
Cómo citar el artículo

Número completo

Más información del artículo

Página de la revista en redalyc.org

Sistema de Información Científica Redalyc

Red de Revistas Científicas de América Latina y el Caribe, España y Portugal

Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso
abierto

EMPIRIA. Revista de Metodología de las Ciencias Sociales
ISSN: 1139-5737
ISSN: 2174-0682
empiria@poli.uned.es
Universidad Nacional de Educación a Distancia
España

Arcila Calderón, Carlos; Ortega Mohedano, Félix; Álvarez, Mateo; Vicente Mariño, Miguel
Distributed Supervised Sentiment Analysis of Tweets: Integrating Machine Learning and
Streaming Analytics for Big Data Challenges in Communication and Audience Research

EMPIRIA. Revista de Metodología de las Ciencias Sociales, núm. 42, 2019, -, pp. 113-136
Universidad Nacional de Educación a Distancia

España

DOI: https://doi.org/10.5944/empiria.42.2019.23254

Disponible en: https://www.redalyc.org/articulo.oa?id=297165961006

https://www.redalyc.org/comocitar.oa?id=297165961006
https://www.redalyc.org/fasciculo.oa?id=2971&numero=65961
https://www.redalyc.org/articulo.oa?id=297165961006
https://www.redalyc.org/revista.oa?id=2971
https://www.redalyc.org
https://www.redalyc.org/revista.oa?id=2971
https://www.redalyc.org/articulo.oa?id=297165961006

EMPIRIA. Revista de Metodología de Ciencias Sociales. N.o 42 enero-abril, 2019, pp. 113-136.
ISSN: 1139-5737, DOI/empiria.42.2019.23254

Distributed Supervised Sentiment Analysis of
Tweets: Integrating Machine Learning and

Streaming Analytics for Big Data Challenges in
Communication and Audience Research

Análisis distribuido y supervisado de sentimientos en Twitter:
Integrando aprendizaje automático y analítica en tiempo
real para retos de dimensión big data en investigación de

comunicación y audiencias

Carlos Arcila Calderón
University of Salamanca

carcila@usal.es (ESPAÑA)

Félix Ortega Mohedano
University of Salamanca

fortega@usal.es (ESPAÑA)

Mateo Álvarez
University Rey Juan Carlos

mateyoalvarez@gmail.com (ESPAÑA)

Miguel Vicente Mariño
University of Valladolid

miguelvm@soc.uva.es (ESPAÑA)

Recibido: 25.01 2018
Aceptado: 20.12.2018

114	 C.Arcila, F.Ortega, M.Álvarez y M. Vicente � Análisis distribuido...

EMPIRIA. Revista de Metodología de Ciencias Sociales. N.o 42 enero-abril, 2019, pp. 113-136.
ISSN: 1139-5737, DOI/empiria.42.2019.23254

RESUMEN

El análisis a gran escala de tweets en tiempo real utilizando el análisis de
sentimiento supervisado representa una oportunidad única para la investigación
de comunicación y audiencias. El poner juntos los enfoques de aprendizaje au-
tomático y de analítica en tiempo real en un entorno distribuido puede ayudar
a los investigadores a obtener datos valiosos de Twitter con el fin de clasificar
de forma inmediata mensajes en función de su contexto, sin restricciones de
tiempo o almacenamiento, mejorando los diseños transversales, longitudinales
y experimentales con nuevas fuentes de datos. A pesar de que los investiga-
dores de comunicación y audiencias ya han comenzado a utilizar los métodos
computacionales en sus rutinas, la mayoría desconocen el uso de las tecnologías
de computo distribuido para afrontar retos de dimensión big data. Este artículo
describe la implementación de métodos de aprendizaje automático paralelizados
en Apache Spark para predecir sentimientos de tweets en tiempo real y explica
cómo este proceso puede ser escalado usando computación distribuida tanto
comercial como académica, cuando los ordenadores personales son insuficientes
para almacenar y analizar los datos. Se discuten las limitaciones de estos méto-
dos y sus implicaciones en los estudios de medios, comunicación y audiencias.

Palabras clave

Análisis de sentimiento, Twitter, Big Data, Analítica en tiempo real, Investi-
gación de comunicación y audiencias, Apache Spark.

ABSTRACT

The large-scale analysis of tweets in real-time using supervised sentiment
analysis depicts a unique opportunity for communication and audience research.
Bringing together machine learning and streaming analytics approaches in a
distributed environment might help scholars to obtain valuable data from Twit-
ter in order to immediately classify messages depending on the context with no
restrictions of time or storage, empowering cross-sectional, longitudinal and
experimental designs with new inputs. Even when communication and audience
researchers begin to use computational methods, most of them remain unfamiliar
with distributed technologies to face big data challenges. This paper describes
the implementation of parallelized machine learning methods in Apache Spark
to predict sentiments in real-time tweets and explains how this process can be
scaled up using academic or commercial distributed computing when personal
computers do not support computations and storage. We discuss the limitation
of these methods and their implications in communication, audience and media
studies.

C.Arcila, F.Ortega, M.Álvarez y M. Vicente � Análisis distribuido...   115

EMPIRIA. Revista de Metodología de Ciencias Sociales. N.o 42 enero-abril, 2019, pp. 113-136.
ISSN: 1139-5737, DOI/empiria.42.2019.23254

Key Words

Sentiment Analysis, Twitter, Big Data, Streaming, Machine Learning, Com-
munication and Audience Research, Apache Spark.

1. � INTRODUCCIÓN

There is a growing interest in surveying sentiments and opinions using large-
scale data produced by social media (Cobb, 2015; O’Connor, 2010; Bollen,
Mao & Pepe, 2011). However, most of these studies are based either on manual
classification or automated content analysis using dictionaries that score words
among others (e.g. giving an a priori negative or positive value to each word)
(Leetaru, 2012; Feldman, 2013) and other approaches such as supervised machi-
ne learning (Vinodhini & Chandrasekaran, 2012) are scarce in communication
and audience research (van Zoonen & Toni 2016) even when scholars in this
field are aware of the advantages of computational methods to deal with large-
scale textual analysis (Shahin, 2016). Moreover, the efforts to bring together
automated sentiment analysis based on machine learning (supervised sentiment
analyses) and streaming technologies that produce important amount of data in
real time, are relatively new developments that private companies are adopting
for several purposes but most social science scholars remain still unfamiliar.
This paper intends to fulfill this methodological gap by describing and assessing
the creation of machine learning models to predict sentiments in real-time tweets
and explaining how this process can be scaled in communication and audience
research using academic or commercial distributed computing when personal
computers do not support computations and storage.

