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Abstract 

For road maintenance and rehabilitation, it is important to develop procedures to evaluate pavement condition. 

Imaging methods can be used to obtain data to analyze a pavement surface. A methodology for crack detection is 

presented in this paper that is based on image processing techniques and artificial neural networks. The 

methodology is implemented in four stages: 1. image acquisition, 2. image processing, 3. feature extraction, and 

4. classification using an artificial neural network. The methodology was used to detect deterioration in the form

of longitudinal cracks, potholes, and alligator cracking. The classification was performed using a multilayer

perceptron (MLP) neural network within a (12 14 3) configuration, resulting in an accuracy of 95.56% and a

precision of 94.44%. The proposed methodology could be used to help governmental organizations evaluate a road

network.

Keywords: Image processing, Wavelet Scattering transform, Artificial neural networks, pavement cracks.

Resumen 

En los procesos de mantenimiento y rehabilitación de vías, es importante el desarrollo de procedimientos que 

contribuyan a la evaluación de la condición del pavimento. Los métodos de inspección de la superficie de 

pavimento que emplean imágenes capturan información permitiendo un análisis cuantitativo. Este documento 
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presenta una metodología para la detección de grietas en el pavimento, mediante la aplicación de técnicas de 

procesamientos de imágenes y redes neuronales artificiales; está dividido en cuatro etapas: 1. Adquisición de las 

imágenes, 2. Procesamiento de imágenes, iii. Extracción de características y iv. Clasificación utilizando RNA. La 

metodología se aplicó para la detección de los deterioros: grieta longitudinal, bache y piel de cocodrilo. La 

clasificación se realizó mediante una red neuronal MLP con configuración (12 14 3), la cual obtuvo una exactitud 

de 95,56% y una precisión de 94,44%. La metodología propuesta puede ser útil para las organizaciones 

gubernamentales en la evaluación de la malla vial. 

   

Palabras clave: Procesamiento de imágenes, Transformada Wavelet Scattering, Redes neuronales artificiales, 

Grietas en el pavimento.  

 

Introduction  

Visual inspection is traditionally used to detect 

pavement distress, whereby specialized 

personnel walk along a road while making on-

site measurements. Thus, novel alternative 

technologies are required that can be used to 

analyze of the behavior of road infrastructure 

(1). Among the different inspection methods are 

manual, deflectometer-based, vibroacoustic, 

penetration-radar-based and automated. The 

traditional (manual) method is one of the most 

used techniques but can be tedious, subjective 

and dependent on the experience of the 

evaluator (2). The Dynaflect is a deflectometer 

that measures the amount of deflection caused 

by the oscillation of weights, employing 

geophones. The oscillation of weights cause the 

pavement to deflect and rebound in a manner 

similar to a vehicle driving over a pavement 

surface (3). In the vibroacoustic method, 

sensors are employed to detect structural 

variations in pavement resulting from hidden 

damage before the damage propagates along the 

road surface (4). Penetrating radar sends 

electromagnetic waves into pavement materials, 

and variations in the dielectric constant caused 

by the presence of a new material or 

deterioration is reflected in the response signal 

(5). In automated methods, a vehicle fitted with 

cameras is used to acquire data for the pavement 

surface (6).  

PIAS is a pavement image acquisition system 

consisting of light sources, a camera and global 

positioning systems. This system captures data 

for a road surface that is processed by a 

computer using multi-resolution methods for 

crack detection (7). RIEGL VMX-450 is a 

system consisting of laser scanners and cameras 

that are mounted on a vehicle grill to 

automatically detect road cracks (8). ARAN is 

an automated road analyzer that uses a high-

density synchronous flash to identify pavement 

cracks (9). These technologies involve image 

processing techniques and pattern recognition. 

For example, (10) used various techniques, such 

as low-pass filters, an edge detection algorithm 

and mathematical morphology. (11), cracks in 

concrete bridges were identified by semantic 

segmentation of images acquired by mobile 

devices. (12), concrete structures were 

subjected to load testing, and cracks in the 

structures were detected by morphological 

processing: a Gaussian filter was applied 

followed by the Bottom hat transform to detect 

detail elements that were subsequently 

segmented using the Otsu method. Other 

techniques such as Wavelet Scattering 

Transform (WST) have been used for pattern 

recognition in texture discrimination to obtain 

irises information (13). 

