the optimization problem requires
the selection of a numerical technique capable of
solving the current problem, in this case being the
metaheuristics a group of optimization algorithms
that has good performance G- The metaheuristic
is an approximate optimization algorithm used in
the efficient determination of “adequate”
solutions of difficult and complex problems in
science and engineering, but it cannot guaranty an
optimal solution ®. One of the most used
metaheuristics is the genetic algorithm technique

(GAs), which is based in the Darwin’s theory of
natural selection and evolution of species.
Various authors in literature have introduced
modifications either to the structure of the
algorithm or the representation of solutions with
the objective of increasing the algorithm
performance in the solution of the problem of
optimizing trusses. One of them consist in the
definition of group of elements assigned with the
same cross-section @ to reduce the variable of the
problem (therefor, reducing the search space of
the solution). Considering the computational cost,
the usage of solution representation schemes
different from that of the binary codification
could reduce significantly the time needed for the
optimization of structure with great numbers of
variables ®. Additionally, improvements in the
convergence process can be achieved by changing
the way on how the violation of constrains is
handled ©), the usage of initial populations
generated heuristically © and the modification of
the genetic operators (like in the case of the usage
of a probabilistic operator for the selection (),
among other strategies. Non the less, the effect
that the genetic parameters have over the
optimization process of trusses have not been
studied in depth, being that the values assumed on
these parameters could affect de performance of
the GA.

Generally, the selected GA parameters in truss
optimization correspond to the values found by
the researches that generated the best results after
testing various parameter combinations. Non the
less, there are 3 aspects that could indicate that the
previous procedure is not the most adequate:
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e The GA should be run for every
parameter combination, which increases
the number of evaluations of the
objective function (at the same time, each
evaluation of the objective function
requires a structural analysis).

e A unique combination of genetic
parameter is used for all analyzed trusses;
although, there is no guarantee that the
search space would be the same por each
structure analyzed.

e The values are kept constant throughout
the search process, but the dynamicity of
the process could require assigning
different values in function of the stages
in which the optimization process is.

Therefore, it would be recommended the usage of
GAs with low levels of dependency from the
parameters used, being that it could be possible
the application of control techniques for the
parameters, like the adaptive or self-adaptation ©.
The present paper introduces a methodology for
the three-dimensional steel trusses based on
genetic algorithms, but that does not require the
definition of genetic parameters from the user. In
this manner the proposed methodology could be
applied directly to any truss (under the constrain
presented in this paper) without being necessary a
previous calibration of the genetic paraments.
Finally, from the obtained results it can be
determined if the search space is unimodal or
multimodal.

1.1.  Genetic Algorithms

The GAs are a type of optimization algorithm
proposed by John Holland on 1975 9, the GAs
evolve a population of possible solution through
mathematical operations based on the principle of
reproduction and survival of the fittest of Darwin.

The application of a GA to an optimization
problem requires the definition of a representation
scheme (binary, real, combination, among others)

of the possible solutions. A possible solution is
codified through a vector called chromosome,
with each of the design variable corresponding to
a section of this vector (gen). Then, it must be
defined the genetic operators used in the
transformation  process (evolution) of the
population and the genetic parameters that
condition the application of the operators. The
size of the population must be defined by the user.

The iterative process starts with either the
heuristic or random generation of the initial
population. The random generation requires that
the process of generating random numbers is
defined between the range of values of each
variable, while the heuristic form implies that the
knowledge of the characteristics of the problem
must be used in the generation of the individuals
of the population to accelerate the search process.
Then, the genetic operations are applied in a
consecutive manor: 1) Selection, I1) Reproduction
and I1l) Mutation. The Selection choses the best
individuals of the population considering the
value of their fitness (measured in terms of the
objective function). In the Reproduction o
Crossover two new solutions are generated from
the combination of two individuals chosen by the
selection process. Finally, the Mutation alters
randomly the characteristics of some individuals
with the aim of introducing diversity to the
population. The frequency on which the last two
operators occurs must be limited through
parameters know as Crossover Rate and Mutation
Rate. Additionally, we can implement Elitism to
preserve the best individual between two
successive generations. The application of the
previous operations creates a new population of
individuals that is expected to be better than their
predecessor. This process is repeated iteratively
until a convergence criterion is reached (example,
maximum number of generations). Given that the
algorithm is stochastic, it is required that it must
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be executed multiple times before giving an
answer to the user.

2. Methodology

In figure 1 the flowchart shows the proposed
methodology for the optimization of the structural
designs of the trusses. The process starts by
reading the initial data of the trusses (node
location, element description and materials, loads,
etc.). Next, the initial population of solutions is

generated, where each of the individuals
corresponds to a determined structural design, by
assigning randomly to each element (or group of
elements) a cross-section from an available set of
options. Then a finite element analysis is run for
each structural configuration to determine the
reactions of the structure (in terms of element’s
stresses and displacements in the nodes) under the
effect of solicited loads. Given the previous
information the following steps carry out: 1)
Evaluation of the self-weight of each individual

START

/ Enter truss data /

A4

Generate initial population (random)

v

Obtain cross-section properties
from database ID

New population

FEM Analysis

A

Calculate stresses and displacements

Binary Mutation

A

Binary Crossover

A

¢Meet Restrictions?

Apply external
penalty function

Evaluate objective function

Selection

A

Obtain genetic
parameters from real GA

é¢Convergence criteria is
reached?

Figure 1. General flowchart for the 3D optimization of trusses
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(structure), 1) Verification of the constrain set in
section 2.1, to establish if the design is viable or
not, and Il1) Penalty of the cost of the solution
following the criteria given in section 2.3, if the
structural configuration violates any constrain.
On this part, the criteria to stop the algorithm are
evaluated, which are: 1) a maximum number of
allowed iterations and Il) specific quantity of
iteration where the fitness of the best induvial
does not considerably change. If one of the
criteria does not comply, a new solution is created
through the operators detailed in section 2.2; on
the contrary, the algorithm stops it execution and
shows most cost-effective structural design
found.

2.1 Problem Formulation for the
Structural Optimization.

In this section the characteristics of the problem
in study are defined in terms of design variables
and parameters, objective function and
constrains. In that sense, the variable of the design
problem corresponds to the properties of the cross
sections of the elements (area), meanwhile the
properties of the steel and the geometric
configuration are kept constant during the
evolutionary process. The objective function is
configured in terms of the self-weight of the
structure (W), shown in Ec.1, and the constrains
established in Ec. 2 to 4:

Minimize: W=pY" ;4; i=1,2,...ng Ecl

Subjectto: 0,(4,) <0y  j=1,2,...nj Ec.2
0, (4;) <04im k=1,2,...nm Ec.3
Ay <A; < Ay, Ec.4

being, p the unit weight of steel (0.28 Ib/in3), |;
and A; the length and the cross-section area the
element’s in group i, respectively, ng number of
groups, &; node displacement, j, 8,,,x Maximum
allowed displacement, nj number of nodes, o
maximum stress on the element K, 6,4,, maximum

allowed stress on the element and nm number of
elements in the structure. Ay, y Aa are the
minimum and maximum values that the variables
can take. Due to constructive constrains, it is not
possible to assign an unique cross-section to each
individual element in the structure, because of
this, groups of elements are assigned with the
same cross-section, producing one design
variable per group. The reduction in quantity of
design variables also leads to a reduction in the
search space to consider less possible solutions.

The algorithm was implemented on the integrated
development environment Eclipse®, version Juno
Service Release 2 complimented with JDK 1.7.
(Java Development Kit), that includes the tools to
develop, debug and monitor JAVA®
applications.

It is important to consider that the mathematical
formulation defined in the paper was used with
the objective of comparing the performance of the
methodology proposed with other algorithm in
the literature. Non the less, the model of physical
constrain is limited due to the exclusion of
important phenomena in the steel structural
design like the susceptivity to buckling.

2.2 Configuration of Multi-chromosome
Genetic Algorithm.

A multi-chromosome GA (MCGA\) is proposed to
find the solution to the optimization problem
established in section 2.1. The algorithm uses an
especial representation for the individuals (figure
2), which are constituted by two chromosomes:
() one Dbinary chromosome with Gray
codification to represent the solution of the
problem, in other words, a combination of
sections and I1) a real chromosome that allows to
self-adapt the genetic parameters during the
evolutionary process. Said representation allows
to simultaneously establish adequate values for
the cross-section of the structure’s elements and
the genetic parameters required in each stage of
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the optimization process. The adaptation of the
parameters is attached to each individual, this
means that each parameter does not have one
unique value through the optimization process, on
the contrary, it varies through the process. From
the above it is possible to diminish the algorithm
success dependency from the values of the
parameter defined by the user, which is present in
the traditional approach with constant parameters
for all the population. And so, the success of the
algorithm is evaluated from the solution found
and considering the reduction in the number of
objective function evaluations, which is obtained
as a consequence of the elimination of the trial
and error process used to calibrate the genetic
parameters.

The Figure 2 shows an example of an individual
that represents a 3D truss with 6 groups of
elements. Each of the columns of the binary
chromosome indicates the codification of cross-
section to be assigned to each element, starting
with group 1 (left end) and ending with group 6
(right end). Considering that a data base of 30
sections requires 5 binary digits to represent any
position in said data base, the elements 2 and 5
will take the cross-section 18 and 27 from the data
base of profiles, respectively. Regarding the real
chromosome, this is used to evolve the genetic
parameters through the process. From left to right,
the values correspond to cross rate and mutation
rate for the real and binary chromosome,
respectively. The proposed representation allows
for the exact values of the different rates to no be

the possible values (Table 1), expecting that the
performance of the algorithm is in a lesser degree
dependent of its parameters. These values were
selected from the referencell since it was shown
to be adequate in the solution of another problem
in the structural engineering field. In this manner,
the performance of the methodology would be
evaluated when the range of the values of the
parameters does not require to be inputted by the
user.

The next step for the MCGA configuration
consists in selecting the genetic operator that will
generate new solution form the current
population. The selected operators were taken
from the reference 11, like shown in Table 2, due
to the effectiveness shown in said paper. The way
of applying these operators to each type of
chromosome (binary or real) can be found in
classic texts of genetic algorithm, like shown in
12 A study of the effect of the usage of other
operators was not made, since the focus of this
research lies on the impact that the definition of
genetic parameters has; non the less, it must be
studied in future work to define de most adequate
parameters for the problem.

Binary Chromosome — Cross-Section Position for Each Element

10110 10010 01001 11110 11011 10100
Real Chromosome — Genetic Parameters
0.785 0.856 0.008 0.011

Figure 2. Example of binary and real chromosomes representation of an individual.

defined by the user, but to establish intervals for
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Table 1. Limits for the Genetic Parameters for the Solution 9

L. Crossing Mutation
Limit
Binary Real Binary Real
Inferior 0.70 0.80 0.005 0.03
Superior 0.90 0.95 0.020 0.06
Table 2. Genetic Operators for the Simulation %
Chromosome Selection Crossing Mutation
Real BLX-a a=0.50 Creep
Tourney, n=3
Binary Two points Jump

For handling the problem’s constrains, a
penalization technique is used to transform the
problem in a “non- restrained” one. In this
manner, a dynamic penalization factor was
included in the objective function to “punish”
those solutions that violates the constrains. The
scheme allows the increase of the penalization as

the evolutionary process advances and given by
OF

O()=f()+ (0.50%)> I [e,c)k] ~ Ec.5

where f is the objective function of the problem,
x is the variable vector of the design, t is current
number of the iteration, g is the penalization
function and k is the magnifying factor for the
penalization. The efficiency of the previous
function is conditioned by the value of k. Erbatur
et al.® took a value k = 10, while in the present
study a value of k =15 is taken, with the objective
of increasing the penalization of the worst
solutions. Such as strategy tries to guide the
search to a zone where the best solution for an
individual could be found. This value was

obtained by trial and error of tests with different
values of k.

On this paper, a total of 50 runs of the GA was
made for each of the examples studied, where the
solution found corresponds to the best individual
at the end of the evolutionary process. As a
stopping criterion a maximum number of
iterations was used, which was defined for each
case studied. The solution provided to the user
corresponds to the structural configuration the
minimum self-weight among the set of good
solutions.

2.3 Structural Analysis of 3D Trusses

The evaluation of the constrains requires that it
must be known the internal forces of the elements
and displacement of the structure that are caused
by external loads. To manage this a program of
lineal analysis for the structure using finite
elements was developed on MatLab®. The
complement deplovtool was used to transform the
MatLab® code in to a file package (function)
JAVA®, with the objective of connecting the
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codes. All the data entries (geometry, loads,
constrains, connectivity, etc.) and element
properties are read form an Excel® spreadsheet.
The program was configured by interfaces to
manage a polymorphic behavior, so that the file
reading mode stays open.

3. Numeric Examples

Two classic examples reported in literature were
used to evaluate the performance of proposed
methodology, in terms of the self-weight of the
optimized structure and the number of evaluations
of the objective function. In both examples the
structure is made out of a material with a density
of 0.1 Ib/in® (2678.8 kg/m?) and an elastic module
of 10000 ksi (68947.6 MPa). The results obtained
are compared with those reported by diverse
authors that have employed metaheuristic to
resolve the same examples. Likewise, the diverse
configuration of the elements that results from the
last generations are analyzed to categorize the
objective function in terms of the presence or lack
there of local optimums. Finally, the convergence
process toward the final solution for the two
examples will be observed. In relation with the
optimization algorithm, 50 runs will be executed
with 100 individuals and 250 iterations, values
that were determined after trial and error tests.

3.1.Example 1: Spatial Trussing of 25
Elements

Table 3. Restrictions for the Truss of 25 Elements

In Figure 3, the structural configuration for the
spatial truss is shown, which has 25 elements,
with a total of 18 degrees of freedom and 4 hinged
supports. The elements were grouped so that only
8 possible different cross-sections maximum
could be assigned (design variables). As shown in
Table 3, generic sections are used using only the
cross-section area, being that they vary in a
discreet way between 0.1 (6.45E-5 m?) and 3.4
(2.19E-3 m?) every 0.1 in? (6.45E-5 m?).
z

75in.
100in.
3
5 N— N T5in X

A\ Sk 100in.

6
200in =

£(9) Ta X
= ‘. 200in

_A

Figure 3. Spatial Truss with 25 Elements 3

Regarding the constrains, the maximum allowed
displacement is 0.35 in (8.89E-3 m) in all
direction and the limit stress are presented in
Table 3. The loads assigned over the structure
appears on Table 4.

Table 4. Load conditions for the Truss of 25 Elements

Design

Variables (in) As As As As As A7 As
Compression 3309~ 1L59- 1731~ 3500- 3500 676-  696-  1LOG-
Stresj\'/:;“a't kSl 24103 7991 11035 24193 24193 4661 4661  76.39
40.00-  40.00- 40.00- 40.00- 40.00- 40.00- 40.00-  40.00-
Tension stress
limit (ksi) 27579 27579 27579 27579 27579 27579 27579 27579
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Fx Fy F.
Node
kips

kN kips kN kips kN

1 0.00 0.00 20.00 88.96 -5.00 22.24

2 0.00 0.00 -2.00 8.90 -5.00 22.24

3.2. Example 2:
Elements

Spatial Trussing of 72

In Figure 4, the structural configuration for the
spatial truss with 72 elements is presented, which
are gathered into 16 groups (Table 5). It is
established a minimum cross-section area of 0.1
in? (6.45E-5 m?) that can be increased by 0.001
in? (6.45E-7 m?), until it reaches 3 in? (1.935 E-3
m2). The loads are localized in the axis z with a
value of — 5 kips (22.24 kN) on the nodes 17, 18,
19 y 20. The material used present maximum
allowed stress of 25 ksi (172.37 Mpa) to
compression and 25 ksi (172.37 Mpa) to tension.
The displacement constrain is set to 0.25 in
(6.35E-3 m) in all directions.

4. Results
17)] 1 1
a (17) e
60 in
(13)— =
~._ _— (14)
e 60 in
@) >
i
- 60 in
(5) =
" (B)
z - 60 in
‘ -
| .
=, )

120 in

4.1. Truss Optimization

Table 5-8 reports the results of the application of
MCGA and other optimization techniques on the
trusses presented in section 3, which were
organized with the best result to the left of the
table. The criteria to evaluate the performance of
the algorithm corresponds to the self-weight of
optimized truss and the quantity of structural
analysis carried out. The initials N.R. indicate the
authors of methodology did not report the
corresponding information. The total quantity of
structural analysis used on the optimization
process (values with a "*") are determined through
a multiplication of the number of iterations by the
size of the population. It is important to note that
it is not possible to include the number of runs in
the comparison, due to others authors reported the
number of evaluations based on the best run and
not the number from the total of runs. Likewise,
diverse authors did not report the quantity of
evaluations made to calibrate the genetic
parameters.

b
z (8)
e 15
16"/ g —
.15 ? x\‘-\x\ —— = (7)
{5] e r_."- Fa ‘-._'1?'\ ;
- 13 5N = 14
3 12 e S 5
1| 11/ > k=16
/Y St (4)
< VA T Nt
(1), . 2] ST o
lx [+ M :
(2
Eed 120 in.

o

Figure 4. Spatial Truss with 72 elements: (a) Elevation View. (b) Standard Floor ¢4

9/14



Villalba-Morales, et al./Ingenieria y Competitividad, 23(1), 7337, enero-julio2021

On Table 5 and 6 the results for different GAs
methodologies are shown. The self-weight
obtained by the MCGA for example 1 and 3 is just
2.5% and 1% greater than the minimum self-
weight found by other authors, respectively. One
comparison of quantity of structural analysis
made indicates that there is no defined pattern to
the behavior of the different methodologies. If the
quantity of analysis made for GA from reference
® and MCGA are compared, it is observed that
the MCGA executed 6100 additional analysis for
example 2 and 5200 less analysis for example 1.
The analysis of results regarding the number of
analysis made is not completely just if we
consider the following: 1) the quantity shown
correspond to the best run of each one of the
reported algorithms and not to the sum of the
analysis carried out in each of the runs of the
algorithms; 1l) the quantity of times that it was
necessary to try out combinations of genetic
parameters to find the most adequate one is not
reported. Actually, the total of structural analysis
made should be calculated considering the
number of tests necessary to calibrate the genetic
parameters, the quantity of runs made, the number
of iterations to reach a solution and the size of the
population. The MCGA has the advantage that is
does not require to calibrate the parameters, and
that in general, it uses a lesser quantity of

evaluations of the objective function compared to
those required for the GAs shown in Table 5 and
6

Tables 7 and 8 show the performance of different
metaheuristics used on GAs to optimize the
studied trusses. The MCGA obtained a
configuration for example 1 which is 2.3% more
heavy than the lightest structure obtained by other
metaheuristics, being that diverse techniques
produced the same configuration. The later can be
due to low quantity of variables optimized. In the
case of quantity of evaluations, the MCGA
occupied the second place in quantity of analysis
made. Regarding the example 2, the self-weight
of the truss and the quantity of the required
evaluations it in the mean of values obtained by
other methodologies. This shows that future
research must be done to improve the search
ability of the algorithm. Finally, from the reported
data, it is inferred that the metaheuristics
produced a determined level of success in
function of the analyzed truss. For example, The
Harmony Search algorithm obtained results in par
with other methodologies used with trusses with
25 elements, while with trusses of 72 elements it
obtained worst results.

Table 5. Results of other methodologies that use GAs for the Truss with 25 elements

Reference 3) (7 (6) @) 5) MCGA
Weight in pounds (kg) 483.35 484.64 484.85 485.90 493.80 495.33
ghtinp g (220.14)  (219.83)  (219.92)  (220.40)  (223.98)  (224.68)
Populations 40 N. R. 200 900 N. R. 100
No. of Iterations N. R. N. R. 146 400 N. R. 148
No. of structural analysis N. R. N. R. 29,200* 360,000* 20,000 14,800*
Table 6. Results of other methodologies that use GAs for the Truss with 72 elements
Reference @) )] (6) ) MCGA
Weight in pounds (kg) 380.05 380.78 382.35 383.12 383.87
ghtinp g (172.39)  (172.72)  (173.43) (173.78) (174.12)
Populations N. R. 1500 100 N. R. 100
No. of Iterations N. R. 600 191 N. R. 252
No. of structural analysis N. R. 898,500* 19,100 30,000 25,200
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4.2 Analysis of the configuration of the
solutions found

Tables 9 and 10 show the best configurations of
the cross-sections found for the examples by the
metaheuristics presented in section 3.1. The
results prove the existence of different cross-
section configuration that produce a similar self-
weigh for the structure. Reference ®® and (®
reported trusses configuration of 25 elements that
present sections different for 3 of the 8 groups of
elements with a difference in self-weight of 0.3%.
The configuration obtained by the MCGA
presents a considerable difference in the cross-
section area of group 2 compared with the best

solution, reason why the self-weight obtained was
not the best. In the truss with 72 elements there is
more variation between the solutions, being that 9
groups presents differences in the cross-section
area greater than 5% in case of references @ and
® with a difference in self-weight of only 0.7%.
The proposed algorithm obtained similar values
to other analyzed methodologies in the paper. The
previous results show a multimodal nature to the
problem, reason why it is necessary to introduce
a characteristic to the GA to manage this type of
characteristics. With this, it is expected a better
convergence of the proposed algorithm to the
global optimum.

Table 7. Results of other methodologies that use GAs for the Truss with 25 elements

MCGA
Reference 15) (13) (16) (14) a7 proposed
- Simulated  Harmony Ant B|g—|_3ang Particle Swarm Genetic
Metaheuristic . Big PR :
Annealing Search Colony crunch Optimization Algorithm
Weight in pounds 484.33 484.85 484.85 484.85 484.85 495.33
(kg) (219.69) (219.92) (219.92)  (219.92) (219.92) (224.68)
Populations 1 30 N. R. 100 50 100
No. of Iterations 39,201 N. R. 100 N. R. 500 148
No.ofstructural 39501 18734  N.R. 9,000 25,000 14,800
analysis
Table 8. Results of other methodologies that use GAs for the Truss with 72 elements
MCGA
Reference (18) 19) (14) proposed 17) 13)
Bee Teach. Big-Bang Genetic Particle Harmony
Metaheuristic Colony Learn. Big Algorithm Swarm Search
Opt. Based Opt. Crunch Opt.
Weight in pounds 363.84 379.63 379.85 383.87 388.94 389.08
(kg) (165.4) (172.19) (172.30)  (174.12) (176.42)  (176.48)
Populations N. R. N. R. N. R. 200 N. R. N. R.
No. of Iterations N. R. N. R. N. R. 126 N. R. N. R.
No. of structural N. R. 19,709 19,621 25,200 N. R. 27,113

analysis
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Table 10. Cross-section configuration found by diverse authors for truss with 72 elements

References
Groups Elements (18) 19 a4) (€)] (6) MCGA
1 1-4 0.1675 0.1562 0.1565 0.156 0.154 0.158
2 5-12 0.5346 0.5493 0.5507 0.555 0.604 0.546
3 13-16 0.4443 0.4097 0.3922 0.370 0.442 0.411
4 17-18 0.5803 0.5698 0.5922 0.510 0.604 0.511
5 19-22 0.5208 0.5317 0.5209 0.620 0.505 0.610
6 23-30 0.5178 0.5159 0.5172 0.530 0.550 0.553
7 31-34 0.0100 0.1000 0.1004 0.100 0.109 0.100
8 35-36 0.1048 0.1000 0.1005 0.100 0.118 0.100
9 37-40 1.2968 1.2617 1.2476 1.250 1.288 1.116
10 41-48 0.5191 0.5111 0.5269 0.523 0.469 0.553
11 49-52 0.0100 0.1000 0.1000 0.101 0.100 0.100
12 53-54 0.0101 0.1000 0.1012 0.105 0.100 0.100
13 55-58 1.7907 1.9064 1.8577 1.860 1.702 1.808
14 59-66 0.5166 0.5061 0.5059 0.513 0.496 0.525
15 67-70 0.0100 0.1000 0.1000 0.100 0.100 0.100
16 71-72 0.0100 0.1000 0.1000 0.100 0.100 0.100
Weight 363.86 379.63 379.85 380.78 382.35 383.87
800 Population Size = 100 600 Population Size = 100
S s PopulationSize=200 | | e Population Size = 200
%600 \\ 2450
H ) R
0 50 100 Generatiilj:Number 200 250 300 0 50 100 Generatil::Number 200 250 300
(a) (b)

Figure 5. Total Self-weight vs. Number of iterations for truss with de (a) 25y (b) 72 Elements

4.3 Convergence of the MCGA

In Figure 5a is shown that by using 200
individuals is possible to obtain a better solution
in the first 100 iterations, but with the advance of
iterations (around iteration 170) the solution is of
the same quality. Results for the truss with 72
elements presents a different behavior (Figure 5b)

where the solution found is better. The previous
shows that it is important to determine a
mathematical equation for the adequate size of the
population in function of the truss complexity
(number of cross-sections that most be defined
and size of the data base for the available
profiles). Finally, it can be observed that the
improvement of the design reaches 35%
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approximately compared to the initial value of

both examples.
5. Conclusion

In this paper a methodology based on self-
adaptive genetic algorithm was presented to
minimize the self-weight of steel trusses,
which was validated at a functional and
computational level, through its application
to two trusses reported in literature. The
obtained  designs  for the  trusses
(configuration of the cross-sections for the
elements) show that the algorithm is capable
of satisfactorily obtaining economical
solutions from a data base of previously
defined sections by the user. The obtained
results (self-eight and objective function
evaluation) are comparable to those obtained
in other metaheuristics. Even thought none
of the examples obtained the least weight,
the proposed methodology presents the
advantage that does not requires the
definition of the parameters by the user, the
above leads to requiring less amount of
evaluations of the objective function and that
the results have less dependency with the
values of the genetic parameters. Likewise,
the results show diverse structural
configurations for the truss having a similar
weight in the search space (multi-modal
search space). Thus, for the best performance
of the proposed GA there’s techniques that
can be used for the management of
multimodal functions. From the above, it is
expected to increase the possibility that the
optimal solution found could be global.
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