We explain what is supervised sentiment analysis and how useful are strea-
ming analytics or real-time research in communication and audience studies. To
joint these two approaches, this paper describes how communication scholars
and social scientists can analyze the tone of big amount of tweets in real time
using freely available resources such as Apache Spark, Python and the Appli-
cation Program Interface (API) of Twitter. In a personal computer and based on
NLTK and Scikit-Learn libraries, there is previous literature in communication
and information sciences that show how to train a supervised machine learning
model with different algorithms for classification and predict the sentiment of
tweets in real time (Arcila et al., 2017). However, we state that local computing
has serious limitations if communication scholars plan to scale this analysis
with significantly higher amount of data, which requires scalable storage and
distributed computing like the approach for Twitter detailed in Nodarakis et
al. (2016). In fact, running streaming data analysis in distributed platforms has
been a challenge in the complex and changing big data landscape (Turck & Hao,
2016). The incorporation of tools such as Apache Kafka has allowed the current
most extended open software for distributed computing Apache Spark to achieve

116	 C.Arcila, F.Ortega, M.Álvarez y M. Vicente � Análisis distribuido...

EMPIRIA. Revista de Metodología de Ciencias Sociales. N.o 42 enero-abril, 2019, pp. 113-136.
ISSN: 1139-5737, DOI/empiria.42.2019.23254

this goal with Spark Streaming (Spark Kafka Integration, 2016), which can read
code in Scala or also in Python (with the module PySpark).

In this paper, we show how communication scholars and social scientists
can extend supervised sentiment analysis for big data and streaming challenges.
This method is scalable using academic networks or commercial tools, such
as the most popular Infrastructure as a Service (IaaS) Amazon Web Services
(AWS), that offers Amazon S3 for massive storage and Amazon Elastic Com-
puting Cloud (EC2) to create a flexible set of connected instances in the cloud in
order to compute the analysis (reading and writing data directly from/to S3). The
computational methods for big data problems in communication and audience
research explained in this paper might help scholars to study large amounts of
tweets in any language running sentiment analysis in real-time with few limita-
tions. All these methods require programming skills, but exiting models allows
short-time efforts and easy adaptations. They also require some discussion about
an open-minded approach regarding the transition from conventional to compu-
tational research methods.

We provide scholars with all the commented code for Spark (written in
Python and using PySpark) in an iNoteBook (ipynb)1. No mathematical back-
ground is needed to run the machine learning models, but a theoretical unders-
tanding of the algorithms will increase the quality of the research. Working with
interdisciplinary teams (computer scientists, statisticians, computational linguis-
tics, etc.) can also improve the results and save resources. The described proce-
dure to monitor tweets in streaming might help testing traditional and emerging
theoretical approaches in communication and audience research that require
longitudinal data and might also contribute to experimental studies, which need
real-time inputs to create or adapt stimuli. Additionally, this method brings so-
cial sciences closer to artificial intelligence, which is a field that is transforming
many disciplines given its enormous potential to use mathematics and computers
to model complexity and identify patterns and predict behaviors.

Predicting real time sentiment in Twitter during a long period also allows
longitudinal analysis to detect changes over the time and compare these changes
with day-to-day events, which in turn allow better interventions based on com-
munication and audience research. In any case, we are also aware of the weak-
nesses of Twitter when it comes to reach depth of argumentation and the flaws
that sometimes arise from this public opinion building-up processes.

2. � Supervised Sentiment Analysis (SSA)

Sentiment analysis (hereinafter, also referred to as SA) is one of the main
techniques used to study textual data at a small and large scale in social sci-
ences and communication research. The main purpose of this methodology

1  Scripts and documentation can be downloaded from: https://github.com/carlosarcila/auto-
cop_en_distributed

C.Arcila, F.Ortega, M.Álvarez y M. Vicente � Análisis distribuido...   117

EMPIRIA. Revista de Metodología de Ciencias Sociales. N.o 42 enero-abril, 2019, pp. 113-136.
ISSN: 1139-5737, DOI/empiria.42.2019.23254

is to recognize and evaluate the underlying emotions provided in the textual
sources analyzed through their syntactic structure. These texts are subsequently
classified, for example, into positive, negative or neutral. In the last years, this
methodology has been mainly applied to the interpretation and analysis of social
media texts, such as a given textual corpus from Twitter. These researches are
usually achieved by examining the vocabulary of a text with a computer using a
lexicon-based “dictionary”, which processes, recognizes and evaluates the emo-
tional tone behind the message. Sentiment analysis is often confused with opin-
ion mining. Indeed, the latter is applied to detect polarity, and the identification
of emotions is often used for the same purpose (Cambria, Schuller, Liu, Wang &
Havasi, 2013); both techniques are different but complementary.

Identifying the prevailing sentiment in a written text is a complex task,
even for a well-trained human brain. Therefore, automated sentiment analysis
requires a constant and sharpened development that has been tackled from two
main standpoints: semantic approaches (Turney, 2002), and machine learn-
ing techniques (Pang, Lee & Vaithyanathan, 2002). Semantic approaches are
characterized by the use of sentiment dictionaries (lexicons) oriented towards
polarity or opinion. These systems pre-process the text and divide it into words,
subsequently verifying the presence of lexicon terms, in order to assign the text’s
polarity by adding the weighted polarity values of the terms (“sad” = -3; “happy”
= +3). Additionally, these systems also include a fairly advanced treatment of
modifiers (such as very, little or extremely), which increase or reduce polarity
of the terms they are related to, and they include inverters or negators (such as
not or neither), which invert the polarity of the word they are associated with.
This was the method used by Turney (2002), who pioneered the application of
automated sentiment analysis, which in this case focused on analyzing reviews
on services and products.

As opposed to manual SA using human codifiers, or to computer-assisted
automated analysis using dictionaries, Supervised Sentiment Analysis (SSA) ap-
plies supervised machine learning processes to generate models based on pre-
annotated data. The aim is to predict, with a significant degree of reliability, the
underlying sentiment in messages. This procedure uses classification algorithms,
and their implementation in communicational processes allows for a fast analysis
of communicational texts, thus avoiding any bias stemming from codifiers or
lexicons with categories, which on an a priori basis are incapable of detecting
subjects or topics, the context, or irony-sarcasm for example. SSA allows for
transforming the classification model throughout the predictive process if such
model is fed with additional and enriching annotated texts enhancing the adjust-
ment process. One of the first approaches to this methodology was shown in the
work of Pang et al. (2002), where supervised machine learning was applied to
sentiment analysis of polarized reviews of movies, rating such reviews as posi-
tive or negative. Bermingham and Smeaton (2010) carried out a study on how
short-length documents suggest that the sentiment they contain is more compact
and explicit. Other researchers, such as Bakliwal, Arora, Madhappan, Kapre,
Singh and Varma (2012) have focused on developing a function that allows for

118	 C.Arcila, F.Ortega, M.Álvarez y M. Vicente � Análisis distribuido...

EMPIRIA. Revista de Metodología de Ciencias Sociales. N.o 42 enero-abril, 2019, pp. 113-136.
ISSN: 1139-5737, DOI/empiria.42.2019.23254

tweet sentiment identification and classification, using a corpus of pre-annotated
tweets.

SSA involves training a model with texts examples in order to summarize
their syntactic structures using their words or sentences as features. Scholars
that are familiar with Python can easily train a Naïve Bayes classifier for posi-
tive/negative previous labeled messages (training set) taking only adjectives as
features for the models in few lines adapted from Kinsley (2017):

>>> import nltk
>>> import random
>>> from nltk.tokenize import word_tokenize
>>> from nltk.classify.scikitlearn import SklearnClassifier
>>> from sklearn.Naïve_bayes import MultinomialNB, BernoulliNB
>>> positive_messages = open(“positive.txt”,”r”).read()
>>> negative_messages = open(“negative.txt”,”r”).read()
>>> all_words = []
>>> documents = []
>>> allowed_word_types = [“J”]
>>> for p in positive_messages.split(‘\n’):
 	 documents.append((p, “pos”))
 	 words = word_tokenize(p)
 	 pos = nltk.pos_tag(words)
 	 for w in pos:
 	 if w[1][0] in allowed_word_types:
 	all_words.append(w[0].lower())
>>> for p in negative_messages.split(‘\n’):
 	 documents.append((p, “neg”))
 	 words = word_tokenize(p)
 	 pos = nltk.pos_tag(words)
 	 for w in pos:
 	 if w[1][0] in allowed_word_types:
 	all_words.append(w[0].lower())
>>> all_words = nltk.FreqDist(all_words)
>>> word_features = list(all_words.keys())[:5000]
>>> def find_features(document):
 	 words = word_tokenize(document)
 	 features = {}
 	 for w in word_features:
 	 features[w] = (w in words)
 	 return features
>>> featuresets = [(find_features(rev), category) for (rev, category) in
documents]
>>> random.shuffle(featuresets)
>>> testing_set = featuresets[10000:]

C.Arcila, F.Ortega, M.Álvarez y M. Vicente � Análisis distribuido...   119

EMPIRIA. Revista de Metodología de Ciencias Sociales. N.o 42 enero-abril, 2019, pp. 113-136.
ISSN: 1139-5737, DOI/empiria.42.2019.23254

>>> training_set = featuresets[:10000]
>>> classifier = nltk.NaïveBayesClassifier.train(training_set)

In any case, even when SSA has not been completely accurate, nor has pro-
vided relevant or influential findings in Twitter analysis (Madlberger & Alman-
sour, 2014), this technique has been recently applied to predict events in various
domains (Kranjc et al, 2015; Preethi & Uma, 2015) such as finance (Smailović
et al., 2013), social networks (Sluban et al., 2015) and election results (Smailović
et al., 2015), with a more than promising prediction accuracy. In fact, in the last
decade there has been an ever-increasing growth of SSA, particularly in the so-
cial and political science domain. Increasingly more experiments are based on
this methodology-technique due to its comparative robustness. It is relevant to
note that within communication and audience studies, there are early applica-
tions related to communicational analysis in social media. One of the few proven
models is that of Bakliwal, Foster, Van der Puil, O’Brien, Tounsi and Hughes
(2013), who put forward a sentiment analysis model with a political orientation
based on supervised machine learning. The transition from and the dialogue
with conventional Media Studies and Communication Research are still pending,
as progress in these research approaches is not being leaded by Communication
scholars yet. Our scientific discipline would benefit from this dialogue with other
scientific and technical fields, as a way to increase our impact and efficacy.

A very good example of this dialogue is the work by Smailović et al. (2015)
who monitored the sentiments in Twitter during the Bulgarian parliamentary
elections in May 2013. The authors initially collected examples of general Bul-
garian tweets (N=29,433) and political Bulgarian tweets (N=10,300), and man-
ually classified the sentiment of these messages to build the training corpus and
generate the machine learning models. Using real-time analysis during the elec-
tions, they found that negative sentiments about political parties prevailed before
and after the elections. Moreover, they use sentiment analysis to determine how
social media data can help to predict electoral results and found that the differ-
ence between the negative and positive tweets for political parties closely match
the final of voting. The study clearly shows how this technique can be used to
anticipate social phenomena and is indeed compatible with social, political and
behavioral analysis.

3. � Real-time analytics in Communication and
Audience Research

As computational methods related to data mining evolve, and as automated
and supervised sentiment analysis techniques focused on social media become
more challenging, communication science and audience research are increas-
ingly becoming more interested in applying these methods and techniques. Their
huge potential lies in their ability to calibrate and build advanced real-time indi-
cators of communicational content. Under this approach, researchers can imple-

120	 C.Arcila, F.Ortega, M.Álvarez y M. Vicente � Análisis distribuido...

EMPIRIA. Revista de Metodología de Ciencias Sociales. N.o 42 enero-abril, 2019, pp. 113-136.
ISSN: 1139-5737, DOI/empiria.42.2019.23254

ment streaming analytics by observing sentiment in sites like Twitter regarding
specific users, current topics or hashtags, which allows for making predictions
associated to social, political, economic, cultural processes related to relevant
events. Previous studies have used historical Twitter data to make predictions,
such as that of Choy, Cheong, Laik and Shung (2011) who applied dictionary-
based sentiment analysis to predict the vote percentage that an individual candi-
date would receive in the Singapore presidential election of 2011. Bermingham
and Smeaton (2011) also attempted to use Twitter to predict election results;
they tried to predict the electoral outcome of the 2011 Irish general election
using a supervised sentiment classifier. However, there are other attempts to
make predictions using streaming analytics in Twitter. Whereas the historical
sentiment analysis takes days, or even weeks, to be completed, real-time senti-
ment analysis in Twitter data delivers or returns results almost continuously and
immediately. One of the pioneering works in this area was fostered by Wang,
Can, Kazemzadeh, Bar and Narayanan (2012), who came up with a system for
real-time twitter sentiment analysis of the 2012 US presidential election cycle.
Their model instantly interprets results of how certain events can affect public
opinion. Reducing the time gap between data collection and analysis is one of
the pending challenges for Social Sciences, as one of the traditional critiques to
our research points to a decalage between the point in time when things occur
and the point in time when we, scholars, present our findings and concussions.

As we previously discussed, SSA is a central tool in order to shape positive
and negative messages throughout their communication value chain. This meth-
od of analysis can also allow predicting sentiment in real-time communicational
events, like political debates, or crisis communication management on various
topics. However, there is a telling lack of real-time research and methodological
applications in communication and audience studies, and even more so regard-
ing sentiment analysis with streaming technologies based on supervised machine
learning. Streaming analytics can be highly useful for audience and communi-
cation researchers (Pond, 2016; Bastos, Mercea & Charpentier, 2015; Driscoll,
& Walker, 2014; Li & Xu, 2016; Kanejo & Tanai, 2016; Coletto et al., 2016),
consulting firms and private enterprises in the fields of public opinion, market-
ing and political and governmental studies. Moreover, combined to SSA they
can be helpful to study large amounts of tweets, by performing real-time senti-
ment analyses overcoming the limitations inherent to lexicon-based approaches.
The aforementioned process to monitor tweets in streaming can improve com-
municational processes forecasts, and it can help in testing both the traditional
and emerging approaches in public communicational opinion research requiring
longitudinal data analysis in time series. This technique can also help in testing
hypotheses in experimental studies requiring real-time entries to create or adapt
stimuli, and thus validating exploratory theoretical models. These systems can
bring comparative advantages for socio-political and communicational research.
They can enable communication analysis teams to go a step ahead in terms of
early detection and interpretation of the effectiveness of their communication
strategies almost in real time.

C.Arcila, F.Ortega, M.Álvarez y M. Vicente � Análisis distribuido...   121

EMPIRIA. Revista de Metodología de Ciencias Sociales. N.o 42 enero-abril, 2019, pp. 113-136.
ISSN: 1139-5737, DOI/empiria.42.2019.23254

In Python, communication and audience scholars can implement the library
Tweepy and use few lines of code adapted from Kinsley (2017) to connect to the
Twitter Stream and run SSA in real time to monitor sentiments through messag-
es containing a specific hashtag (i.e. #Trump) with a specific level of confidence:

>>> from tweepy import Stream, OAuthHandler
>>> from tweepy.streaming import StreamListener
>>> import json
>>> import classifier as s
>>> ckey=“”, csecret=“”, atoken=“”, asecret=””
>>> class listener(StreamListener):
 	 def on_data(self, data):
			 all_data = json.loads(data)
			 tweet = all_data[“text”]
			 sentiment_value, confidence = s.sentiment(tweet)
			 print(tweet, sentiment_value, confidence)
			 if confidence*100 >= 80:
				 output = open(“twitter-out.txt”,”a”)
				 output.write(sentiment_value)
				 output.write(‘\n’)
				 output.close()
			 return True
 	 def on_error(self, status):
 	 print(status)
>>> auth = OAuthHandler(ckey, csecret)
>>> auth.set_access_token(atoken, asecret)
>>> twitterStream = Stream(auth, listener())
>>> twitterStream.filter(track=[“#Trump”])

In sum, SSA can also be applied to monitor social media sites in real time. It
takes advantage of the new computational methods, which simplify and stream-
line automatization processes, but as the same time has important implications
for the elaboration of research designs in communication and audience studies.

4. �Distri buted SSA for Big Data Problems

Bringing together large-scale supervised sentiment analysis and streaming
analytics is a powerful approach to face big data challenges in communication
research because it allows scholars to content analyze sentiments based on con-
text with no restrictions of space (number of messages) and time (real-time and
long periods with no interruption). In this section, we explain in detail how to
overtake local computing limitations and use this computational method to face
big data challenges using open source software with the data available from the
Application Program Interface (API) of Twitter that nowadays provides freely

122	 C.Arcila, F.Ortega, M.Álvarez y M. Vicente � Análisis distribuido...

EMPIRIA. Revista de Metodología de Ciencias Sociales. N.o 42 enero-abril, 2019, pp. 113-136.
ISSN: 1139-5737, DOI/empiria.42.2019.23254

access to an important amount of semi-structured social data (Makice, 2009).
We show how scholars can: (i) train machine learning models with parallelized
algorithms using previously labeled tweets; (ii) connect to the streaming of
Twitter and filter relevant messages; (iii) predict sentiments in real-time in a dis-
tributed context; and (iv) store the results in a flexible database and visualize the
outcomes. This method requires a set of tools such as Python 3.5, Apache Spark
2.1, Apache Kafka 2.11, Apache Zookeeper 3.4.10 and MongoDB 3.4, and can
be used in a local computer but is already prepared to scale up in the cloud in
any academic or commercial service (such Amazon Web Services, AWS). A
summary of the algorithms and tools to run supervised sentiment analysis in real
time over big amount of tweets is shown in figure 1.

Figure 1. Tools and ML algorithms used in distributed supervised sentiment analysis of Twitter

Firstly, the most important step in supervised sentiment analysis is to ob-
tain a good training dataset to train the models. Communication and audience
researchers have a great experience in content analysis, which implies that la-
beling the initial dataset will be easy and labels will be reliable. To download
raw tweets, scholars can use the Twitter API REST that allows the collection of
recent messages in JSON format, filtering the search by any of the unstructured
fields of the tweet (i.e. “text”, “language”, “location”, etc.). Later, trained and
independent coders must classify the messages (the “text” field) into negative
or positive (or more specific labels such as “neutral”, “strongly negative”, etc.)
according to traditional content analysis approach (Krippendorf, 2004; Neuen-
dorf, 2016) to obtain adequate levels of reliability (>0,7 Krippendorf’s Alpha or
similar measures)2. There is not a minimum or maximum number of messages
for the training dataset, but the algorithms will learn better if they have good

C.Arcila, F.Ortega, M.Álvarez y M. Vicente � Análisis distribuido...   123

EMPIRIA. Revista de Metodología de Ciencias Sociales. N.o 42 enero-abril, 2019, pp. 113-136.
ISSN: 1139-5737, DOI/empiria.42.2019.23254

quality examples, or in other words, examples that really express that a message
can be considered positive or negative. Each algorithm contains a specific bias
(Kelleher, Mac Namee & D’Arcy, 2015), so the approach in supervised senti-
ment analysis is to use the one that is more predictive.

In a local computer, scholars can use the library Scikit-Learn in Python to
train ML models (Raschka, 2015) using well known algorithms such as Original
Naïve Bayes, Naïve Bayes for multimodal models, Naïve Bayes for multivariate
Bernoulli models, Logistic Regression, Linear Support Vector Classification or
Linear classifiers with stochastic gradient descent -SGD- training. However, if
they have a huge training dataset that requires a lot of computational memory,
they can train the ML models in a distributed context with Apache Spark (Pen-
treath, 2015) using the packages MLlib and PySpark. Not all algorithms are
available in a parallelized format, but researchers can still implement Logistic
Regression, Naïve Bayes and Support Vector Machines (SVM), and evaluated
which gives the best accuracy. When working with unstructured data (like the
text of a tweet) researchers must previously use natural language processing
(NLP) techniques to tokenize words and convert messages into features vectors
(Bird, Klein & Loper, 2009), which is the data that the algorithms will work
with.

NLP includes extracting informative words based on a tag-of-speech ap-
proach, so researchers can decide which kind of word (verbs, adjectives, ad-
verbs, etc.) will train the models. Once these words are selected, they must be
grouped into an array, resulting in a sequence of words of the selected type, for
example, if adjectives are selected, each tweet will be converted into an array
of the adjectives of the tweet. This approach is more complex than the usual
positive-or-negative word classification, as it considers sequences of words,
which is useful, for example to identify degrees of positiveness and negativeness
and more complex constructions such as the irony, that is impossible to identify
with just the classification of words in negative or positive, as it usually has for
example positive adjectives but in a specific sequence which really signifies
a negative comment. This technique allows to not only considering the word
but also the other ones that appears in the same tweet. The disadvantage is that
much bigger training dataset is required. Going more into the detail of what is
happening in the inside of the algorithm, every unique adjective present in every
tweet must be registered in a dictionary of words. With this dictionary of unique
words, each tweet can be transformed into an instance, an array of 1s and 0s, 1
when the word is present on the tweet and 0 otherwise. The result is a disperse
array (an array with large amount of 0s and few 1s), and with as many indepen-
dent variables as words in the dictionary. The next code shows how communica-
tion scholars can parallelize in Apache Spark the model training stage with the
Naïve Bayes algorithm:

>>> import nltk, random, pyspark
>>> from nltk.tokenize import word_tokenize
>>> from nltk.classify.scikitlearn import SklearnClassifier

124	 C.Arcila, F.Ortega, M.Álvarez y M. Vicente � Análisis distribuido...

EMPIRIA. Revista de Metodología de Ciencias Sociales. N.o 42 enero-abril, 2019, pp. 113-136.
ISSN: 1139-5737, DOI/empiria.42.2019.23254

>>> import findspark
>>> findspark.init()
>>> sc = pyspark.SparkContext(appName=”myAppName”).
getOrCreate()
>>> spark = pyspark.sql.SparkSession(sc)
>>> sc._conf.getAll()
>>> allowed_word_types = [“JJ”]
>>> rdd_positive = sc.textFile(“positive.txt”)
>>> rdd_negative = sc.textFile(“negative.txt”)
>>> rdd_all_tokenized_words = rdd_positive.map(lambda tweet: (nltk.
pos_tag(word_tokenize(tweet)),1)).union(rdd_negative.map(lambda
tweet: (nltk.pos_tag(word_tokenize(tweet)),0)))
>>> rdd_selected_words = rdd_all_tokenized_words.map(lambda
review: \
([word[0] for word in review[0] if word[1] in allowed_word_
types],review[1]))
>>> rdd_all_words = rdd_selected_words.flatMap(lambda words:
words[0]).distinct()
>>> rdd_all_broadcast_words = sc.broadcast(rdd_all_words.collect())
>>> rdd_featured_instances = rdd_selected_words.map(lambda
instance: (find_features(instance[0]), instance[1]))
>>> def find_features(instance):

 features = []
 for word in rdd_all_broadcast_words.value:
 if word in instance:
 features.append(1)
 else:
 features.append(0)
 return features

>>> rdd_all_words.coalesce(1, True).saveAsTextFile(“all_words”)
>>> rdd_training_set = rdd_featured_instances.map(lambda instance:
LabeledPoint(label=instance[1], features=instance[0]))
>>> from pyspark.mllib.classification import NaïveBayes,
NaïveBayesModel
>>> from pyspark.mllib.util import MLUtils
>>> NB_model = NaïveBayes.train(rdd_training_set, 1.0)

Secondly, the Twitter API STREAMING allows instant access to 1% of the
whole stream. This percentage might seem a small and an insignificant amount
of tweets, but the true is that when we filter the tweets (i.e. only containing a spe-
cific hashtag, such as #Trump or #ClimateChange) we will not exceed this 1%
limit in most of the cases. To locally connect to the stream, scholars can obtain
the necessary code access (API key, API secret, Access toke and Access token
secret) by registering to the Twitter API and use the library Tweepy for Pyhton
(Roesslein, 2009) that simplifies the connection and works fine in a local compu-

C.Arcila, F.Ortega, M.Álvarez y M. Vicente � Análisis distribuido...   125

EMPIRIA. Revista de Metodología de Ciencias Sociales. N.o 42 enero-abril, 2019, pp. 113-136.
ISSN: 1139-5737, DOI/empiria.42.2019.23254

ter. If communication and audience researchers are dealing with a huge amount
of messages for a long period of time and decide to implement large-scale and
real-time collection, this library still works but needs to be implemented in a re-
mote machine in order to continuously produce the messages that will be analy-
zed afterwards. This process requires the execution of Apache Kafka (together
with Zookeeper), so the researcher can remotely connect to the Twitter API and
send the stream to a kafka producer in order to make data available from a kafka
broker. This means that large-scale supervised sentiment analysis in real-time
needs a virtual computer with Apache Kafka dedicated to be connected to the
Twitter stream in order to continuously produce a new flux of parsed and filtered
messages that can later be accessed from different nodes to execute the tone
evaluation. In this stage, communication and audience researchers can monitor
or even save the parsed tweets, which are a potential advantage if they decide to
run any kind of exploratory, qualitative or on-the-way analysis for quick inter-
ventions. This code summarizes the distributed implementation of this producer
in Spark for real-time tweets about #Trump:

>>> import json, tweepy, configparser
>>> from kafka import SimpleProducer, KafkaClient
>>> twitter_credentials = {“consumer_key”: “”, “consumer_secret”:
“”, “access_key”: “”, “access_secret”: “”}
twitter_parameters = {“hashtag”: [“#Trump”]}
>>> kafka_producer_parameters = {“batch_send_freq_t”:
1000,”batch_send_freq_n”: 10,”topic”: twitter_parameters[“hashtag”]
[0][1:],”connection_string”: “localhost:9092”}
>>> class TwitterStreamingListener(tweepy.StreamListener):

 def __init__(self, api, kafka_producer_parameters):
 self.api = api
 self.kafka_producer_parameters = kafka_producer_
parameters
 super(tweepy.StreamListener, self).__init__()
 client = KafkaClient(kafka_producer_
parameters[“connection_string”])
 self.producer = SimpleProducer(client, async = True,
 batch_send_every_n = kafka_producer_
parameters[“batch_send_freq_t”],
 batch_send_every_t = kafka_producer_
parameters[“batch_send_freq_n”])
 def on_status(self, status):
 msg = status.text.encode(‘utf-8’)
 try:
 self.producer.send_messages(kafka_producer_
parameters[“topic”], msg)
 except Exception as e:
 print(e)

126	 C.Arcila, F.Ortega, M.Álvarez y M. Vicente � Análisis distribuido...

EMPIRIA. Revista de Metodología de Ciencias Sociales. N.o 42 enero-abril, 2019, pp. 113-136.
ISSN: 1139-5737, DOI/empiria.42.2019.23254

 return False
 return True
 def on_error(self, status):
 # Error in Kafka producer
 print(status)
 return True
 def on_timeout(self):
 print(“Timeout on twitter API”)
 return True

>>> twitter_parameters[“hashtag”]
>>> auth = tweepy.OAuthHandler(twitter_credentials[“consumer_
key”], twitter_credentials[“consumer_secret”])
>>> auth.set_access_token(twitter_credentials[“access_key”], twitter_
credentials[“access_secret”])
>>> api = tweepy.API(auth)
>>> stream = tweepy.Stream(auth, listener =
TwitterStreamingListener(api, kafka_producer_parameters))
>>> stream.filter(track=twitter_parameters[“hashtag”])

The third step for large-scale supervised sentiment analysis in real time is to
predict the sentiments of the ongoing flux of messages we are producing; using
the models we already trained with the parallelized algorithms. The models are
kept as special files to save time, but they can be updated any time repeating step
two and replacing the files. In this stage, researchers must run a set of virtual
machines and implement an Apache Spark context if they really want to face
big data challenges and keep the analysis fast and steady. Specifically, at this
point the method consists in starting a streaming context in Spark to connect to
the Kafka producer described above with a Kafka consumer to predict the score
of tweet with the MLlib algorithms. To be able to classify the new tweets, these
messages have to pass through the same process the training instances passed
(tokenize words and select them based on tag of speech). To work in real time,
all the tweets must also be gotten from the Kafka stream and save the texts to
a DStream, a sequence of resilient distributed datasets (RDDs) for each period
of time, which is the primary data structure of Apache Spark. All these phases
allow executing the sentiment prediction in parallel instances, using the model
and the word list produced with the ML algorithms during the training stage,
and printing each prediction with standard output. Parallel computing and elastic
computing capacities (most of academic and commercial services can be con-
figured to add/remove virtual machines automatically based on demand) give
communication and audience scholars a unique opportunity to overtake space
and time limitations that traditional and “small data” computational methods
have when dealing with sentiment analysis. This is a simplified code for the con-
sumer with a call to three ML algorithms (Logistic Regression, Support Vector
Machines and Naïve Bayes) and an order to choose which is the best to classify
the tweets:

C.Arcila, F.Ortega, M.Álvarez y M. Vicente � Análisis distribuido...   127

EMPIRIA. Revista de Metodología de Ciencias Sociales. N.o 42 enero-abril, 2019, pp. 113-136.
ISSN: 1139-5737, DOI/empiria.42.2019.23254

>>> import findspark, pyspark, os, datetime, nltk, random
>>> findspark.init()
>>> from pyspark.sql.functions import lit
>>> from pyspark import SparkConf
>>> SUBMIT_ARGS = “--packages org.apache.spark:spark-
streaming-kafka-0-8-assembly_2.11:2.1.0,org.mongodb.spark:mongo-
spark-connector_2.10:2.0.0 pyspark-shell”
>>> os.environ[“PYSPARK_SUBMIT_ARGS”] = SUBMIT_ARGS
>>> conf = (SparkConf().set(“spark.mongodb.input.uri”, “mongodb://
localhost:27017/twitter.tests”).set(“spark.mongodb.output.uri”,
“mongodb://localhost:27017/twitter.tests”))
>>> sc = pyspark.SparkContext(appName=”streaming_app”,
conf=conf).getOrCreate()
>>> spark = pyspark.sql.SparkSession(sc)
>>> from pyspark.streaming import StreamingContext
>>> ssc = StreamingContext(sc, 10)
>>> kafka_configuration_params = {“topic”:
[“BigData”],”connectionstring”: “localhost:9092”}
>>> from pyspark.streaming.kafka import KafkaUtils
>>> directKafkaStream = KafkaUtils.createDirectStream(ssc,
kafka_configuration_params[“topic”],{“metadata.broker.list”: kafka_
configuration_params[“connectionstring”]})
>>> from pyspark.mllib.classification import NaïveBayesModel
>>> classif_LR_model = LogisticRegressionModel.load(sc, “LR_
model”)
>>> classif_SVM_model = SVMModel.load(sc, “SVM_model”)
>>> classif_NB_model = NaïveBayesModel.load(sc, “NB_model”)
>>> LR_model = classif_LR_model
>>> SVM_model = classif_SVM_model
>>> NB_model = classif_NB_model
>>> from nltk.tokenize import word_tokenize
>>> allowed_word_types = [“JJ”]
>>> rdd_all_words = sc.textFile(“all_words/part-00000”)
>>> rdd_broadcast_all_words = sc.broadcast(rdd_all_words.collect())
>>> def convert_tweet_to_instance(tweets):

rdd_tweets = tweets.map(lambda tweet: [word[0] for word in
nltk.pos_tag(word_tokenize(tweet)) if word[1] in allowed_
word_types])

 rdd_instances = rdd_tweets.map(lambda instance: find_
features(instance))
 return rdd_instances

>>> def find_features(instance):
 features = []
 for word in rdd_broadcast_all_words.value:
 if word in instance:

128	 C.Arcila, F.Ortega, M.Álvarez y M. Vicente � Análisis distribuido...

EMPIRIA. Revista de Metodología de Ciencias Sociales. N.o 42 enero-abril, 2019, pp. 113-136.
ISSN: 1139-5737, DOI/empiria.42.2019.23254

 features.append(1)
 else:
 features.append(0)
 return features

>>> rdd_input = directKafkaStream.map(lambda output: output[1])
>>> classification = convert_tweet_to_instance(rdd_input).map(lambda
instance: 1 if (LR_model.predict(instance) + int(NB_model.
predict(instance)) + SVM_model.predict(instance))>=1 else -1)
>>> classification_each = convert_tweet_to_instance(rdd_input).
map(lambda instance: [LR_model.predict(instance), NB_model.
predict(instance), SVM_model.predict(instance)])
>>> def save_to_db(rdd, collection):

df = rdd.zipWithUniqueId().toDF().withColumn(‘timestamp’
,lit(datetime.datetime.utcnow())).toDF(‘label’,’in_batch_id’,
‘timestamp’)
df.write.format(“com.mongodb.spark.sql.DefaultSource”).
mode(“append”).option(“database”,”twitter”).
option(“collection”,collection).save()

>>> classification.foreachRDD(lambda rdd: save_to_db(rdd,”labels”))
>>> rdd_input.foreachRDD(lambda rdd: save_to_db(rdd, “tweets”))
>>> ssc.start()

Finally, the results of distributed supervised sentiment analysis must be sto-
red and visualized. When working with streaming analytics, all results are stored
by periods of time, printing each batch separately. The first way to store the
tweets and their predicted value (and any other extra data scholars wish to keep
for further research) is to save the results in plain text files (tab/comma and line
separated). However, even when social scientists might be still unfamiliar with
non-relational databases, the best way to store Twitter messages and their predic-
ted sentiments is through a NoSQL database, either SQL or NoSQL, depending
on the data, such as PostgreSQL or MongoDB, for example. In contrast with
relational databases, these NoSQL databases are more flexible and less restricti-
ve, which allows scholars to scale up their analysis when dealing with big data.
The above code described for the consumer includes commands for distributed
storage and the flow of all this process is described in figure 2.

C.Arcila, F.Ortega, M.Álvarez y M. Vicente � Análisis distribuido...   129

EMPIRIA. Revista de Metodología de Ciencias Sociales. N.o 42 enero-abril, 2019, pp. 113-136.
ISSN: 1139-5737, DOI/empiria.42.2019.23254

Figure 2. Flow of data during distributed and real-time supervised sentiment analysis of Twitter

On the other hand, scholars can use different Pyhton libraries such as Mat-
plotlib or Bokeh, to visualize the ongoing sentiments. In particular, Bokeh is a
powerful tool to visualize the trends if we have stored the results in MongoDB.
All scripts will visualize batches of tweets, but scholars can control parameters
such as the update frequency (time to wait to poll the database for the next
batch) or the number of points that can be simultaneously shown on the screen
(to produce averages of minutes, hours, days, months, etc.). Control of parame-
ters and flexible visualization of large-scale sentiments on Twitter can enhance
social research designs especially when scholars need to monitor big amounts of
tweets as fast as they are produced. Figure 3 shows a visualization of distributed
sentiment analysis of tweets containing the hashtag “#Trump” in real time, and
the next code show scholars how to execute this task with Bokeh reading from
MongoDB:

>>> import time, pymongo, pprint
>>> import numpy as np
>>> from bokeh.models.sources import ColumnDataSource
>>> from bokeh.plotting import figure
>>> from bokeh.io import output_notebook, show, push_notebook
>>> from datetime import datetime, timedelta
>>> from bson.objectid import ObjectId
>>> SERVER_URL = “mongodb://localhost:27017”
>>> client = pymongo.MongoClient(SERVER_URL)
>>> db = client.twitter
>>> coll = db.labels
>>> def compute_batch_score(batch):

 score = 0
 for result in batch:
 score = score + result[“label”]
 return score

>>> source = ColumnDataSource(dict(x=[], y=[]))
>>> my_figure = figure(plot_width=800, plot_height=400)
>>> my_figure.line(source=source, x=”x”, y=”y”, line_width=2,
alpha=.85, color=’blue’)
>>> handle = show(my_figure, notebook_handle=True)
>>> new_data = dict(x=[0], y=[0])
>>> x = []
>>> y = []
>>> step = 0
>>> period = 2 # in seconds
>>> n_show = 300 # number of points to keep and show
>>> timenow = datetime.utcnow() - timedelta(hours=2, seconds=10)
>>> while True:

 batch = coll.find({‘timestamp’:{‘$gt’: timenow}}).

130	 C.Arcila, F.Ortega, M.Álvarez y M. Vicente � Análisis distribuido...

EMPIRIA. Revista de Metodología de Ciencias Sociales. N.o 42 enero-abril, 2019, pp. 113-136.
ISSN: 1139-5737, DOI/empiria.42.2019.23254

sort([(“timestamp”, -1)])
 latest_value = new_data[‘y’][0]
 new_data = dict(x=[step], y=[latest_value + compute_batch_
score(batch)])
 source.stream(new_data, n_show)
 push_notebook(handle=handle)
 step += 1
 timenow = datetime.utcnow() - timedelta(hours=2,
seconds=10)
 time.sleep(period)

Figure 3. Streaming visualization of supervised sentiment analysis to tweets containing “#Trump”

5. �Dis cussion and Conclusions

In this paper we have explained the relevance of supervised sentiment analy-
sis and streaming analytics in communication and audience research, and have
described the implementation of distributed supervised sentiment analysis, a
computational method that allow communication scholars and social scientists
to face the big data challenge of Twitter contents. This method overtakes the
disadvantages of other approaches orientated to computationally manage small
data in social media and gives communication and audience researchers a fair
overview of how cutting-edge technologies can be adapted to computational
social science.

The described method and its implementation is an open source free of
charge solution (except for the financial costs of the cloud computing service
such as AWS), giving the scholars the absolute power to adapt and modify all
parameters. However, there are some commercial products of companies such

C.Arcila, F.Ortega, M.Álvarez y M. Vicente � Análisis distribuido...   131

EMPIRIA. Revista de Metodología de Ciencias Sociales. N.o 42 enero-abril, 2019, pp. 113-136.
ISSN: 1139-5737, DOI/empiria.42.2019.23254

as Microsoft Azure or IBM Bluemix, that might also help scholars to scale their
distributed supervised sentiment analysis of tweets with more friendly interfa-
ces. Microsoft Azure nowadays offers a sentiment analysis service built on the
MPQA Subjectivity Lexicon (Wilson, Wiebe & Hoffmann, 2005), but can also
run scalable sentiment analysis with a machine learning algorithm (Two-Class
Support Vector Machine) written in R to predict opinion polarity in tweets.
Microsoft Azure runs real time sentiment analysis of tweets with Azure Stream
Analytics, but uses Sentiment140, an external classification method using machi-
ne learning algorithms (Go, Bhayani & Huang, 2009). On the other hand, IBM
Bluemix can run distributed sentiment analysis based on Spark (and Kafka),
and can as well connect to their own machine learning algorithm Watson Tone
Analyzer, built on neural networks to predict emotions (i.e. anger, fear, joy, sad-
ness, disgust), social tendencies (i.e. openness, conscientiousness, extraversion,
agreeableness, emotional range) and writing style (i.e. confident, analytical,
tentative) on the texts. These services on Microsoft Azure and IBM Bluemix are
mostly available for tweets written only in English. All these services are great
for unexperienced users that want to use already implemented solutions with the
restrictions each solution provides, the algorithms available and assuming the
cost of them. Even more friendly, they are still away from most of Audience
and Communication scholars research tooolkits, pointing out the need to combi-
ne conventional research methods with the innovations being developed in the
computational social sciences and digital humanities. This window is open and
a wider instruction of social scientists in these fields of knowledge is still requi-
red, as a way to increase our research effectiveness. Analyzing tweets is an open
door to explore what a given audience daily expresses, so getting closer to these
messages is a way to reduce the distance between what people think and do in
the public domain.

However, the approach we present on this paper is to create a custom en-
vironment that can be deployed on an academic cloud computing service or
in-house cluster, as well as in any other commercial provider such as Amazon
Web Services, Microsoft Azure or IBM Blue Mix, using just the virtual machi-
nes they provide. The main advantage of this approach is that the scholars can
deploy their own code and algorithms, and also scale and control the amount of
resources they need, which will have an impact on the cost of the study. Never-
theless, some knowledge on how to deploy the virtual machines, and configure
them in order to use the whole system is required, which can be a difficult task
for beginners in deployment operations.

Regarding the limitations of this paper, we stress that only three algorithms
were used for the distributed supervised sentiment analysis in Apache Spark,
and there was no probability classification, which, compared to the local mode
classification with Scikit-Learn, is a disadvantage, as the user cannot control
the minimum degree of certainty to classify each tweet. Some future develop-
ment can solve some of the previously explained limitation. For example, it is
necessary to introduce more degrees for classification or probabilistic results on
predictions. On the other hand, a major challenge is to simplify the deployment

132	 C.Arcila, F.Ortega, M.Álvarez y M. Vicente � Análisis distribuido...

EMPIRIA. Revista de Metodología de Ciencias Sociales. N.o 42 enero-abril, 2019, pp. 113-136.
ISSN: 1139-5737, DOI/empiria.42.2019.23254

of the whole system for the distributed analysis, which is another main limitation
of the present study. Other interesting points to consider can be the deployment
of the prediction models as microservices, as the data amount does not usually
require a Spark Streaming system and can be solved with a REST API in which
the tweet stream will be classified. This approach is interesting as it can simplify
the deployment and reduce the amount of resources used for the analysis.

However, distributed supervised sentiment analysis represents an innovative
computational method in communication science that can be adopted by diffe-
rent actors such as:

Communication and audience researchers: scholars can use this technique
to carry out descriptive, cross-sectional, longitudinal and experimental studies.

Firms engaged in public opinion studies: these companies may use the clas-
sifier to monitor opinion trends on communicational topics. In addition, they can
use this methodology to come up with advanced indicators of socioeconomic and
political state of the art within the digital society, notoriety of brands´, messa-
ges´, candidates’ “popularity and acceptance”, among others.

Communication consulting firms: these firms can use the classifier to supple-
ment their supervision and study of communicational facts that take place in
the country, in order to plan communication and political persuasion strategies
(brand, corporate or political marketing), particularly when sentiment analysis
and sentiment interpretation arising from communicational campaigns associated
to investment opportunities, political actions, social campaigns and initiatives as-
sociated may require proactive real-time analysis and conclusions for increased
effectiveness.

Political parties: political parties can use this technique to plan their actions
according to the existing sentiment on certain public topics on investment oppor-
tunities and political candidates suitability.

The challenges and opportunities seized by big data solutions, and particu-
larly by distributed supervised sentiment analysis in Audience or Communica-
tion Research, using the abovementioned techniques, leads to the conclusion that
we are witnessing a Data-Analysis-Revolution (DAR) regarding the analysis,
interpretation and management of communication initiatives run by stakehold-
ers in the digital communication value chain of fully connected society. The
weaknesses and threats, and more importantly the strengths and opportunities,
provided by these methodologies and techniques to communication and audience
researchers anticipate a deeper revolution in the scientific analysis of communi-
cation processes with the establishing of a computational communication sci-
ence, similar to other fields such as computational biology, where computational
methods have transformed the whole discipline. Under this idea, it is highly
relevant that computational communication scholars incorporate to their routines
the conceptual and technical skills explained in this article.

Distributed supervised sentiment analysis of Twitter messages is a supple-
mentary but necessary computational method to test and predict communication
patterns. In a context where the quality of communication, election or branding
research is subject to constant scrutiny and re-assessment by experts and public

C.Arcila, F.Ortega, M.Álvarez y M. Vicente � Análisis distribuido...   133

EMPIRIA. Revista de Metodología de Ciencias Sociales. N.o 42 enero-abril, 2019, pp. 113-136.
ISSN: 1139-5737, DOI/empiria.42.2019.23254

opinion based on their “inaccuracy,” this approach may appears as a “3D scan-
ner in real time” that can complement traditional analyses of representative
samples to predict communicational patterns. Additionally, real time supervised
sentiment analysis of messages for long time periods in Twitter and other digital
social networks will enable longitudinal analyses to detect changes in topics such
as “communicational incidences” and the various variables examined through-
out the relevant time period for a given subject-topic. Accordingly, one could
test the relationship between these changes and specific events, which would
also allow implementing policies based on research and data analysis on a more
proactive basis and with greater time reactivity. Large-scale algorithm patterns
and the understanding of their internal operation is a key issue for the develop-
ment and implementation of these methodologies within the big data landscape.
The interpretation and grasping of the computational method workflow by the
researcher may be of vital importance for the further understanding of the com-
plex decision taken process which may arise. Distributed supervised sentiment
analysis may provide for the time being that extra luminescence for the under-
standing of complex communicational processes which in our today technologi-
cal scenario require still the ability and expertise of human-brained supervision.

6. � Acknowledgements

The authors wish to express their gratitude to Fundación Universidad de Sa-
lamanca and Plan TCUE [2015-2017 Fase 2] for funding the project “Clasifica-
dor en tiempo real de opiniones políticas en español con técnicas de aprendizaje
automático (Auto-cop)”, in which we the developed all the methods and codes
explained in this paper. We also thank Javier Ramírez, Javier Jiménez Amores
and Sofía Trullenque for their valuable support.

7. � References

Arcila, C.; Ortega, F.; Jiménez, J. & Trulleque, S. (2017). Análisis supervisado de sen-
timientos políticos en español: Clasificación en tiempo real de tweets basada en
aprendizaje automático. El Profesional de la Información, 26 (5), 978-987.

Bakliwal, A., Foster, J., van der Puil, J., O’Brien, R., Tounsi, L., & Hughes, M. (2013,
June). Sentiment analysis of political tweets: Towards an accurate classifier. pp. 49-
58. Association for Computational Linguistics.

Bakliwal, A., Arora, P., Madhappan, S., Kapre, N., Singh, M., & Varma, V. (2012).
Mining sentiments from tweets. Proceedings of the WASSA, 12. pp. 11-18.

Bastos, M. T., Mercea, D., & Charpentier, A. (2015). Tents, tweets, and events: The in-
terplay between ongoing protests and social media. Journal of Communication,
65(2), 320-350. doi: 10.1111/jcom.12145

Bermingham, A., & Smeaton, A. F. (2011). On using Twitter to monitor political senti-
ment and predict election results. In: Proceedings of the Workshop on Sentiment
Analysis where AI meets Psychology (SAAIP), IJCNLLP 2011, pp. 2-10.

134	 C.Arcila, F.Ortega, M.Álvarez y M. Vicente � Análisis distribuido...

EMPIRIA. Revista de Metodología de Ciencias Sociales. N.o 42 enero-abril, 2019, pp. 113-136.
ISSN: 1139-5737, DOI/empiria.42.2019.23254

Bermingham, A., & Smeaton, A. F. (2010, October). Classifying sentiment in mi-
croblogs: is brevity an advantage?. In Proceedings of the 19th ACM international
conference on Information and knowledge management (pp. 1833-1836). ACM.

Bird, S., Klein, E., & Loper, E. (2009). Natural language processing with Python: ana-
lyzing text with the natural language toolkit. Sebastopol, CA: O’Reilly Media, Inc.

Bollen, J., Mao, H., & Pepe, A. (2011). Modelling public mood and emotion: Twitter
sentiment and socio-economic phenomena. ICWSM, 11, 450-453.

Cambria, E., Schuller, B., Liu, B., Wang, H., & Havasi, C. (2013). Knowledge-based
approaches to concept-level sentiment analysis. IEEE Intelligent Systems, 28(2), 12-
14. doi: 10.1109/MIS.2013.45

Choy, M., Cheong, M. L., Laik, M. N., & Shung, K. P. (2011). A sentiment analysis of
Singapore Presidential Election 2011 using Twitter data with census correction.
Report in arXiv preprint arXiv:1108.5520.

Cobb, W. N. W. (2015). Trending now: using big data to examine public opinion of
space policy. Space Policy, 32, 11-16. doi: 10.1016/j.spacepol.2015.02.008

Coletto, M., Esuli, A., Lucchese, C., Muntean, C. I., Nardini, F. M., Perego, R., & Ren-
so, C. (2016, August). Sentiment-enhanced multidimensional analysis of online so-
cial networks: perception of the mediterranean refugees crisis. In Advances in Social
Networks Analysis and Mining (ASONAM), 2016 IEEE/ACM International Confer-
ence on (pp. 1270-1277). IEEE.

Driscoll, K., & Walker, S. (2014). Big data, big questions| working within a black box:
Transparency in the collection and production of big twitter data. International Jour-
nal of Communication, 8, 20. doi: 1932–8036/20140005

Feldman, R. (2013). Techniques and applications for sentiment analysis. Communica-
tions of the ACM, 56(4), 82-89.

Go, A., Bhayani, R., & Huang, L. (2009). Twitter sentiment classification using distant
supervision. CS224N Project Report, Stanford, 1, 12.

Kaneko, T., & Yanai, K. (2016). Event photo mining from twitter using keyword bursts
and image clustering. Neurocomputing, 172, 143-158. doi: 10.1016/j.neu-
com.2015.02.081

Kelleher, J. D., Mac Namee, B., & D’Arcy, A. (2015). Fundamentals of machine lear-
ning for predictive data analytics: algorithms, worked examples, and case studies.
Cambridge, MA: MIT Press.	

Kinsley, H. (2017). PythonProgramming. https://pythonprogramming.net/
Kranjc, J., Smailović, J., Podpečan, V., