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Abstract

This paper addresses the two-machine permutation flowshop problem with deterioration. The objectives are
minimizing the makespan and the average tardiness. Jobs have a baseline process time in each machine and have a
due date. The actual time to process a job depends on the machine performance level at the start of each job, which is
a function of the previously processed jobs and their wear/deterioration effect on the machine. The article proposes
multiple heuristics and a comprehensive set of experiments. The results indicate that as a group, the heuristics
generate solutions that are very close to the optimal for both criteria. Furthermore, no heuristic approach is dominant
for all experimental conditions, thus heuristic selection to solve practical problems should be based on the specific
problem characteristics.

Keywords: Maintenance, Makespan, Permutation flowshop, Scheduling, Sequence-dependent systems, Tardiness.
Resumen

Este articulo aborda el problema permutation flowshop con deterioro. Los objetivos son minimizar el tiempo total
para completar las operaciones y el promedio de su tardanza. Los trabajos tienen un tiempo de proceso base en cada
maquina y una fecha de vencimiento. El tiempo real de proceso depende del nivel de rendimiento de la maquina al
inicio de cada trabajo, que es una funcion de los trabajos procesados previamente y su efecto de desgaste/deterioro en
la méquina. El articulo presenta mdltiples heuristicas y un conjunto exhaustivo de experimentos. Los resultados
indican que, como grupo, las heuristicas generan soluciones que estan muy cerca de los valores 6ptimos para ambos
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criterios. Ademas, ningln enfoque heuristico es dominante para todas las condiciones experimentales, por lo que la
seleccion heuristica para resolver problemas practicos debe considerar las caracteristicas especificas del problema.

Palabras clave: Mantenimiento, Programacion de la produccion, Sistemas de Secuencias, Tardanza, Tiempo

méximo de operacion.

1. Introduction

Research about the Flow-shop Scheduling
Problem (FSP) is extensive and the interest on
this problem does not abate. A key reason for the
continued interest in the FSP is that it represents
how many real-world production systems
operate; a product requires a sequence of steps
performed by different resources with the
constraint that each step of the process must be
completed for the next to start . Researchers
have addressed many variations of the FSP
considering  the  diverse  settings and
characteristics of our industrial world. Some
problem versions allow skipping steps @, others
have multiple parallel machines per step ©, and
others include due date windows ©.

This paper considers one of the most basic cases
of the FSP, called the permutation flowshop
problem where all jobs must be processed in the
same order in each of the steps, there is a single
machine per step, and there is no waiting or
setups between jobs and between machines. The
key difference with previous work, and the
contribution of this article to FSP research, is
that the proposed model and analysis considers
the case where the resources (the machines) have
heterogeneous deterioration based on the job
sequence. This research considers two measures
of performance: the completion time of the last
job on the schedule (e.g., the makespan) and the
average tardiness. These two are among the most
commonly addressed measures in the FSP
literature ©7),

Research in the flowshop problem with
deterioration has been previously addressed by
multiple authors. Research that addresses the

minimization of the makespan include Kononov
and Gawiejnowicz ®, Wang and Xia ©, Wang et
al. @9, Lee et al. @, Lee et al. ®?, Wang et al.
% Wang and Wang @ and Sun et. al ., With
the exception of @, the models addressed by
these authors considers the processing time as a
linear function which is dependent on its starting
time: the time to process a job j in machine k is
assumed to be a;, + At;, where a;, is the
basic processing time of job j in machine k, A is
the deterioration rate, and t; ;. is the start time of
job j in machine k. In Wang et al. ®® the
position of the job is relevant, noting their model
includes both deterioration and learning. Under
this model the time to process a job j in machine
k is assumed to be a;,tr® where a; is the

deterioration rate of job j on machine k, t is the
start time of job j on machine k, and r is the
position of job j on the sechedule, and b is the
learning index (b < 0).

Research that addresses the minimization of the
total tardiness for the flowshop problem with
deterioration has not received much attention,
with Bank et al @® and Lee et al. @ being the
only two articles on the subject. As in most of
the pervious papers, the deterioration of the jobs
is based on a linear function of their starting
times. Research in the related measure of
maximum tardiness by Sanchez-Herrera et al. ®
considers position-based deterioration.

Therefore, previous research typically considers
the situation where the jobs deteriorate
depending on the time at which they start being
processed or based on their position in the
sequence. This view of the system fails to
consider environments where the machines (or
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worker) are the elements that are wearing
down/deteriorating, and each job may have a
different effect on the condition of the machine.
Therefore, a job’s processing time would not
depend on the start time or the number of jobs
previously processed (position), but rather in the
condition of the machine, where the condition of
the machine does not depend on the time or just
the number of jobs, but rather on the specific set
of jobs processed. An approach to model
deterioration in this manner was proposed by
Ruiz-Torres et al. ®® and has been used in
several follow up work including Santos and
Arroyo 9, De Aratjo et al. ?Y, Perez et al. ??
and Ding et al. 3,

Furthermore, this approach to modeling
deterioration is an element of a software
developed for the optimization of logistics
during well drilling ®®. As in the case of drilling,
there are multiple real-world settings where the
equipment (machines) deteriorates based on the
particular sequence, for example processes
associated with metal cutting and shredding
where equipment performance decreases as it
processes the materials. The cutting tools’
characteristics in terms of sharpness and
hardness deteriorates due to the heat and
pressures of the involved processes, and as this
occurs, the time required to process a job in
order to meet the required specifications will
increase in comparison with the original plan.
However, the wear/deterioration effect on the
machine is not the same for all jobs being
processed.