Machine learning algorithms provide the best 

results for classification and pattern recognition 

(9). (14), pavement cracks were identified using 

image processing, fuzzy logic and artificial 

neural networks (ANNs) with the 

backpropagation learning algorithm. (15), 

pavement cracks were detected and classified 

by implementing the artificial bee colony 

algorithm and ANNs. (16), pavement cracks 
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were classified by applying different machine 

learning algorithms, such as the support vector 

machine, random forest and ANN. (17), 

longitudinal and transverse cracks were 

detected and classified by implementing image 

processing techniques and ANN, where the 

images were acquired through ARAN. 

In this study, a new methodology was proposed 

for the detection of pavement distress by 

implementing techniques such as Wavelet 

Scattering transformation and Hu invariant 

moments. The combination of the wavelet 

scattering transform and Hu invariant moments 

introduces an innovative methodology for 

pavement damage analysis. First, the wavelet 

scattering transform provides a multiresolution 

analysis of the input image, allowing for the 

detection of cracks at different scales. The 

resulting scattering coefficients capture the 

texture and structural information of the image, 

making it easier to distinguish between the 

cracks and other image features. The use of Hu 

invariant moments further enhances the 

accuracy of crack detection by providing 

rotation, translation, and scale invariant 

features. This means that the same crack can be 

identified regardless of its orientation or 

location within the image. In addition, Hu 

moments are relatively robust to noise and 

variations in lighting conditions, which can be a 

common challenge in pavement inspection. 

 

Another advantage of this study is its relatively 

low computational cost compared with other 

pattern-recognition techniques. The WST can 

efficiently analyze the input image, and the Hu 

moments can be quickly calculated from the 

resulting edge detections. Additionally, the 

combination of the wavelet scattering transform 

and Hu invariant moments offers a powerful 

and efficient approach for crack detection in 

pavement inspection. This methodology is a 

promising option for future research and 

practical implementation in pavement-

management systems. This paper is organized 

as follows: Section 2, Materials and Methods; 

Section 3, Results; Section 4, Discussion; and 

Section 5, Conclusions. 

 

Materials and methods 

 

The methodology for the detection and 

classification of pavement distress is 

implemented in four stages: 1. Image 

acquisition, 2. Image processing for contrast 

enhancement and edge detection, 3. Feature 

extraction and 4. Deterioration classification 

using an ANN. 

 

Image acquisition 

A set of 300 road images was used in this study. 

The images were obtained using a mobile device 

and have different resolutions, lighting 

variations and different types of deterioration: 

potholes, longitudinal cracks and alligator 

cracking. Some images were also acquired from 

the SDNET2018 dataset of Utah State 

University (18). The images were captured on a 

dry pavement under daytime lighting conditions, 

which allowed for natural variations in lighting. 

The images can be  either in color or grayscale 

format, providing flexibility in terms of image 

representation. Furthermore, it was essential that 

the longitudinal cracking in the pavement was 

vertically oriented. This requirement ensured 

consistency in the analysis and facilitated 

accurate detection and classification of 

longitudinal cracks. The complete image set was 

divided into 240 images for training and 60 

images for validation purposes similar to the 

work by (16). Table 1 lists the information on 

the dataset employed. 

Table 1. Information of dataset. 

Dataset Damage Resolution Pavement type  # Images 

Authors  
Longitudinal crack, 

pothole, alligator crack 
4624×3468 Rigid and flexible 250 

SDNET2018 Longitudinal crack 256×256 Rigid 50 
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Image processing 

Preprocessing is required to remove distortion 

and enhance contrast in images. Power functions 

are used to remove the effects of nonuniform 

intensity in the image background by enhancing 

the contrast (19). For this purpose, the image is 

converted to grayscale and subdivided into 

several square windows. The average grayscale 

value of each window is considered its 

representative grayscale (17). 

The wavelet scattering transform is invariant to 

rotation, translation and scaling and has 

therefore been applied to texture discrimination. 

This transform reduces the variability between 

features and the quantity of information. The 

transform is implemented using cascaded 

wavelet convolutions. The first-order scattering 

coefficients 𝑆1𝑥 are defined in Eq. 1 (20,21).  

 

𝑆1𝑥 = 𝑈1𝑥 ⋆ 𝜙𝐽                                                                             

(1) 

 

𝑈1𝑥 = (𝑢, 𝑊1) = |𝑥 ⋆ 𝜓𝑊1
1 (𝑢)| =

|∑ 𝑥(𝑢)𝜓𝑊1
1 (𝑢 − 𝑣)𝑣 |                                           

(2) 

Where 𝑈1𝑥 is the modulus of the wavelet 

coefficients, 𝜙𝐽 is a scaling function that is 

calculated using Eq. 3, and 𝑥 denotes the input 

image (21). 

𝜙𝐽(𝑢) = 2−2𝐽𝜙(2−𝐽𝑢)                                                                     

(3) 

The mother wavelet 𝜓1(𝑢) is calculated using 

Eq. 4, in which the wavelet is scaled by 2𝑗1, 

where 𝑗1 is an integer or a half-integer that is 

rotated by 𝜃1 = 2𝑘𝜋 with 0 ≤ 𝑘 < 𝐾1 (21). 

𝜓𝑊1
1 (𝑢) = 2−2𝑗1𝜓1(2−2𝑗1𝑟𝜃1𝑢)                                                                 

(4) 

The Wavelet Scattering transform is applied to 

the contrast-corrected images to identify 

features, thereby reducing the image size, and 

highlighting the edges. 

Edges are basic image features. An edge 

corresponds to a set of pixels that reflect change 

and discontinuity in an image. A margin or edge 

is one of the most important features considered 

in image segmentation (22). Canny and Prewitt 

is one of the various edge detection methods 

available. 

Prewitt method: Convolution is used to 

identify the edges in an image Two directional 

filters are used to determine the pixels of 

horizontal 𝑃𝑦 and vertical 𝑃𝑥 edges (22) and are 

given by Eq. 5 and Eq. 6 (23,24). 

𝑃𝑥 = [
−1 −1 −1
0 0 0
1 1 1

]                                                                          

(5) 

𝑃𝑦 = [
−1 0 1
−1 0 1
−1 0 1

]                                                                             

(6) 

The total gradient 𝑃𝑝 is the combination of the 

two filters and is calculated using Eq. 7, where 

𝑁𝐼𝑃 are the pixel values of a 3x3 size image (24). 

𝑃𝑃 =

√(𝑃𝑥 . 𝑁𝐼𝑃)2 + (𝑃𝑦. 𝑁𝐼𝑃)2                                                                      

(7) 

Canny method: The Canny method consists of 

applying a Gaussian convolution to an image to 

remove most of the noise. The first derivative is 

calculated to detect locations with intensity 

discontinuities in the image. Eq. 8 and Eq. 9 are 

used to calculate the edge intensity and direction 

for each pixel of the smoothed image (24,25).  

𝑔(𝑚, 𝑛) = 𝐺𝜎(𝑚, 𝑛) ∗ 𝑓(𝑚, 𝑛)                                                                  

(8) 

𝐺𝜎 =
1

√2𝜋𝜎2
exp (−

𝑚2+𝑛2

2𝜎2 )                                                                    

(9) 
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In the equations presented above, 𝐺𝜎 is the 

Gaussian function with a variance 𝜎2, 𝑚 and 𝑛 

denote the location of a pixel in an image and 

𝑓(𝑚, 𝑛) are the pixel values of an image of size 

(𝑚,𝑛) (24). 

A single method cannot be used for edge 

detection of different distress types. Potholes 

and alligator cracks are most effectively 

detected using the Prewitt method, whereas 

Canny is most effective for detecting 

longitudinal cracks. All images are preprocessed 

with both edge detection methods. 

Morphological operators are commonly applied 

in image processing. The elements in an image 

are collected and analyzed. Mathematical 

morphology is used to modify the shape of 

objects through interaction with neighboring 

objects, reducing noise and joining fragments 

that appear during edge detection (14,26,27). 

Erosion and dilation are among the basic 

morphological operations used. Dilation 

combines all the elements of the neighboring 

region into a single element, filling in gaps as 

objects dilate and grow. Erosion removes all 

neighboring pixels if a single pixel value is zero, 

thus reducing the size of objects (28). 

The edge-detected images are subjected to gap 

filling and denoising at different thresholds to 

identify the optimal threshold for noise removal. 

A single threshold value cannot be used for all 

three types of deterioration. Thus, different 

thresholds are applied according to the type of 

deterioration, as shown in Table 2. 

 

Table 2. Thresholds chosen for eliminating noise. 

Process Longitudinal crack Pothole Alligator crack 

Denoising 250 800 200 

 

Feature extraction 

  

Feature extraction directly impacts the classifier 

performance and is therefore one of the most 

important and critical steps in classification (29). 

The Hu moment invariants are seven invariants 

with respect to image rotation, translation and 

scaling that are calculated by normalizing the 

third-order central moments (30). The 

normalized central moments are defined in Eq. 

10: 

𝑛𝑝𝑞 =
𝜇𝑝𝑞

𝜇00
 ,      𝛾 =

𝑝+𝑞+2

2
                                                                

(10) 

Where 𝑝 + 𝑞 is the order of the geometric 

moment (31). The seven Hu moment invariants 

are defined in Eq. 11 to Eq. 17. 

𝑝 + 𝑞 = 2 

𝜙1 =  𝑛20 + 𝑛02                                                                 

(11) 

𝑝 + 𝑞 = 3 

𝜙2 = ( 𝑛20 − 𝑛02 )2 +  4𝑛11
2                                                   

(12) 

𝜙3 = ( 𝑛30 − 3𝑛12 )2 + (3 𝑛21 − 𝑛03 )2                                              

(13) 

𝜙4 = ( 𝑛30 + 𝑛12 )2 +  ( 𝑛21 + 𝑛03 )2                                                

(14) 

𝜙5 = ( 𝑛30 − 3𝑛12 )( 𝑛30 + 𝑛12 )[( 𝑛30 +

𝑛12 )2 −  3( 𝑛21 + 𝑛03 )2] + (3 𝑛21 +

𝑛03 )( 𝑛21 + 𝑛03 ) (15) 

𝜙6 = ( 𝑛20 − 𝑛02 )[( 𝑛30 + 𝑛12 )2 − ( 𝑛21 +

𝑛03 )2] + 4𝑛11 ( 𝑛30 + 𝑛12 )( 𝑛21 + 𝑛03 )         

(16) 

𝜙7 = ( 3𝑛21 − 𝑛03 )( 𝑛30 + 𝑛12 )[( 𝑛30 +

𝑛12 )2 − 3( 𝑛21 + 𝑛03 )2] + (3 𝑛12 −

𝑛30 )( 𝑛21 + 𝑛03 )[3( 𝑛30 + 𝑛12 )2 − ( 𝑛21 +

𝑛03 )2]    (17) 

The first four moment invariants are used in 

feature extraction, because discrimination 

between classes is not possible using the fifth 

and higher moments. A 12-dimensional feature 
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vector is composed by concatenating the first 

four moment invariants of three images 

produced by mathematical morphology. 

 

ANN classification  

 

Damage was classified using a multilayer 

perceptron (MLP) class of an ANN with a 

backpropagation learning algorithm (14). 

Neural networks are powerful machine learning 

models that have shown success in various 

classification tasks, including image analysis. 

They are capable of learning complex patterns 

and relationships within data, which is crucial 

for accurately classifying different types of 

pavement damage. The MATLAB Statistics 

and Machine Learning Toolbox was used for 

this purpose (32).  

Results and discussion    

Image processing  

 

As the considered images had different sizes, the 

processing time varied with the image 

dimensions. The maximum processing time of 3 

minutes and 10 seconds was determined by the 

wavelet scattering transform, the most time-

consuming process. This transform highlighted 

the deteriorations by producing data 

representations that minimize differences within 

a texture type and discriminate textures, thereby 

improving edge detection. Figure 1 shows the 

images obtained at different processing stages 

for each type of deterioration.  

 
                                   A.                                                    B.                                                  C.                    

Figure 1. Images were obtained in the processing stage, for each of the deterioration pothole, alligator crack, and longitudinal 

crack. A. Images with contrast enhancement, B. Images obtained from the Scattering transform, and C. Images obtained after 

noise removal. 
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ANN classification 

 

The dataset was divided into 80% training and 

20% validation. Using 80% of the dataset for 

training, the model could obtain sufficient 

information from a sufficiently large sample 

size to accurately identify the patterns and 

features of the images. The remaining 20% of 

the dataset was used for validation to test the 

performance of the model on new data.  

To identify the best classifier, 20 neural 

networks were created with varying hidden 

layer configurations to identify the best 

classifier. The training dataset consisted of 80 

images for each type of deterioration (potholes, 

alligator cracks, and longitudinal cracks). By 

exploring different hidden layer configurations, 

the study aimed to determine the optimal 

network architecture that would yield the 

highest classification performance. This 

approach allowed for a comprehensive 

evaluation of the neural networks and their 

ability to accurately classify pavement 

deterioration. This provided valuable insights 

into the impact of the hidden layer configuration 

on the performance of the classifiers. By 

comparing the accuracy and precision metrics 

of each network, it was possible to identify the 

neural network with the highest overall 

performance. The input layer was composed of 

a 12-dimensional feature vector based on the Hu 

moment invariants for three images obtained in 

the processing stage. The output layer was 

composed of three neurons coded according to 

deterioration type. The 10 neural networks with 

the lowest mean square error was used for 

validation. Figure 2 shows the classifier results. 

 

 

Figure 2. MSE and accuracy obtained for the selected neural networks. 

 

The selected neural network had 12 neurons in 

the input layer, 14 neurons in the hidden layer 

and 3 neurons in the output layer. This network 

had a mean square error of 0.056, which was not 

the lowest value among the 20 networks, but it 

had the highest overall accuracy of 95.56% and 

a precision of 94.44%. Sensitivity and 

specificity performance metrics were also 

calculated for each type of deterioration. The 

sensitivities were 100% for both alligator and 

longitudinal cracks and 80% for potholes, that is, 

potholes were confused with alligator cracks. 

The specificities were 100% for both 

longitudinal cracks and potholes and 90% for 

alligator cracks. The F-score precision measure 

provided further insight into the classification 

performance for each type of deterioration. The 

F-score precision was calculated to be 0.88 for 

potholes, 0.90 for alligator cracks, and 1.0 for 

longitudinal cracks. These values indicate a 
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good balance between precision and recall for all 

types of damage, with the highest precision 

achieved for the longitudinal cracks. 

Table 3 shows the confusion matrix obtained for 

the selected network with the (12 14 3) 

configuration. This result was obtained using a 

validation dataset of 60 images, with 20 images 

for each type of deterioration. Potholes were 

confused with alligator cracks, this can be 

attributed to the presence of both types of 

damage in many images, which introduced noise 

and made it challenging for the network to 

differentiate between them accurately. 

 

Table 3. Confusion matrix for ANN (12 14 3). 

Deterioration Potholes Alligator cracks Longitudinal cracks 

Pothole 16 4 0 

Alligator cracks 0 20 0 

Longitudinal cracks 0 0 20 

 

The processing time ranged from 3.88 seconds 

for an image of 256x256 pixels to 3 minutes and 

10 seconds for an image of 4624x3468 pixels. 

The time variation resulted from the difference 

in the sizes of the processed images and the 

properties of the hardware used (a computer 

with an Intel Core i5 processor, 8 gigabytes of 

RAM and a 500-gigabyte hard drive). The 

process that consumed the most computational 

resources was the wavelet scattering transform.  

The integration of the wavelet scattering 

transform and Hu moment invariants provided a 

comprehensive representation of the crack and 

pothole features, capturing both local and global 

characteristics. This feature representation, 

combined with the learning capabilities of 

neural networks, enables the accurate 

classification of different types of pavement 

damage. 

 

The classification performances of different 

neural network configurations for pavement 

deterioration are compared in this study. The 

neural network used in this study had a (12 14 3) 

configuration and used a backpropagation 

learning algorithm. The overall classifier 

accuracy and precision were 95.56% and 

94.44%, respectively, although there were some 

instances of confusion between potholes and 

alligator cracks. Previous studies on pavement 

crack classification have also utilized neural 

networks with different configurations. For 

example, in a study by (17), a neural network 

with a (2 10 2) configuration achieved an 

accuracy of 92.5% for classifying alligator and 

longitudinal cracks using a dataset of 400 

images previous to this preprocessing to images 

employing background correction to image  and 

Otsu method for segmentation to image.   

 

Another study (15) used a neural network with a 

(3 8 3) configuration to classify 600 images of 

longitudinal cracks, transverse cracks, and 

potholes with an accuracy of 97.5%. Similarly 

(16), a classifier accuracy of 84.25% was 

obtained for the classification of longitudinal, 

transverse, and alligator cracks and no 

deterioration using 200 images 150 × 150 pixels. 

 

Additionally, (14), an ANN with a 

backpropagation learning algorithm and a (2 13 

1) configuration produced a classifier accuracy 

of 98.81% for cracked and uncracked images. 

Another study by (33), a classifier accuracy of 

79.5% was obtained for crack detection in 

concrete. (34), an algorithm was used to classify 

images of concrete with wide and narrow cracks 

and no cracks. Two types of concrete were 

considered: one type had been exposed for 10 

years in Ottawa and the second type was stored 

in the GRAI laboratory. Image processing 

resulted in a classifier accuracy between 71.4% 

to 76.5% for the exposed concrete and from 

68.7% to 76.9% for the concrete in the 
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laboratory. Table 4 presents the classification 

results obtained in different studies. These 

findings emphasize the importance of 

considering different methodologies and 

configurations when approaching pavement 

crack classification. 

 

Table 4. Classifier accuracy obtained in different studies. 

Study 

Classifier accuracy (%) 

Longitudinal 

cracks 

Transverse 

cracks 

Block 

cracks 

Alligator 

cracks 
Potholes No cracks Total 

(17) 87.5 - - 97.5 - - 92.5 

(15) 97.5 100.0 - - 95.0 - 97.5 

(16) 89.5 82.0 - 77.5 - 88.0 84.2 

(35) 98.0 90.0 88.0 88.0 - 100.0 95.2 

(36) 82.9 90.8 - 80.3 - 85.4 84.8 

(37) 95.0 94.2 93.5 - - - 92.7 

Authors 100.0 - - 93.3 93.3 - 95.5 

 

Conclusions  

 

A methodology was developed to detect 

pavement cracks and potholes. Pattern 

recognition techniques, including the wavelet 

scattering transform and neural networks, were 

used to detect deterioration in the form of 

potholes, alligator cracks and longitudinal 

cracks. A classifier accuracy of 95.56% and a 

precision of 94.44% were obtained using a 

neural network with a (12 14 3) configuration. 

The classification accuracy was 93.33% for 

both potholes and alligator cracks and 100% for 

longitudinal cracks. 

The combination of the wavelet scattering 

transform, Hu moment invariants, and neural 

networks demonstrates the potential of 

advanced pattern recognition techniques for 

automated pavement inspection and 

maintenance. This study contributes to the 

advancement of pavement inspection 

technologies and highlights the importance of 

leveraging innovative approaches for the 

efficient and accurate analysis of pavement 

cracks and potholes. 

Despite the relatively small size of the datasets 

used in this study, promising results were 

obtained. The performance of the employed 

methodology demonstrated its effectiveness in 

detecting and classifying pavement damages. 

Although a larger dataset would enhance the 

generalizability of the findings, the obtained 

results provide a solid foundation for further 

exploration and validation. Future studies can 

build on these initial findings and consider 

expanding the dataset to strengthen the 

robustness and reliability of the proposed 

approach. 

In future studies, different sensors could be used 

to obtain data to analyze other crack properties, 

such as depth. Analyses of other types of 

deterioration, such as transverse and block 

cracks, are recommended. It is also 

recommended that other pattern recognition 

techniques be used for detecting deterioration in 

the presence of other objects. In addition, the 

potential benefits of ensemble models should be 

investigated in the context of pavement damage 

classification. The use of ensemble models can 

potentially enhance the classification accuracy, 

robustness, and generalization capabilities of 

the system, making it more effective in real-

world scenarios. 
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