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RESUMEN 

El análisis a gran escala de tweets en tiempo real utilizando el análisis de 
sentimiento supervisado representa una oportunidad única para la investigación 
de comunicación y audiencias. El poner juntos los enfoques de aprendizaje au-
tomático y de analítica en tiempo real en un entorno distribuido puede ayudar 
a los investigadores a obtener datos valiosos de Twitter con el fin de clasificar 
de forma inmediata mensajes en función de su contexto, sin restricciones de 
tiempo o almacenamiento, mejorando los diseños transversales, longitudinales 
y experimentales con nuevas fuentes de datos. A pesar de que los investiga-
dores de comunicación y audiencias ya han comenzado a utilizar los métodos 
computacionales en sus rutinas, la mayoría desconocen el uso de las tecnologías 
de computo distribuido para afrontar retos de dimensión big data.  Este artículo 
describe la implementación de métodos de aprendizaje automático paralelizados 
en Apache Spark para predecir sentimientos de tweets en tiempo real y explica 
cómo este proceso puede ser escalado usando computación distribuida tanto 
comercial como académica, cuando los ordenadores personales son insuficientes 
para almacenar y analizar los datos. Se discuten las limitaciones de estos méto-
dos y sus implicaciones en los estudios de medios, comunicación y audiencias.

Palabras clave

Análisis de sentimiento, Twitter, Big Data, Analítica en tiempo real, Investi-
gación de comunicación y audiencias, Apache Spark.

ABSTRACT

The large-scale analysis of tweets in real-time using supervised sentiment 
analysis depicts a unique opportunity for communication and audience research. 
Bringing together machine learning and streaming analytics approaches in a 
distributed environment might help scholars to obtain valuable data from Twit-
ter in order to immediately classify messages depending on the context with no 
restrictions of time or storage, empowering cross-sectional, longitudinal and 
experimental designs with new inputs. Even when communication and audience 
researchers begin to use computational methods, most of them remain unfamiliar 
with distributed technologies to face big data challenges. This paper describes 
the implementation of parallelized machine learning methods in Apache Spark 
to predict sentiments in real-time tweets and explains how this process can be 
scaled up using academic or commercial distributed computing when personal 
computers do not support computations and storage. We discuss the limitation 
of these methods and their implications in communication, audience and media 
studies.
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1. � INTRODUCCIÓN

There is a growing interest in surveying sentiments and opinions using large-
scale data produced by social media (Cobb, 2015; O’Connor, 2010; Bollen, 
Mao & Pepe, 2011). However, most of these studies are based either on manual 
classification or automated content analysis using dictionaries that score words 
among others (e.g. giving an a priori negative or positive value to each word) 
(Leetaru, 2012; Feldman, 2013) and other approaches such as supervised machi-
ne learning (Vinodhini & Chandrasekaran, 2012) are scarce in communication 
and audience research (van Zoonen & Toni 2016) even when scholars in this 
field are aware of the advantages of computational methods to deal with large-
scale textual analysis (Shahin, 2016).  Moreover, the efforts to bring together 
automated sentiment analysis based on machine learning (supervised sentiment 
analyses) and streaming technologies that produce important amount of data in 
real time, are relatively new developments that private companies are adopting 
for several purposes but most social science scholars remain still unfamiliar. 
This paper intends to fulfill this methodological gap by describing and assessing 
the creation of machine learning models to predict sentiments in real-time tweets 
and explaining how this process can be scaled in communication and audience 
research using academic or commercial distributed computing when personal 
computers do not support computations and storage.

We explain what is supervised sentiment analysis and how useful are strea-
ming analytics or real-time research in communication and audience studies. To 
joint these two approaches, this paper describes how communication scholars 
and social scientists can analyze the tone of big amount of tweets in real time 
using freely available resources such as Apache Spark, Python and the Appli-
cation Program Interface (API) of Twitter. In a personal computer and based on 
NLTK and Scikit-Learn libraries, there is previous literature in communication 
and information sciences that show how to train a supervised machine learning 
model with different algorithms for classification and predict the sentiment of 
tweets in real time (Arcila et al., 2017). However, we state that local computing 
has serious limitations if communication scholars plan to scale this analysis 
with significantly higher amount of data, which requires scalable storage and 
distributed computing like the approach for Twitter detailed in Nodarakis et 
al. (2016). In fact, running streaming data analysis in distributed platforms has 
been a challenge in the complex and changing big data landscape (Turck & Hao, 
2016). The incorporation of tools such as Apache Kafka has allowed the current 
most extended open software for distributed computing Apache Spark to achieve 
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this goal with Spark Streaming (Spark Kafka Integration, 2016), which can read 
code in Scala or also in Python (with the module PySpark). 

In this paper, we show how communication scholars and social scientists 
can extend supervised sentiment analysis for big data and streaming challenges. 
This method is scalable using academic networks or commercial tools, such 
as the most popular Infrastructure as a Service (IaaS) Amazon Web Services 
(AWS), that offers Amazon S3 for massive storage and Amazon Elastic Com-
puting Cloud (EC2) to create a flexible set of connected instances in the cloud in 
order to compute the analysis (reading and writing data directly from/to S3). The 
computational methods for big data problems in communication and audience 
research explained in this paper might help scholars to study large amounts of 
tweets in any language running sentiment analysis in real-time with few limita-
tions. All these methods require programming skills, but exiting models allows 
short-time efforts and easy adaptations.  They also require some discussion about 
an open-minded approach regarding the transition from conventional to compu-
tational research methods.

We provide scholars with all the commented code for Spark (written in 
Python and using PySpark) in an iNoteBook (ipynb)1. No mathematical back-
ground is needed to run the machine learning models, but a theoretical unders-
tanding of the algorithms will increase the quality of the research. Working with 
interdisciplinary teams (computer scientists, statisticians, computational linguis-
tics, etc.) can also improve the results and save resources. The described proce-
dure to monitor tweets in streaming might help testing traditional and emerging 
theoretical approaches in communication and audience research that require 
longitudinal data and might also contribute to experimental studies, which need 
real-time inputs to create or adapt stimuli.  Additionally, this method brings so-
cial sciences closer to artificial intelligence, which is a field that is transforming 
many disciplines given its enormous potential to use mathematics and computers 
to model complexity and identify patterns and predict behaviors. 

Predicting real time sentiment in Twitter during a long period also allows 
longitudinal analysis to detect changes over the time and compare these changes 
with day-to-day events, which in turn allow better interventions based on com-
munication and audience research. In any case, we are also aware of the weak-
nesses of Twitter when it comes to reach depth of argumentation and the flaws 
that sometimes arise from this public opinion building-up processes.  

2. � Supervised Sentiment Analysis (SSA)

Sentiment analysis (hereinafter, also referred to as SA) is one of the main 
techniques used to study textual data at a small and large scale in social sci-
ences and communication research. The main purpose of this methodology 

1  Scripts and documentation can be downloaded from: https://github.com/carlosarcila/auto-
cop_en_distributed
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is to recognize and evaluate the underlying emotions provided in the textual 
sources analyzed through their syntactic structure. These texts are subsequently 
classified, for example, into positive, negative or neutral. In the last years, this 
methodology has been mainly applied to the interpretation and analysis of social 
media texts, such as a given textual corpus from Twitter. These researches are 
usually achieved by examining the vocabulary of a text with a computer using a 
lexicon-based “dictionary”, which processes, recognizes and evaluates the emo-
tional tone behind the message. Sentiment analysis is often confused with opin-
ion mining. Indeed, the latter is applied to detect polarity, and the identification 
of emotions is often used for the same purpose (Cambria, Schuller, Liu, Wang & 
Havasi, 2013); both techniques are different but complementary.

Identifying the prevailing sentiment in a written text is a complex task, 
even for a well-trained human brain. Therefore, automated sentiment analysis 
requires a constant and sharpened development that has been tackled from two 
main standpoints: semantic approaches (Turney, 2002), and machine learn-
ing techniques (Pang, Lee & Vaithyanathan, 2002). Semantic approaches are 
characterized by the use of sentiment dictionaries (lexicons) oriented towards 
polarity or opinion. These systems pre-process the text and divide it into words, 
subsequently verifying the presence of lexicon terms, in order to assign the text’s 
polarity by adding the weighted polarity values of the terms (“sad” = -3; “happy” 
= +3). Additionally, these systems also include a fairly advanced treatment of 
modifiers (such as very, little or extremely), which increase or reduce polarity 
of the terms they are related to, and they include inverters or negators (such as 
not or neither), which invert the polarity of the word they are associated with. 
This was the method used by Turney (2002), who pioneered the application of 
automated sentiment analysis, which in this case focused on analyzing reviews 
on services and products. 

As opposed to manual SA using human codifiers, or to computer-assisted 
automated analysis using dictionaries, Supervised Sentiment Analysis (SSA) ap-
plies supervised machine learning processes to generate models based on pre-
annotated data. The aim is to predict, with a significant degree of reliability, the 
underlying sentiment in messages. This procedure uses classification algorithms, 
and their implementation in communicational processes allows for a fast analysis 
of communicational texts, thus avoiding any bias stemming from codifiers or 
lexicons with categories, which on an a priori basis are incapable of detecting 
subjects or topics, the context, or irony-sarcasm for example. SSA allows for 
transforming the classification model throughout the predictive process if such 
model is fed with additional and enriching annotated texts enhancing the adjust-
ment process. One of the first approaches to this methodology was shown in the 
work of Pang et al. (2002), where supervised machine learning was applied to 
sentiment analysis of polarized reviews of movies, rating such reviews as posi-
tive or negative.  Bermingham and Smeaton (2010) carried out a study on how 
short-length documents suggest that the sentiment they contain is more compact 
and explicit. Other researchers, such as Bakliwal, Arora, Madhappan, Kapre, 
Singh and Varma (2012) have focused on developing a function that allows for 
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tweet sentiment identification and classification, using a corpus of pre-annotated 
tweets.

SSA involves training a model with texts examples in order to summarize 
their syntactic structures using their words or sentences as features.  Scholars 
that are familiar with Python can easily train a Naïve Bayes classifier for posi-
tive/negative previous labeled messages (training set) taking only adjectives as 
features for the models in few lines adapted from Kinsley (2017):

>>> import nltk
>>> import random
>>> from nltk.tokenize import word_tokenize
>>> from nltk.classify.scikitlearn import SklearnClassifier
>>> from sklearn.Naïve_bayes import MultinomialNB, BernoulliNB
>>> positive_messages = open(“positive.txt”,”r”).read()
>>> negative_messages = open(“negative.txt”,”r”).read()
>>> all_words = []
>>> documents = []
>>> allowed_word_types = [“J”]
>>> for p in positive_messages.split(‘\n’):
    	 documents.append( (p, “pos”) )
    	 words = word_tokenize(p)
    	 pos = nltk.pos_tag(words)
    	 for w in pos:
        	 if w[1][0] in allowed_word_types:
            	all_words.append(w[0].lower())
>>> for p in negative_messages.split(‘\n’):
    	 documents.append( (p, “neg”) )
    	 words = word_tokenize(p)
    	 pos = nltk.pos_tag(words)
    	 for w in pos:
        	 if w[1][0] in allowed_word_types:
            	all_words.append(w[0].lower())
>>> all_words = nltk.FreqDist(all_words)
>>> word_features = list(all_words.keys())[:5000]
>>> def find_features(document):
    	 words = word_tokenize(document)
    	 features = {}
    	 for w in word_features:
        	 features[w] = (w in words)
    	 return features
>>> featuresets = [(find_features(rev), category) for (rev, category) in 
documents]
>>> random.shuffle(featuresets)
>>> testing_set = featuresets[10000:]
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>>> training_set = featuresets[:10000]
>>> classifier = nltk.NaïveBayesClassifier.train(training_set)

In any case, even when SSA has not been completely accurate, nor has pro-
vided relevant or influential findings in Twitter analysis (Madlberger & Alman-
sour, 2014), this technique has been recently applied to predict events in various 
domains (Kranjc et al, 2015; Preethi & Uma, 2015) such as finance (Smailović 
et al., 2013), social networks (Sluban et al., 2015) and election results (Smailović 
et al., 2015), with a more than promising prediction accuracy. In fact, in the last 
decade there has been an ever-increasing growth of SSA, particularly in the so-
cial and political science domain. Increasingly more experiments are based on 
this methodology-technique due to its comparative robustness.  It is relevant to 
note that within communication and audience studies, there are early applica-
tions related to communicational analysis in social media. One of the few proven 
models is that of Bakliwal, Foster, Van der Puil, O’Brien, Tounsi and Hughes 
(2013), who put forward a sentiment analysis model with a political orientation 
based on supervised machine learning.  The transition from and the dialogue 
with conventional Media Studies and Communication Research are still pending, 
as progress in these research approaches is not being leaded by Communication 
scholars yet. Our scientific discipline would benefit from this dialogue with other 
scientific and technical fields, as a way to increase our impact and efficacy.

A very good example of this dialogue is the work by Smailović  et al. (2015) 
who monitored the sentiments in Twitter during the Bulgarian parliamentary 
elections in May 2013. The authors initially collected examples of general Bul-
garian tweets (N=29,433) and political Bulgarian tweets (N=10,300), and man-
ually classified the sentiment of these messages to build the training corpus and 
generate the machine learning models. Using real-time analysis during the elec-
tions, they found that negative sentiments about political parties prevailed before 
and after the elections. Moreover, they use sentiment analysis to determine how 
social media data can help to predict electoral results and found that the differ-
ence between the negative and positive tweets for political parties closely match 
the final of voting. The study clearly shows how this technique can be used to 
anticipate social phenomena and is indeed compatible with social, political and 
behavioral analysis.

3. � Real-time analytics in Communication and 
Audience Research

As computational methods related to data mining evolve, and as automated 
and supervised sentiment analysis techniques focused on social media become 
more challenging, communication science and audience research are increas-
ingly becoming more interested in applying these methods and techniques. Their 
huge potential lies in their ability to calibrate and build advanced real-time indi-
cators of communicational content. Under this approach, researchers can imple-
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ment streaming analytics by observing sentiment in sites like Twitter regarding 
specific users, current topics or hashtags, which allows for making predictions 
associated to social, political, economic, cultural processes related to relevant 
events.  Previous studies have used historical Twitter data to make predictions, 
such as that of Choy, Cheong, Laik and Shung (2011) who applied dictionary-
based sentiment analysis to predict the vote percentage that an individual candi-
date would receive in the Singapore presidential election of 2011. Bermingham 
and Smeaton (2011) also attempted to use Twitter to predict election results; 
they tried to predict the electoral outcome of the 2011 Irish general election 
using a supervised sentiment classifier. However, there are other attempts to 
make predictions using streaming analytics in Twitter. Whereas the historical 
sentiment analysis takes days, or even weeks, to be completed, real-time senti-
ment analysis in Twitter data delivers or returns results almost continuously and 
immediately. One of the pioneering works in this area was fostered by Wang, 
Can, Kazemzadeh, Bar and Narayanan (2012), who came up with a system for 
real-time twitter sentiment analysis of the 2012 US presidential election cycle. 
Their model instantly interprets results of how certain events can affect public 
opinion. Reducing the time gap between data collection and analysis is one of 
the pending challenges for Social Sciences, as one of the traditional critiques to 
our research points to a decalage between the point in time when things occur 
and the point in time when we, scholars, present our findings and concussions.

As we previously discussed, SSA is a central tool in order to shape positive 
and negative messages throughout their communication value chain. This meth-
od of analysis can also allow predicting sentiment in real-time communicational 
events, like political debates, or crisis communication management on various 
topics. However, there is a telling lack of real-time research and methodological 
applications in communication and audience studies, and even more so regard-
ing sentiment analysis with streaming technologies based on supervised machine 
learning. Streaming analytics can be highly useful for audience and communi-
cation researchers (Pond, 2016; Bastos, Mercea & Charpentier, 2015; Driscoll, 
& Walker, 2014; Li & Xu, 2016; Kanejo & Tanai, 2016; Coletto et al., 2016), 
consulting firms and private enterprises in the fields of public opinion, market-
ing and political and governmental studies. Moreover, combined to SSA they 
can be helpful to study large amounts of tweets, by performing real-time senti-
ment analyses overcoming the limitations inherent to lexicon-based approaches. 
The aforementioned process to monitor tweets in streaming can improve com-
municational processes forecasts, and it can help in testing both the traditional 
and emerging approaches in public communicational opinion research requiring 
longitudinal data analysis in time series. This technique can also help in testing 
hypotheses in experimental studies requiring real-time entries to create or adapt 
stimuli, and thus validating exploratory theoretical models. These systems can 
bring comparative advantages for socio-political and communicational research. 
They can enable communication analysis teams to go a step ahead in terms of 
early detection and interpretation of the effectiveness of their communication 
strategies almost in real time.
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In Python, communication and audience scholars can implement the library 
Tweepy and use few lines of code adapted from Kinsley (2017) to connect to the 
Twitter Stream and run SSA in real time to monitor sentiments through messag-
es containing a specific hashtag (i.e. #Trump) with a specific level of confidence:

>>> from tweepy import Stream, OAuthHandler
>>> from tweepy.streaming import StreamListener
>>> import json
>>> import classifier as s
>>> ckey=“”, csecret=“”, atoken=“”, asecret=””
>>> class listener(StreamListener):
    	 def on_data(self, data):
			  all_data = json.loads(data)
			  tweet = all_data[“text”]
			  sentiment_value, confidence = s.sentiment(tweet)
			  print(tweet, sentiment_value, confidence)
			  if confidence*100 >= 80:
				   output = open(“twitter-out.txt”,”a”)
				   output.write(sentiment_value)
				   output.write(‘\n’)
				   output.close()
			  return True
    	 def on_error(self, status):
       	  print(status)
>>> auth = OAuthHandler(ckey, csecret)
>>> auth.set_access_token(atoken, asecret)
>>> twitterStream = Stream(auth, listener())
>>> twitterStream.filter(track=[“#Trump”])

In sum, SSA can also be applied to monitor social media sites in real time. It 
takes advantage of the new computational methods, which simplify and stream-
line automatization processes, but as the same time has important implications 
for the elaboration of research designs in communication and audience studies.

4. �Distri buted SSA for Big Data Problems

Bringing together large-scale supervised sentiment analysis and streaming 
analytics is a powerful approach to face big data challenges in communication 
research because it allows scholars to content analyze sentiments based on con-
text with no restrictions of space (number of messages) and time (real-time and 
long periods with no interruption).  In this section, we explain in detail how to 
overtake local computing limitations and use this computational method to face 
big data challenges using open source software with the data available from the 
Application Program Interface (API) of Twitter that nowadays provides freely 
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access to an important amount of semi-structured social data (Makice, 2009).  
We show how scholars can: (i) train machine learning models with parallelized 
algorithms using previously labeled tweets; (ii) connect to the streaming of 
Twitter and filter relevant messages; (iii) predict sentiments in real-time in a dis-
tributed context; and (iv) store the results in a flexible database and visualize the 
outcomes. This method requires a set of tools such as Python 3.5, Apache Spark 
2.1, Apache Kafka 2.11, Apache Zookeeper 3.4.10 and MongoDB 3.4, and can 
be used in a local computer but is already prepared to scale up in the cloud in 
any academic or commercial service (such Amazon Web Services, AWS). A 
summary of the algorithms and tools to run supervised sentiment analysis in real 
time over big amount of tweets is shown in figure 1.

Figure 1. Tools and ML algorithms used in distributed supervised sentiment analysis of Twitter

Firstly, the most important step in supervised sentiment analysis is to ob-
tain a good training dataset to train the models. Communication and audience 
researchers have a great experience in content analysis, which implies that la-
beling the initial dataset will be easy and labels will be reliable. To download 
raw tweets, scholars can use the Twitter API REST that allows the collection of 
recent messages in JSON format, filtering the search by any of the unstructured 
fields of the tweet (i.e. “text”, “language”, “location”, etc.). Later, trained and 
independent coders must classify the messages (the “text” field) into negative 
or positive (or more specific labels such as “neutral”, “strongly negative”, etc.) 
according to traditional content analysis approach (Krippendorf, 2004; Neuen-
dorf, 2016) to obtain adequate levels of reliability (>0,7 Krippendorf’s Alpha or 
similar measures)2. There is not a minimum or maximum number of messages 
for the training dataset, but the algorithms will learn better if they have good 
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quality examples, or in other words, examples that really express that a message 
can be considered positive or negative. Each algorithm contains a specific bias 
(Kelleher, Mac Namee & D’Arcy, 2015), so the approach in supervised senti-
ment analysis is to use the one that is more predictive. 

In a local computer, scholars can use the library Scikit-Learn in Python to 
train ML models (Raschka, 2015) using well known algorithms such as Original 
Naïve Bayes, Naïve Bayes for multimodal models, Naïve Bayes for multivariate 
Bernoulli models, Logistic Regression, Linear Support Vector Classification or 
Linear classifiers with stochastic gradient descent -SGD- training. However, if 
they have a huge training dataset that requires a lot of computational memory, 
they can train the ML models in a distributed context with Apache Spark (Pen-
treath, 2015) using the packages MLlib and PySpark. Not all algorithms are 
available in a parallelized format, but researchers can still implement Logistic 
Regression, Naïve Bayes and Support Vector Machines (SVM), and evaluated 
which gives the best accuracy. When working with unstructured data (like the 
text of a tweet) researchers must previously use natural language processing 
(NLP) techniques to tokenize words and convert messages into features vectors 
(Bird, Klein & Loper, 2009), which is the data that the algorithms will work 
with. 

NLP includes extracting informative words based on a tag-of-speech ap-
proach, so researchers can decide which kind of word (verbs, adjectives, ad-
verbs, etc.) will train the models. Once these words are selected, they must be 
grouped into an array, resulting in a sequence of words of the selected type, for 
example, if adjectives are selected, each tweet will be converted into an array 
of the adjectives of the tweet. This approach is more complex than the usual 
positive-or-negative word classification, as it considers sequences of words, 
which is useful, for example to identify degrees of positiveness and negativeness 
and more complex constructions such as the irony, that is impossible to identify 
with just the classification of words in negative or positive, as it usually has for 
example positive adjectives but in a specific sequence which really signifies 
a negative comment. This technique allows to not only considering the word 
but also the other ones that appears in the same tweet. The disadvantage is that 
much bigger training dataset is required. Going more into the detail of what is 
happening in the inside of the algorithm, every unique adjective present in every 
tweet must be registered in a dictionary of words. With this dictionary of unique 
words, each tweet can be transformed into an instance, an array of 1s and 0s, 1 
when the word is present on the tweet and 0 otherwise. The result is a disperse 
array (an array with large amount of 0s and few 1s), and with as many indepen-
dent variables as words in the dictionary. The next code shows how communica-
tion scholars can parallelize in Apache Spark the model training stage with the 
Naïve Bayes algorithm:

>>> import nltk, random, pyspark
>>> from nltk.tokenize import word_tokenize
>>> from nltk.classify.scikitlearn import SklearnClassifier
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>>> import findspark
>>> findspark.init()
>>> sc = pyspark.SparkContext(appName=”myAppName”).
getOrCreate()
>>> spark = pyspark.sql.SparkSession(sc)
>>> sc._conf.getAll()
>>> allowed_word_types = [“JJ”]
>>> rdd_positive = sc.textFile(“positive.txt”)
>>> rdd_negative = sc.textFile(“negative.txt”)
>>> rdd_all_tokenized_words = rdd_positive.map(lambda tweet: (nltk.
pos_tag(word_tokenize(tweet)),1)).union(rdd_negative.map(lambda 
tweet: (nltk.pos_tag(word_tokenize(tweet)),0)))
>>> rdd_selected_words = rdd_all_tokenized_words.map(lambda 
review: \
([word[0] for word in review[0] if word[1] in allowed_word_
types],review[1]))
>>> rdd_all_words = rdd_selected_words.flatMap(lambda words: 
words[0]).distinct()
>>> rdd_all_broadcast_words = sc.broadcast(rdd_all_words.collect())
>>> rdd_featured_instances = rdd_selected_words.map(lambda 
instance: (find_features(instance[0]), instance[1]))
>>> def find_features(instance):

    features = []
    for word in rdd_all_broadcast_words.value:
        if word in instance:
            features.append(1)
        else:
             features.append(0)   
    return features

>>> rdd_all_words.coalesce(1, True).saveAsTextFile(“all_words”)
>>> rdd_training_set = rdd_featured_instances.map(lambda instance: 
LabeledPoint(label=instance[1], features=instance[0]))
>>> from pyspark.mllib.classification import NaïveBayes, 
NaïveBayesModel
>>> from pyspark.mllib.util import MLUtils
>>> NB_model = NaïveBayes.train(rdd_training_set, 1.0)

Secondly, the Twitter API STREAMING allows instant access to 1% of the 
whole stream. This percentage might seem a small and an insignificant amount 
of tweets, but the true is that when we filter the tweets (i.e. only containing a spe-
cific hashtag, such as #Trump or #ClimateChange) we will not exceed this 1% 
limit in most of the cases. To locally connect to the stream, scholars can obtain 
the necessary code access (API key, API secret, Access toke and Access token 
secret) by registering to the Twitter API and use the library Tweepy for Pyhton 
(Roesslein, 2009) that simplifies the connection and works fine in a local compu-
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ter. If communication and audience researchers are dealing with a huge amount 
of messages for a long period of time and decide to implement large-scale and 
real-time collection, this library still works but needs to be implemented in a re-
mote machine in order to continuously produce the messages that will be analy-
zed afterwards. This process requires the execution of Apache Kafka (together 
with Zookeeper), so the researcher can remotely connect to the Twitter API and 
send the stream to a kafka producer in order to make data available from a kafka 
broker. This means that large-scale supervised sentiment analysis in real-time 
needs a virtual computer with Apache Kafka dedicated to be connected to the 
Twitter stream in order to continuously produce a new flux of parsed and filtered 
messages that can later be accessed from different nodes to execute the tone 
evaluation. In this stage, communication and audience researchers can monitor 
or even save the parsed tweets, which are a potential advantage if they decide to 
run any kind of exploratory, qualitative or on-the-way analysis for quick inter-
ventions.  This code summarizes the distributed implementation of this producer 
in Spark for real-time tweets about #Trump:

>>> import json, tweepy, configparser
>>> from kafka import SimpleProducer, KafkaClient
>>> twitter_credentials = {“consumer_key”: “”, “consumer_secret”: 
“”, “access_key”: “”, “access_secret”: “”}
twitter_parameters = {“hashtag”: [“#Trump”]}
>>> kafka_producer_parameters = {“batch_send_freq_t”: 
1000,”batch_send_freq_n”: 10,”topic”: twitter_parameters[“hashtag”]
[0][1:],”connection_string”: “localhost:9092”}
>>> class TwitterStreamingListener(tweepy.StreamListener):

    def __init__(self, api, kafka_producer_parameters):
        self.api = api
        self.kafka_producer_parameters = kafka_producer_
parameters
        super(tweepy.StreamListener, self).__init__()
        client = KafkaClient(kafka_producer_
parameters[“connection_string”])
        self.producer = SimpleProducer(client, async = True,
                          batch_send_every_n = kafka_producer_
parameters[“batch_send_freq_t”],
                          batch_send_every_t = kafka_producer_
parameters[“batch_send_freq_n”])
    def on_status(self, status):
        msg =  status.text.encode(‘utf-8’)
        try:
            self.producer.send_messages(kafka_producer_
parameters[“topic”], msg)
        except Exception as e:
            print(e)
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            return False
        return True
    def on_error(self, status):
        # Error in Kafka producer
        print(status)
        return True
    def on_timeout(self):
        print(“Timeout on twitter API”)
        return True 

>>> twitter_parameters[“hashtag”]
>>> auth = tweepy.OAuthHandler(twitter_credentials[“consumer_
key”], twitter_credentials[“consumer_secret”])
>>> auth.set_access_token(twitter_credentials[“access_key”], twitter_
credentials[“access_secret”])
>>> api = tweepy.API(auth)
>>> stream = tweepy.Stream(auth, listener = 
TwitterStreamingListener(api, kafka_producer_parameters))
>>> stream.filter(track=twitter_parameters[“hashtag”])

The third step for large-scale supervised sentiment analysis in real time is to 
predict the sentiments of the ongoing flux of messages we are producing; using 
the models we already trained with the parallelized algorithms.  The models are 
kept as special files to save time, but they can be updated any time repeating step 
two and replacing the files.  In this stage, researchers must run a set of virtual 
machines and implement an Apache Spark context if they really want to face 
big data challenges and keep the analysis fast and steady. Specifically, at this 
point the method consists in starting a streaming context in Spark to connect to 
the Kafka producer described above with a Kafka consumer to predict the score 
of tweet with the MLlib algorithms. To be able to classify the new tweets, these 
messages have to pass through the same process the training instances passed 
(tokenize words and select them based on tag of speech). To work in real time, 
all the tweets must also be gotten from the Kafka stream and save the texts to 
a DStream, a sequence of resilient distributed datasets (RDDs) for each period 
of time, which is the primary data structure of Apache Spark. All these phases 
allow executing the sentiment prediction in parallel instances, using the model 
and the word list produced with the ML algorithms during the training stage, 
and printing each prediction with standard output. Parallel computing and elastic 
computing capacities (most of academic and commercial services can be con-
figured to add/remove virtual machines automatically based on demand) give 
communication and audience scholars a unique opportunity to overtake space 
and time limitations that traditional and “small data” computational methods 
have when dealing with sentiment analysis. This is a simplified code for the con-
sumer with a call to three ML algorithms (Logistic Regression, Support Vector 
Machines and Naïve Bayes) and an order to choose which is the best to classify 
the tweets:
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>>> import findspark, pyspark, os, datetime, nltk, random
>>> findspark.init()
>>> from pyspark.sql.functions import lit
>>> from pyspark import SparkConf
>>> SUBMIT_ARGS = “--packages org.apache.spark:spark-
streaming-kafka-0-8-assembly_2.11:2.1.0,org.mongodb.spark:mongo-
spark-connector_2.10:2.0.0 pyspark-shell”
>>> os.environ[“PYSPARK_SUBMIT_ARGS”] = SUBMIT_ARGS
>>> conf = (SparkConf().set(“spark.mongodb.input.uri”, “mongodb://
localhost:27017/twitter.tests”).set(“spark.mongodb.output.uri”, 
“mongodb://localhost:27017/twitter.tests”))
>>> sc = pyspark.SparkContext(appName=”streaming_app”, 
conf=conf).getOrCreate()
>>> spark = pyspark.sql.SparkSession(sc)
>>> from pyspark.streaming import StreamingContext
>>> ssc = StreamingContext(sc, 10)
>>> kafka_configuration_params = {“topic”: 
[“BigData”],”connectionstring”: “localhost:9092”}
>>> from pyspark.streaming.kafka import KafkaUtils
>>> directKafkaStream = KafkaUtils.createDirectStream(ssc, 
kafka_configuration_params[“topic”],{“metadata.broker.list”: kafka_
configuration_params[“connectionstring”]})
>>> from pyspark.mllib.classification import  NaïveBayesModel
>>> classif_LR_model = LogisticRegressionModel.load(sc, “LR_
model”)
>>> classif_SVM_model = SVMModel.load(sc, “SVM_model”)
>>> classif_NB_model = NaïveBayesModel.load(sc, “NB_model”)
>>> LR_model = classif_LR_model
>>> SVM_model = classif_SVM_model
>>> NB_model = classif_NB_model
>>> from nltk.tokenize import word_tokenize
>>> allowed_word_types = [“JJ”]
>>> rdd_all_words = sc.textFile(“all_words/part-00000”)
>>> rdd_broadcast_all_words = sc.broadcast(rdd_all_words.collect())
>>> def convert_tweet_to_instance(tweets):

rdd_tweets = tweets.map(lambda tweet: [word[0] for word in 
nltk.pos_tag(word_tokenize(tweet)) if word[1] in allowed_
word_types])

    rdd_instances = rdd_tweets.map(lambda instance: find_
features(instance))
    return rdd_instances

>>> def find_features(instance):
    features = []
    for word in rdd_broadcast_all_words.value:
        if word in instance:
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            features.append(1)
        else:
             features.append(0)   
    return features

>>> rdd_input = directKafkaStream.map(lambda output: output[1])
>>> classification = convert_tweet_to_instance(rdd_input).map(lambda 
instance: 1 if (LR_model.predict(instance) + int(NB_model.
predict(instance)) + SVM_model.predict(instance))>=1 else -1)
>>> classification_each = convert_tweet_to_instance(rdd_input).
map(lambda instance: [LR_model.predict(instance), NB_model.
predict(instance), SVM_model.predict(instance)])
>>> def save_to_db(rdd, collection):

df = rdd.zipWithUniqueId().toDF().withColumn(‘timestamp’
,lit(datetime.datetime.utcnow())).toDF(‘label’,’in_batch_id’, 
‘timestamp’)
df.write.format(“com.mongodb.spark.sql.DefaultSource”).
mode(“append”).option(“database”,”twitter”).
option(“collection”,collection).save()

>>> classification.foreachRDD(lambda rdd: save_to_db(rdd,”labels”))
>>> rdd_input.foreachRDD(lambda rdd: save_to_db(rdd, “tweets”))
>>> ssc.start()

Finally, the results of distributed supervised sentiment analysis must be sto-
red and visualized. When working with streaming analytics, all results are stored 
by periods of time, printing each batch separately. The first way to store the 
tweets and their predicted value (and any other extra data scholars wish to keep 
for further research) is to save the results in plain text files (tab/comma and line 
separated). However, even when social scientists might be still unfamiliar with 
non-relational databases, the best way to store Twitter messages and their predic-
ted sentiments is through a NoSQL database, either SQL or NoSQL, depending 
on the data, such as PostgreSQL or MongoDB, for example. In contrast with 
relational databases, these NoSQL databases are more flexible and less restricti-
ve, which allows scholars to scale up their analysis when dealing with big data. 
The above code described for the consumer includes commands for distributed 
storage and the flow of all this process is described in figure 2.
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Figure 2. Flow of data during distributed and real-time supervised sentiment analysis of Twitter

On the other hand, scholars can use different Pyhton libraries such as Mat-
plotlib or Bokeh, to visualize the ongoing sentiments. In particular, Bokeh is a 
powerful tool to visualize the trends if we have stored the results in MongoDB. 
All scripts will visualize batches of tweets, but scholars can control parameters 
such as the update frequency (time to wait to poll the database for the next 
batch) or the number of points that can be simultaneously shown on the screen 
(to produce averages of minutes, hours, days, months, etc.). Control of parame-
ters and flexible visualization of large-scale sentiments on Twitter can enhance 
social research designs especially when scholars need to monitor big amounts of 
tweets as fast as they are produced. Figure 3 shows a visualization of distributed 
sentiment analysis of tweets containing the hashtag “#Trump” in real time, and 
the next code show scholars how to execute this task with Bokeh reading from 
MongoDB:

>>> import time, pymongo, pprint
>>> import numpy as np
>>> from bokeh.models.sources import ColumnDataSource
>>> from bokeh.plotting import figure
>>> from bokeh.io import output_notebook, show, push_notebook
>>> from datetime import datetime, timedelta
>>> from bson.objectid import ObjectId
>>> SERVER_URL = “mongodb://localhost:27017”
>>> client = pymongo.MongoClient(SERVER_URL)
>>> db = client.twitter
>>> coll = db.labels
>>> def compute_batch_score(batch):

    score = 0
    for result in batch:
        score = score + result[“label”] 
    return score

>>> source = ColumnDataSource(dict(x=[], y=[]))
>>> my_figure = figure(plot_width=800, plot_height=400)
>>> my_figure.line(source=source, x=”x”, y=”y”, line_width=2, 
alpha=.85, color=’blue’)
>>> handle = show(my_figure, notebook_handle=True)
>>> new_data = dict(x=[0], y=[0])
>>> x = []
>>> y = []
>>> step = 0
>>> period = 2  # in seconds
>>> n_show = 300  # number of points to keep and show
>>> timenow = datetime.utcnow() - timedelta(hours=2, seconds=10)
>>> while True:

    batch = coll.find({‘timestamp’:{‘$gt’: timenow}}).
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sort([(“timestamp”, -1)])
    latest_value = new_data[‘y’][0]   
    new_data = dict(x=[step], y=[latest_value + compute_batch_
score(batch)])
    source.stream(new_data, n_show)
    push_notebook(handle=handle)
    step += 1
    timenow = datetime.utcnow() - timedelta(hours=2, 
seconds=10)
    time.sleep(period)

 

Figure 3. Streaming visualization of supervised sentiment analysis to tweets containing “#Trump”

5. �Dis cussion and Conclusions

In this paper we have explained the relevance of supervised sentiment analy-
sis and streaming analytics in communication and audience research, and have 
described the implementation of distributed supervised sentiment analysis, a 
computational method that allow communication scholars and social scientists 
to face the big data challenge of Twitter contents. This method overtakes the 
disadvantages of other approaches orientated to computationally manage small 
data in social media and gives communication and audience researchers a fair 
overview of how cutting-edge technologies can be adapted to computational 
social science. 

The described method and its implementation is an open source free of 
charge solution (except for the financial costs of the cloud computing service 
such as AWS), giving the scholars the absolute power to adapt and modify all 
parameters. However, there are some commercial products of companies such 
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as Microsoft Azure or IBM Bluemix, that might also help scholars to scale their 
distributed supervised sentiment analysis of tweets with more friendly interfa-
ces. Microsoft Azure nowadays offers a sentiment analysis service built on the 
MPQA Subjectivity Lexicon (Wilson, Wiebe & Hoffmann, 2005), but can also 
run scalable sentiment analysis with a machine learning algorithm (Two-Class 
Support Vector Machine) written in R to predict opinion polarity in tweets. 
Microsoft Azure runs real time sentiment analysis of tweets with Azure Stream 
Analytics, but uses Sentiment140, an external classification method using machi-
ne learning algorithms (Go, Bhayani & Huang, 2009). On the other hand, IBM 
Bluemix can run distributed sentiment analysis based on Spark (and Kafka), 
and can as well connect to their own machine learning algorithm Watson Tone 
Analyzer, built on neural networks to predict emotions (i.e. anger, fear, joy, sad-
ness, disgust), social tendencies (i.e. openness, conscientiousness, extraversion, 
agreeableness, emotional range) and writing style (i.e. confident, analytical, 
tentative) on the texts. These services on Microsoft Azure and IBM Bluemix are 
mostly available for tweets written only in English. All these services are great 
for unexperienced users that want to use already implemented solutions with the 
restrictions each solution provides, the algorithms available and assuming the 
cost of them.  Even more friendly, they are still away from most of Audience 
and Communication scholars research tooolkits, pointing out the need to combi-
ne conventional research methods with the innovations being developed in the 
computational social sciences and digital humanities. This window is open and 
a wider instruction of social scientists in these fields of knowledge is still requi-
red, as a way to increase our research effectiveness. Analyzing tweets is an open 
door to explore what a given audience daily expresses, so getting closer to these 
messages is a way to reduce the distance between what people think and do in 
the public domain. 

However, the approach we present on this paper is to create a custom en-
vironment that can be deployed on an academic cloud computing service or 
in-house cluster, as well as in any other commercial provider such as Amazon 
Web Services, Microsoft Azure or IBM Blue Mix, using just the virtual machi-
nes they provide. The main advantage of this approach is that the scholars can 
deploy their own code and algorithms, and also scale and control the amount of 
resources they need, which will have an impact on the cost of the study.  Never-
theless, some knowledge on how to deploy the virtual machines, and configure 
them in order to use the whole system is required, which can be a difficult task 
for beginners in deployment operations.

Regarding the limitations of this paper, we stress that only three algorithms 
were used for the distributed supervised sentiment analysis in Apache Spark, 
and there was no probability classification, which, compared to the local mode 
classification with Scikit-Learn, is a disadvantage, as the user cannot control 
the minimum degree of certainty to classify each tweet.  Some future develop-
ment can solve some of the previously explained limitation. For example, it is 
necessary to introduce more degrees for classification or probabilistic results on 
predictions. On the other hand, a major challenge is to simplify the deployment 
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of the whole system for the distributed analysis, which is another main limitation 
of the present study. Other interesting points to consider can be the deployment 
of the prediction models as microservices, as the data amount does not usually 
require a Spark Streaming system and can be solved with a REST API in which 
the tweet stream will be classified. This approach is interesting as it can simplify 
the deployment and reduce the amount of resources used for the analysis.

However, distributed supervised sentiment analysis represents an innovative 
computational method in communication science that can be adopted by diffe-
rent actors such as:

Communication and audience researchers: scholars can use this technique 
to carry out descriptive, cross-sectional, longitudinal and experimental studies. 

Firms engaged in public opinion studies: these companies may use the clas-
sifier to monitor opinion trends on communicational topics. In addition, they can 
use this methodology to come up with advanced indicators of socioeconomic and 
political state of the art within the digital society, notoriety of brands´, messa-
ges´, candidates’ “popularity and acceptance”, among others.

Communication consulting firms: these firms can use the classifier to supple-
ment their supervision and study of communicational facts that take place in 
the country, in order to plan communication and political persuasion strategies 
(brand, corporate or political marketing), particularly when sentiment analysis 
and sentiment interpretation arising from communicational campaigns associated 
to investment opportunities, political actions, social campaigns and initiatives as-
sociated may require proactive real-time analysis and conclusions for increased 
effectiveness.

Political parties: political parties can use this technique to plan their actions 
according to the existing sentiment on certain public topics on investment oppor-
tunities and political candidates suitability.

The challenges and opportunities seized by big data solutions, and particu-
larly by distributed supervised sentiment analysis in Audience or Communica-
tion Research, using the abovementioned techniques, leads to the conclusion that 
we are witnessing a Data-Analysis-Revolution (DAR) regarding the analysis, 
interpretation and management of communication initiatives run by stakehold-
ers in the digital communication value chain of fully connected society. The 
weaknesses and threats, and more importantly the strengths and opportunities, 
provided by these methodologies and techniques to communication and audience 
researchers anticipate a deeper revolution in the scientific analysis of communi-
cation processes with the establishing of a computational communication sci-
ence, similar to other fields such as computational biology, where computational 
methods have transformed the whole discipline. Under this idea, it is highly 
relevant that computational communication scholars incorporate to their routines 
the conceptual and technical skills explained in this article.

Distributed supervised sentiment analysis of Twitter messages is a supple-
mentary but necessary computational method to test and predict communication 
patterns. In a context where the quality of communication, election or branding 
research is subject to constant scrutiny and re-assessment by experts and public 
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opinion based on their “inaccuracy,” this approach may appears as a “3D scan-
ner in real time” that can complement traditional analyses of representative 
samples to predict communicational patterns. Additionally, real time supervised 
sentiment analysis of messages for long time periods in Twitter and other digital 
social networks will enable longitudinal analyses to detect changes in topics such 
as “communicational incidences” and the various variables examined through-
out the relevant time period for a given subject-topic. Accordingly, one could 
test the relationship between these changes and specific events, which would 
also allow implementing policies based on research and data analysis on a more 
proactive basis and with greater time reactivity.  Large-scale algorithm patterns 
and the understanding of their internal operation is a key issue for the develop-
ment and implementation of these methodologies within the big data landscape. 
The interpretation and grasping of the computational method workflow by the 
researcher may be of vital importance for the further understanding of the com-
plex decision taken process which may arise. Distributed supervised sentiment 
analysis may provide for the time being that extra luminescence for the under-
standing of complex communicational processes which in our today technologi-
cal scenario require still the ability and expertise of human-brained supervision.
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Endnotes

2	  For trial, the models can be trained with positive/negative movie reviews in 
English of IMDB provided by NLTK or freely available in the Internet.