For instance, material that is softer will have a
smaller effect than material that is harder. For
example, at time t = 35 a set of easy jobs
would have been completed and as a result the
machine would be performing at 90%. In this
case the time to process job j would be 5 hours
to complete given the machine status. On the
other hand, if at time ¢t 35 a set of hard jobs
would have been completed and, therefore, the

machine would be performing at 75%. In this
case, the time to process job j would be 6 hours.
Another simple illustrative example relates to a
person doing exercises following a multi-step
routine. This person can either start the routine
by running 2 kilometers or walking 1.5
kilometers (and we assume this person can
complete any of them in 12 minutes at the start
of the routine — when “fresh”). For most people,
the level of deterioration (tiredness) for position
2 (second exercise of the routine) or conversely
at time = 12 minutes would be very different
depending on the decision of what exercise to do
first (run or walk), and thus performing the next
exercise may take different amounts of time in
each case.

Given the time to process jobs increases as the
machines degrades, a simple option is to run the
softer jobs first. However, this simple approach
is only true if all jobs have the same processing
times 9. It is worthwhile noting that the
proposed model also has direct application to the
scheduling of people. The sequence of jobs
performed by an operator can have diverse
effects on the level of mental/physical tiredness
of that person, therefore a type of deterioration.
This is probably the reason why many people
like to do the easy tasks first.

This research contributes to the body of
knowledge in production and engineering as it
takes on a different view of the system
concerning deterioration in flowshop scheduling,
where the machines deteriorate based on the set
of jobs previously processed by the resource.
Furthermore, this research is relevant as it
expands on the study of the effect that
deterioration has on the tardiness criteria, which
is relevant in customer service and therefore
competitiveness. This paper is organized as
follows; Section 2 provides the methodology
including the problem description and heuristics
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proposed to generate schedules, Section 3
presents computational experiments and results,
while Section 4 provides conclusions and
directions for future work.

2. Methodology
2.1. Problem description

Consider a set N =({1,..,j,..n} of n
independent jobs to be processed on a flowshop
with two machines. All jobs flow in the same
sequence (permutation flowshop), from machine
1 to machine 2. All jobs are available at time 0
(static case) and cannot be preempted or divided.
Each machine can process only one job at a time.
At time 0 (the start of the schedule) both
machines are at their baseline state (e.g., 0%
wear = 100% performance). Let p;, be the
baseline processing time of job j on machine k;
wj i be the wear/deteriorating effect of job j on
machine k with 0 < w;, <1, and let d; be the

due date of job j.

Let X be the ordered set of jobs and x[h] be the
job assigned to positon h. Let g, be the
performance level for the job in positon
h of machine k. For k = 1, 2 the value of g,  is
defined by (1 —wypn-13k) X qp-1,, When h >
1, and qp, =1 when h=1 (as mentioned
earlier, the model assumes the machines are at
their “best” operating level at the start of the
schedule). Let p,;, be the actual processing
time of job x[h] in machine k, and pyp;x =
Px(n)k/ qni- This function to define resource
deterioration was first used in @ and used in
follow wup research as mentioned in the
Introduction section %23,

The completion time of a job j in machine k is
¢jx and the tardiness of a job is t; =
max]|0, ¢, — d;]. The measures under analysis
are the makespan: c;qx = maxjey ¢j, and the
average tardiness: type = X jen tj/n.

A simple example is presented next to illustrate
the problem. There are n=6 jobs with
processing times, wear/deterioration, and due
dates parameters as in Table 1. We first consider
the makespan measure of performance and use
Johnson’s algorithm® to determine a schedule
given it provides the optimal solution in the
basic case with no wear/deterioration. Note that
Johnson Algorithm (JA) iteratively selects the
job with the smallest processing time in any of
the machines and assigns them to the sequence:
if the process time is in machine 1, the job is
placed in the “front” of the schedule, and if it’s
on the second machine, its placed on the “back”
of the schedule, working towards the center of
the sequence until all jobs are assigned (a formal
description is provided in section 2.2.2).

Therefore for this example, job 5 is selected first
and placed at the “back™ of the schedule, then
job 6 is selected and placed at the “front”, then
job 3 is selected and placed at the front (but after
6), then job 2 is placed at the “back”, but ahead
of job 5, next is job 1 which is placed at the front
(but after 3), and finally job 4 stays in the middle
remaining position for the sequence: 6-3-1-4-2-
5.

Table 1. Job information

J pix pi2 wii(%) wi(%) d;
1 34 51 2 5 100
2 80 30 6 6 145
3 25 60 1 7 210
4 48 45 9 2 260
5 60 18 5 1 280
6 20 50 4 9 350

The top diagram of Figure 1, schedule s1,
presents the JA based schedule with no machine
wear/deterioration (in other words w;; = w;, =
0 Vj € N). Schedule s1 includes the completion
time of each job on each of the two machines.
This schedule has a makespan of 285, which as
mentioned is optimal when no machine

5/18



Ruiz-Torres, et al/Ingenieria y Competitividad, 23(2), 10099, julio-diciembre2021

wear/deterioration is considered. Schedule s2 of
Figure 1 presents the same sequence of jobs but
including machine deterioration. The diagram
includes the completion time of each job on each
machine as well as the machine performance
level at the end of that job (position assigned to
that job).

20 45 7o 127 207

mm‘ﬁ 3|1| 4 I 2 { s
S AN ENEEND
Gz 7 3 226 28

6

n : 84.6%
€2 0 1359

1418 1637
91.2% B7.6%

75.7%

3 83% 756% 74.1% 73.3%
85 1398 1758 236

Figure 1. Three schedules: JA not considering
wear/deterioration (s1), JA considering
wear/deterioration (s2), optimal makespan schedule
considering wear/deterioration (s3)

Next, 1t 1s described how the machine’s
performance level and the actual job’s
processing times are determined when machine
wear/deterioration is  considered. The
performance level of machine 1 is at 100% in
position 1 (h=1,q;, =1 ), the position
assigned to job 6. The actual process time of job
6 is 20 (ps1 = Pe1/q11 = 20/1 = 20). Given
We1 = 4%, the machine performance level at
the end of job 6 (therefore for position h = 2) is
9% (g1 =1 —we1)Xqy;=096%X1=
0.96). The actual process time for job 3 (the job
assigned to position 2) is 26 (p31 = P31/q21 =
25/0.96 = 26). Given w3, =1%, the
performance level of machine 1 after job 3
(therefore for position h =3) is 95.04%
(q31 = (1 —ws3;) X qyy = 0.99 X 0.96 =

0.9504). The actual process time for job 1 (the
job assigned to position 3) is 358 (p1; =
P11/931 = 34/0.9504 = 35.8). The same
calculations are repeated for the remaining

positions and for machine 2 (considering the
availability for the job in the second machine). It
is noted that the performance level at the end of
the schedule will be the same value for all
possible sequences as it is the effect of
processing all jobs in the machine (total
wear/deterioration). The makespan of this
schedule is 327.4, a difference of almost 15%
versus the case when machine deterioration is
not considered (Schedule 1 of Figure 1).
Schedule s3 in Figure 1 presents a third schedule
considering machine wear/deterioration with a
makespan of 319.8. This sequence was obtained
by a full enumeration search (in other words, all
possible schedules were generated) and it results
in the lowest makespan for the example problem.
It is evident with this example that the schedules
generated by JA are not optimal for the proposed
problem.

Figure 2 presents the schedules generated when
ordering jobs according to the Earliest Due Date
rule (EDD). Schedule s4 illustrates the schedule
when machine wear/deterioration is not
considered and the bottom schedule when it is
considered. The jobs in grey are late. The
additional row of information below the
schedule is the tardiness for each job (). When
machine wear/deterioration is not considered, all
the jobs are on time, therefore an average
tardiness of O (Schedule s4). As it can be noted
in schedule s5 of Figure 2, when machine
wear/deterioration is considered, five jobs are
tardy with an average tardiness of 5.18. From the
previous discussion, it should be clear that
ignoring machine wear/deterioration is very
important as it could lead to incorrect/poor
decisions in work planning.

2.2 Heuristics

This section describes basic algorithms used to
generate job sequences and improve on the
resulting measures of performance. The
algorithms used to generate job sequences are
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based on list ordering and on Johnson’s
algorithm. The improvement methods are based
on job exchange strategies.

il 34 114 139 18 247 26
m w [ 1 2 a] 4 s [e
wa L] 2] 3 | 4 [s] s
€z 85 144 o 249 26 1
t, o [ 0 '] 0 o
€ 34 1
qna 98% 92.1% 91.2% 83%
E w1 2 s 4« [ s s
T 3 o B )
2 ase 89.3% 83% §1.4% 80.6%
Sz 88 1472 2144 2686 1907 3551
a 22 44 86 10.7 51

Figure 2. Two schedules ordered by due date, one not
considering wear/deterioration (s4) and another
considering wear/deterioration (s5)

2.2.1 Ordering using one job characteristic

The job sequence is based on a single
characteristic for each job. Eight characteristics
are analyzed, where in all cases the list is in non-
decreasing order of the characteristic.

e EDD: due date (d;).

e Slack: slack time based on the baseline
process times (s; = dj - pj1 — Pj2)

e w1: wear/deterioration effect on the first
machine (w; ;).

e W2: wear/deterioration effect on the second
machine (w; ;).

e pl: baseline process time on the first
machine (p; 1).

e p2: baseline process time on the second
machine (p; »).

e p_wl: ratio of baseline process time over
the performance level effect on the first
machine (p]-,l/(l — Wj,1))-

e p_w2: ratio of the baseline process time
over the performance level on the second
machine (p]-,z/(l — wj,z)).

2.2.2 Ordering using two job characteristics

The job sequence is created by using information
from both machines. Three rules are analyzed
that use the wear/deterioration effects, the

baseline process times, and the ratio of process
time to performance level. The first rule is in
principle similar to Johnson’s but attempts to
assign the jobs with lower wear/deterioration
effect in the first machine at the front of the
sequence, and the jobs with higher
wear/deterioration jobs in the second machine at
the “back” of the sequence. The second and third
algorithms are Johnson’s and a modified version
that uses the ratio characteristic, respectively.

Wear effect algorithm (WA)

Stepl. Let N =N,f=1b=nwyy,=
MminjenyWj 1, and Wiax =
maijNWj'z.

Step 2. Let W,j’1 =Wj1 — Wnin, W’j’2 =
Winax —Wj2 VJj € N.

Step3.  Let j'={ljie N k=12:
min [w'; , ]}.

Step 4. If wjr, <wjr, then x[f] = j,f =
f+1else x[b] = j,b =b—1.

Step5. LetN'=N'—j.

Step 6. If IN'| # @ then return to Step 3.

Johnson’s algorithm (JA)

Step 1. LetN'=N,f=1,b=n

Step2.  Let j'={lie N k=12:
min [pj'k]}.

Step 3. If pjr1 <pjr, then x[f] = j,f =
f+1lelsex[b] = j,b =b—1.

Step4d. LetN'=N'—j.

Step5.  If [N'| # @ then return to Step 2.

Modified Johnson’s algorithm (MA)

Step 1. LetN'=N,f=1,b=n
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Step2.  Let j'={ljie N k=12:
min [pj /(1 —wj )]}

Step 3 If pj’,l/(l - Wj,,l) < pj',Z/(l -
wjrp) then x[f] = j.f = f+1
elsex[b] = j,b =b—1.

Step4. LetN'=N'—j".

Step5.  If [N'| # @ then return to Step 2.

2.2.3 Improvement methods

These improvement methods exchange jobs to
reduce the measure of performance under
consideration. Let v be the current value of the
measure of performance of interest (makespan or
average tardiness) for a schedule with job
sequence X. As in Wang et a. (2012) the First
Improvement (FI) method accepts the first
exchange that results in an improvement in v,
while in the Best Improvement (Bl) method, all
exchanges are considered, and the best exchange
is accepted. Both versions end when no further
improvements are found.

First improvement (FI)

Step 1. Lety = 1andz = 2.

Step 2. Let job a =jx[y] and job b =jx[z]-

Step 3.  Exchange the positions of jobs a and
b and let v be the measure of
performance of this sequence.

Step 4. If v < vthenletv = v’ and return
to Step 1.

Step 5.  Exchange the positions of jobs a and
b.

Step 6. If z<nletz =2z + 1 and return
to Step 2.

Step7. Ify<n-1theny =y + 1 and

z = y + 2and return to Step 2.

Best improvement (BI)

Step 1. Lety = 1,z = 2,and vy = V.

Step 2. Letjoba = jyp, andjob b = jy,.

Step 3.  Exchange the positions of jobs a and
b and let v be the measure of
performance of this sequence.

Stepd.  If V' < vpes, then let vy = v,
Ybest = YrZpest = Z-

Step 5.  Exchange the positions of jobs a and
b.

Step 6. If z<nletz =2z 4+ 1 and return
to Step 2.

Step7. Ify <n-1theny =y + 1 and
z = y + 2 and return to Step 2.

Step 8. If vyest < v then let job a =
jx[:Vbest] and JOb b =jx[zbest]’
exchange the positions of jobs a and
b, let v be the measure of

performance of this sequence and
return to Step 1.

2.2.4 Overall set of Heuristics

A total of 11 heuristic approaches are proposed
to generate an initial schedule (8 presented in
section 2.2.1 and 3 presented in section 2.2.2),
while two improvement heuristics are described
in section 2.2.3. Therefore, a total of 22
combination  approaches (initial  sequence
followed by an improvement heuristic) can be
generated. For the makespan criteria the initial
sequence based on due date and slack are not
relevant, therefore 18 applicable heuristic
combinations remain.

3. Results and Discussion

Two sets of experiments are conducted to
evaluate the performance of the heuristic for the
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two criteria under consideration. The first set of
experiments evaluate the heuristic performance
versus the optimal solution for small sized
problems (optimal benchmark experiments),
while the second set of experiments evaluate
relative heuristic performance for larger sized
problems (relative benchmark experiments). To
find the optimal solution for the first set of
experiment, a full enumeration search is
conducted where all the possible job sequences
are examined, and the schedules are generated.
All experiments were conducted on a personal
computer with the following characteristics:
12GB RAM, 2.9GHz CPU, Windows 10 OS.

3.1 Experimental Framework

Four experimental variables are considered: the
number of jobs, the range of process times, the
range of wear/deteriorations, and the congestion
ratio. For the optimal benchmark experiments n
is considered at two levels: n = 6,8, while for
the relative benchmark experiments n is
considered at three levels: n = 10,15,20. For
the relative evaluation experiments, the value of
n = 20 is selected as the largest level as higher
values of n are deemed unpractical. At larger
values of n, the machine performance levels
would be excessively low, and in such cases
including maintenance events would be
“required” (an area of future research). It is also
noted that a problem with n = 20 has 20!
possible sequences, which is already quite a
large number of combinations.

The processing times for the jobs are randomly
generated using a uniform distribution with
range  Pmink 10 Pmaxk, and  the
wear/deteriorations are randomly generated
using a uniform distribution with range wyy, x to
Wmaxk- 1hese two experimental factors are
considered at four levels as described in Table 2.
For the processing times, and based on the
expected values, the first level represents the
case where both machines have high variability

and have an equal average load; the second level
represents the case where both machines have
less variability and the same average load; the
third level represents the case where there is
more variability in the first machine and the
second machine has a higher processing load,
and the fourth level represents the case where the
first machine has a higher average load and the
second machine has more variability.

For the wear/deterioration factor and also based
on expected values, the first level represents the
case where the jobs have a low effect in both
machines, the second level represents the case
where the jobs have a high wear/deterioration
effect in both machines, the third level represents
the case where the jobs deteriorate the first
machine significantly less than the second
machine, and the fourth level represents the case
where the jobs deteriorate the first machine
significantly more than the second machine.

Table 2. Experimental levels for variables B.4,4. and

Wrange'
Prange
level name pmin,l! pmax,l pmin,Z’ pmax,Z
hv_hv 1, 100 1, 100
hl_hl 50, 100 50, 100
hv_hl 1, 100 50, 100
hl_hv 50,100 1,100
Wrange Win,1, Winin,2,
level name pmax,l(%) pmax,Z (%)
Iw_Iw 0,5 0,5
hw_hw 5,10 5,10
Iw_hw 0,5 5,10
hw_Iw 5,10 0,5

The due date for a job j is randomly generated
using a uniform distribution with range d,,;, to
Amax- The value of dp;, =pj1 +Dpj2, While
Amax = QXgenPg1 t+Pg2)/6, where 6 is called
the due date tightness ratio. The experimental
factor 6 is considered at three levels 1, 1.5 and 2,
and as it increases the due dates decrease while
the average tardiness is expected to increase.
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One randomly selected job of every instance is
assigned a d; = 0, thus for all instances tg,e =

0.

For the optimal benchmark experiment set there
are 2 X 4 x 4 experimental combinations when
the makespan is considered (6 is not relevant),
and 2x4x4x3 for the average tardiness
measure. For the relative benchmark experiment
set there are 3Xx4x4 experimental
combinations for the makespan measure, and
3X4xX4X%X3 for the average tardiness
measure. For each experimental combination 10
replications are generated. For the optimal
benchmark problems, all possible sequences are
generated to find the optimal sequence. For the
relative benchmark experiments, the best
solution found by the heuristics is considered the
“optimal”, although the true optimal is unknown.

3.2 Makespan Results

Table 3 presents for each experimental level the
mean makespan and the percentage of times that
at least one of the heuristics found the optimal
solution. At least one of the heuristics found the
optimal solution in 98.1% (314 out of 320) of the
instances and under the hv_hv and lw_Ilw levels
of Drange aNd Wyqnge respectively, the optimal
makespan was found in 100% of those instances.
As a set, the heuristics provide a very good
approximation to the optimal within the analyzed
structure, although as can be noted, as n
increases the % of optimal solutions obtained
decreases, and the condition of p,.qy,4. = hv_hl
and  Wygnge = hw_lwresults in a
percentage of optimal solutions found.

lower

Table 3. Mean makespan and percentage of optimal
solutions found by at least one heuristic

Conax % optimal
n 6 514.0 98.8
8 700.3 97.5
Prange hV_hV 460.1 100.0
hi_hl 719.6 98.8

hv_hl 620.8 96.3
hl_hv 628.4 97.5
Wrange w_lw 557.2 100.0
hw_hw 650.2 98.8
Iw_hw 606.7 98.8
hw_lw 614.7 95.0
Overall 607.2 98.1

The discussion of the results focuses on the best
performing subset of heuristics in order to
emphasize the more relevant  solution
approaches. Table 4 presents the percentage of
times each heuristic generated the optimal
solution. The values in bold indicate the highest
percentage for that experimental level. The best
overall performer is MA-BI which found 83.8%
of the optimal solutions, followed by JA-BI
which generated 83.4% optimal solutions. These
two heuristics dominated in five experimental
levels; however, they do not dominate across all
the experiments; five of the heuristics dominate
in at least one level. A notable heuristic is w1-BI
which outperforms all others at two experimental
levels with a relatively high success rate, finding
88.8% and 90% of the optimal values for
Prange = hl_hv and
respectively. It is noted that the Bl improvement
approach on average outperforms the FlI
approach.

Wrange = lw_hw

Table 4. Percentage of the optimal makespan
solutions generated by the heuristic
. JAAJA M M pl pl woow
sHﬁeC”“ Fl BIL A A FI Bl 1 1
FI BI FI BI
06 83 83 8 84 8 8 78 8
1l 8 5 4 0 6 1 0
8 75 83 76 83 76 80 73 75
6 1 3 1 9 6 1 6
Pramee hy_hv 80 8 80 8 73 8 72 78
g™ 0 3 0 3 8 3 5 8
b hi 68 71 67 73 72 70 68 72
- 8 3 5 8 5 0 8 5
hp 87 88 8 87 8 8 81 81
- 5 8 8 5 3 8 3 3
81 87 8L 87 8L 87 80 88
hl_hv
3 5 3 5 3 5 0 8
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W W W 77 82 77 8 77 83 75 81
g = 5 5 5 5 5 8 0 3
hwh 75 83 76 8 73 82 77 77
w 0O 8 3 5 8 5 5 5
wh 8 8 8 8 8 8 77 90
w 0O 0 0 0 3 3 5 0
hwl 80 8 78 8 76 80 72 72
w 0O 5 8 0 3 0 5 5
Over 79 83 79 83 78 83 75 80
all 4 4 4 8 4 1 6 3

Figure 3 illustrates the results per experimental
factor. For the overall set of heuristics, the
average number of optimal solutions decreased
slightly as n increased, with heuristics JA-BI and
MA-BI being the exception, maintaining a
similar performance level for both values of n.
Heuristic performance changed notably at the
different levels of the B.qn4. factor, where at
hv_hl and hi_hv all heuristics perform relatively
well (80-90% of the optimal solutions), at hv_hv
two heuristics perform well (85%+) and the rest
have average performances < 80%, and at hl_hl
where all the heuristic has lower performance
levels (< 75%). It is observed that heuristic MA-
BI performs well across all levels of P4y ge, in
particular for the hi_hl condition where the
process times on both machines is higher. Factor
Wrange also has an effect on overall performance
and heuristic dominance, although heuristics p1-
BI, MA-BI, and JA-BI have relatively good
performance across all levels. The graph also
illustrates how experimental parameters have
notable effects on the performance of individual
heuristics; for example, heuristic w1-Bl performs
in the “middle of the pack” for levels lw_lw and
hw_hw, outperforms all others at Iw_hw, and is
the worst performer at hw_Ilw.

The size of the error when the heuristic does not
find the optimal solution is analyzed as a second
assessment of overall heuristic performance.
Table 5 provides the mean and maximum error
versus the optimal for those instances where the
heuristic did not find the optimal (error% =
(1 - cpaxlheuristic]/cpax[optimal]) x 100).

Heuristics MA-BI and JA-BlI are the best
performers; for 16.2% of the total instances that
MA-BI does not find the optimal solution, the
mean error is 0.45% and the worst error is
2.14%. For the 16.6% of the total instances that
JA-BI does not generate the optimal solution, the
mean error is 0.46% and the worst error is
1.73%. Therefore, even in the cases where the
optimal solution is not found, the error is on
average less than 0.5%.

20
85
% Optimal 80
75
70

65

0
85
% Optimal 80
75
70

65
hv_hv hi_hl hv_hi

Prange

hi_hv

95
20
85
% Optimal  gg
7
70

65
w_iw hw_hw w_hw

Wrange

hw_Iw

JA-FI JA-BI MA-F

MA-BI

e p1-F | e -5 ey 1-F | i 1-B

Figure 3. Percentage of optimal solutions per
experimental factor for the makespan criteria

Table 5. Mean and maximum error% for instances
versus the optimal.

~ JA JA M M pl pl wl wl
Se“”“ Fl. BIL A A FI Bl FI BI
FI  BI
05 04 05 04 05 08 10
Mean 0 6 3 5 1.04 9 7 5
Max 29 17 32 21 123 42 66 7.3
3 3 3 4 0 1 0 9
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Table 6 presents the percentage of instances per
experimental level where a heuristic generated
the best makespan solution for the relative
benchmark experiments. As in the optimal
benchmark experiments, the best overall
performer is MA-BI which found 63.1% of the
best solutions.

Table 6. Percentage of the “best” makespan solutions
generated by a heuristic

Heuri A A MM opl oplowoow
tic Fl. BL A A Fl Bl 1 1
FI BI FI BI
0 10 65 74 65 74 70 72 71 66
6 4 6 4 6 5 9 9
15 61 59 61 60 58 59 59 60
9 4 3 6 1 4 4 0
20 55 54 56 54 55 55 57 52
6 4 3 4 0 6 5 5
b b v 51 48 51 48 51 46 53 44
g¢ = 7 3 1 3 1 1 3 2
hp 24 55 55 57 57 55 59 53
- 2 8 8 5 5 8 2 3
hop 09 68 67 68 67 67 70 68
-~ 2 3 5 3 5 5 0 3
69 78 69 78 68 80 69 73

hi_hv
- 2 3 2 3 3 0 2 3
W 55 58 55 60 55 57 54 49
g = 0 3 8 0 0 5 2 2
hwh 53 54 55 54 55 54 61 52
w 3 2 0 2 8 2 1 5
wh 73 70 73 70 74 71 70 68
w 3 0 3 0 2 7 8 3
hwl 62 68 60 68 60 66 65 69
w 5 3 0 3 0 7 0 2
Over 61 62 61 63 61 62 62 59
all 0 7 0 1 3 5 9 8

However, in this set of experiments heuristic wl-
FI is the runner up performer, finding the best
solution in 62.9% of the problems and
dominating in five of the experimental levels.
Six of the heuristics outperform the others in at
least one experimental level, with wl1-FI being
the heuristic that outperforms the others in the
most cases. As in the optimal benchmark
experiment, none of the heuristic outperforms
the others across all experimental levels and
unlike the optimal benchmark experiments, the

FI improvement heuristic outperforms the BI
approach on some conditions.

The results by experimental factor for the
percent of “best” solutions found are shown in
Figure 4. The results are relatively similar to
those obtained for the optimal solution, for
example, as n increased, heuristic performance
decreased. Relative heuristic performance also
changed at the different levels of n, where at
n = 10, heuristic MA-BI outperforms the rest,
while at n = 20, heuristc wl-F1 is the best
performer. The Pr4nge €xperimental factor had a
significant effect on the overall performance:
poor at hv_hv and hl_hl and good at hv_hl and
hl_hv. At the hv_hv and hl_hv levels, there was a
noticeable differentiation in relative
performance; for example, at hv_hv, heuristic
wl-FI outperformed all others and heuristic pl-
Bl performed relatively poorly, while at hl_hv,
their relative performance “flips”, as pl-Bl
outperforms all others and wl-FI is one of the
worst performers.

The results related to experimental factor W4, g¢

are similar as heuristic performance depends on
the specific level. The level hw_hw (where both
machines deteriorate at the high level) is
prominent given the highly notable difference in
performance between the dominant heuristic
(w1-FI) and the rest.

Table 7 presents the error characteristics when
the heuristic does not find the best solution
(error% = (1 - cpqx|heuristic]/

Cmax|best found by al heuristics]) x 100).
Heuristic pl-Bl, a heuristic that does not
dominate under any of the experimental levels is
the best performer in terms of the mean and the
maximum error, although only surpassing the
best performing MA-BI heuristic by a very small
amount. In this case, the difference in
performance among the heuristics is not as
notable as in the optimal benchmark
experiments. Based on the complete set of
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experiments it is concluded that heuristic MA-BI
is the best performer for the makespan criteria.

80

70
60 ~——

50

% "Best"

40

10 15 20

80

% "Best"

40
hv_hv hi_hi hv_hi

Prange

hi_hv

80

% "Best" 60

50

40

w_tw hw_hw w_hw hw_iw

Whange

—JAFI JA-BI MA-FI —— MA-BI
e -/ e 1B ey 1-F | e 10 1-B]

Figure 4. Percentage of “best” solutions
found by experimental factor for the makespan
criteria

Table 7. Mean and maximum error% for
instances versus the “best” makespan solution

. JA M M pl pl wl wl
He:’C”St FlL BL A A Fl Bl Fl B
FI Bl
06 05 06 04 06 04 05 07
Mean 9" % 8 o 0 8 7 3
61 35 61 33 62 33 60 56
Max 9" 4 9 1 2 1 9 2

3.3 Tardiness Results

Table 8 presents for each experimental level the
average tardiness and the percentage of times
that at least one of the heuristics found the
optimal solution. At least one of the heuristics

found the optimal solution in all but one
instance, a 99.9% success rate (959 out of 960).
The  heuristics  provide an  excellent
approximation to the optimal within the analyzed
experimental structure.

Table 8. Mean average tardiness and % of optimal
solutions found by at least one heuristic

tave % optimal
0 1 29.2 100
15 50.7 100
2 83.5 99.7
n 6 50.9 100.
8 58.1 99.8
Prange hv_hv 43.4 100
hl_hl 56.8 99.6
hv_hl 53.6 100
hl_hv 64.3 100
Wrange Iw_lw 41.6 99.6
hw_hw 66.8 100
Iw_hw 55.9 100
hw_Iw 53.6 100
Overall 54.5 99.9

The set of heuristics included in the average
tardiness analysis are different than in the
makespan analysis based on the relative
performance of the complete set of heuristics for
this criterion, noting in this case there are 22

relevant heuristics. Table 9 presents the
percentage of times each heuristic generated the
optimal solution. The best two overall

performers are p1-FI and d-FI which generated
88.9% and 88.2% of the optimal solutions,
respectively. Heuristic pl-FI outperformed all
others in 7 experimental levels, while d-FlI
outperformed all others in 3 experimental levels.
Five of the heuristics dominate in at least one
level. As it is the case in the makespan criteria
for the optimal benchmark experiments, none of
the initial job ordering heuristic dominates
across the complete set, but for these
experiments the FI improvement approach
outperforms the Bl approach.
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Table 10 presents the mean and maximum error
versus the optimal for those instances where the
heuristic did not find the optimal solution.
Heuristic d-FI provides the smallest average
error at 4.6% and ties for the smallest maximum
error with 40.3%. The second heuristic that
considers the due date parameter in the ordering
process, s-Fl, ties with d-FI as the best overall
performer for the maximum error. These results
are notably different than those obtained for the
makespan criteria where the mean error is
smaller than 1.04 % and the maximum is less
than 12.5%.

Table 9. Percentage of the optimal average tardiness
solutions generated by a heuristic

noted that heuristic p1-Bl performs poorly for
most of the levels for those two experimental
factors. As in the makespan experiments, the
relative performance of the heuristic changed
notably at the different levels of the P44, and
Wrange factors. It is noted that for B.gpge,
heuristic p1-Bl is the worst performer for three
out of the four experimental levels, but for level
hl_hv this heuristic is the best performer. For the
Wrange Parameter it is worth mentioning the
relatively high-performance level of heuristics d-
FlI and p2-F1 for experimental levels Iw_Iw and
hw_hw respectively.

. W d d s pl pl p2 w

Ht.e“” A FI Bl FIl FI BI FI 1
Uy FI
o, 95 96 94 96 96 90 9 95
3 9 7 3 9 9 3 0

L5 8 87 8 8 88 8 88 88

9 2 4 3 1 6 4 8

) 78 80 78 78 81 78 79 80

4 6 8 4 6 8 71 3

. 9 90 91 89 91 87 90 89
2 6 5 8 7 1 4 6

g 83 8 8 84 86 79 85 86

5 8 1 2 0 8 8 5

79 8 81 77 82 75 80 81

Prange WV 00 5 5 9 4 0 3
fp 9 9 9 9 92 8 92 92
7 0 0 8 09 7 09 1

hop 86 9 87 89 8 78 89 88
N7 4 5 6 8 3 2 3

bhy 90 9 90 90 9 93 90 90
V0o 0 4 0 8 3 4 4

85 92 87 88 87 81 88 88

Wrang W IW- 800 g 8 5 7 8 8
hwh 84 85 8 8 8 86 83 85

w 6 0 4 8 7 1 3 4
wh 85 84 8 8 8 77 8 85

w 0 2 8 0 3 1 4 0
hwl 92 91 92 90 92 88 90 92

w 5 3 1 4 9 3 0 9
Over 86 88 87 87 8 83 83 88

al 9 2 3 0 9 4 1 0

Table 10. Mean and maximum error% versus
optimal.

Heuris WA d d S pl pl p2 wl
tic FI Fl Bl FI Fl Bl FI Fl
Mean 7.6 46 60 57 60 13' 6.6 7.2
Max 124 40. 59. 40. 71. 182 124 120

2 3 2 3 8 9 2 5

Figure 5 shows heuristic performance per
experimental factor for the percentage of optimal
solutions found. The overall performance
decreases as the number of jobs and the due date
tightness ratio factors (n and 6) increase. It is

% Optimal %0

Figure 5. Percentage of optimal solutions per
experimental factor for the average tardiness criteria

The percentage of instances per experimental
level where a heuristic generated the best
average tardiness solution for the relative
benchmark experiments is presented in Table 11.
For these experiments, s-FI is the best overall
performer generating 62.6% of the best
solutions. The two runner ups in terms of overall
performance are p2-FI and wl-FI. As in the
previous cases, multiple heuristics dominate at
least one experimental level, thus no dominant
heuristic can be determined. In line with the
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previous results, the FI improvement heuristic
does outperform the Bl approach. The mean and
maximum errors are presented in Table 12. As in
the makespan case, a heuristic that does not
dominate under any of the experimental levels is
the best performer in terms of the mean and the
maximum error, heuristic WA-FI. If having a
small error and avoiding the maximum error is
an important element of heuristic selection,
heuristic WA-FI is the clear best overall
performer.

Table 11. Percentage of the “best” average tardiness
solutions generated by a heuristic

example, at 8 = landn 10, the percent
found by the heuristics was in the 65-85% range,
whileat 8§ = 2andn = 20, the range is 35 to
55%. It is noted that this does not indicate an
error versus the optimal as this value is
unknown, but rather the inability of the
heuristics to match each other’s performance. As
in previous experiments, heuristic performance
is affected by both P.ynge and Wignge, and
while no heuristic stands out as an excellent
performer at particular levels of these factors,
heuristic p1-Bl stands out as one that is almost
always outperformed.

Table 12. Mean and maximum error% for instances
versus the “best” average tardiness solution

. W d d s pl pl p2 w

Hif’” A FI Bl FI FI Bl FI 1
Uty FI

) L 79 79 79 80 77 66 79 719
4 0 4 8 9 5 2 4

L5 56 59 53 59 57 54 56 57

® 9 6 3 6 5 6 7 3

, 47 45 42 47 49 39 49 49

5 4 3 3 6 8 8 2

L g0 7979 77 78 80 72 80 79
8 4 7 1 6 3 0 6

;5 61 61 58 62 61 50 60 62

7 7 1 5 9 4 0 1

o 42 42 39 47 42 38 45 44

3 9 2 1 5 1 6 2

48 48 48 48 50 37 51 49

Prange VIV g9 9 6 8 9 7
W h 65 65 62 66 65 62 67 67
M3 3 2 9 0 2 5 2

o 66 69 62 68 66 53 63 65
N4 2 8 9 7 3 1 3

Wy 65 61 59 65 64 61 65 65

-V 0 9 4 6 4 1 0 6

68 68 67 70 69 60 71 71

Wrang W W90 "0 g 0 7 6 4 4
hwh 52 53 47 53 55 46 52 56

w 2 6 5 1 3 7 2 a

Wwh 60 60 56 60 59 51 60 59

w 3 8 7 8 71 1 8 2

hwl 63 62 61 66 61 55 63 60

w 6 5 4 4 9 6 3 8

Over 61 61 58 62 61 53 61 6l

al 3 3 3 6 7 6 9 .9

. W d d S pl pl  p2 wl
Heurls Bl B BRI BI Rl FI
tic
FI
27 28 37 32 29 27
Mean A 5 4 5 3.10 6.79 1 9
37. 50. 65. 77. 103. 201. 50. 50.
Max "5 "g" g0 3 7 0 8 8

The tardiness results by experimental factor for
the percent of “best” solutions found are
illustrated in Figure 6. The effects are similar to
those observed when evaluating heuristic
performance versus the optimal solutions,
although the effects more remarkable. For

Figure 6. Percentage of “best” solutions per
experimental factor for the average tardiness criteria

4. Conclusions

This paper introduced a set of efficient heuristic
approaches for solving the two-machine
permutation  flowshop  problems  while
considering machine deterioration. The heuristic
performance is assessed under two independent
objectives: minimization of the makespan and
minimization of the average tardiness. In the
case of makespan minimization, eighteen
heuristic approaches were developed based on
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different job characteristics. Similarly, a total of
twenty-two heuristic approaches were elaborated
when considering average tardiness
minimization. A comprehensive experimental
design was carried out considering variation of
different experimental factors such as the
number of jobs, the range of process time, the
range of wear/deterioration rate, and the
congestion ratio.

The experimental factor ‘number of jobs’ has a
significant impact in the problem complexity.
Hence, this factor was considered at two size
levels. The first level determined the optimal
benchmark experiments where the heuristic
performance was evaluated versus the optimal
solution. The relative benchmark experiments
were defined by the second level. In this case,
the heuristic performance was compared against
the best-found solution.

The results from the optimal benchmark
experiments exhibited a 98.1% and 99.9%
heuristics overall success rate when considering
makespan and average tardiness minimization,
respectively. As expected, the results show that
the success factor decreases as the number of
jobs increases. However, the success rate was
nearly 100% when the process time and
wear/deterioration rate presented similar levels
of variation at both machines. The top overall
performers for makespan minimization were
MA-BI and JA-BI, which found 83.8% and
83.4% of the optimal solutions respectively.
Furthermore, MA-BI and JA-BI had a mean error
of 0.45% and 0.46% respectively. In the case of
average tardiness minimization, the best two
overall performers were pl-FI and d-FI, which
generated 88.9% and 88.2% of the optimal
solutions, respectively. Heuristic d-FI provided
the overall smallest average error at 4.6%; in
contrast, p1-FI had an average error of 6%.

The relative benchmark experiments were
compared versus the best-found solution. In

alignment with the previous results, the heuristic
performance decreases as the number of jobs
increases. The top overall performers for
makespan minimization were MA-BI and wl-FlI,
which found 63.1% and 62.9% of the ‘best’
solutions, respectively. However, p1-Bl had the
smallest overall mean error at 0.48%. In the case
of average tardiness minimization, the best three
overall performers were s-FI, p2-FI, and wl-FlI,
which generated 62.6%, 61.9%, and 61.9% of
the optimal solutions, respectively. Heuristic
WA-FI provided the overall smallest average
error at 2.74%; in contrast, s-FI had an average
error of 3.22%.

Results showed that there is no heuristic that has
full dominance in any combination of
experimental factors. Furthermore, the different
experimental settings had a notable role in the
heuristic performance suggesting that all of them
should be utilized when solving real case
instances. Immediate future research streams are
as follows: 1) The consideration of maintenance
events that could help to mitigate the undesirable
effect of machine deterioration. 2) The extension
of the presented approach to the ‘m’ machines
flowshop problem. 3) The analysis of more
complex interdependencies among the process
time and wear/deterioration rate with different
job sequences. For example, given materials and
mechanical properties, a specific sequence of
jobs could generate a different deterioration rate
than if they are performed in another specific
sequence. The implementation of the results
learned in this research in applied production and
industrial engineering settings could provide
significant competitive advantages to the
organizations by reducing the makespan, which
is directly related to operational costs, and the
average tardiness, which is directly related to
customer service.
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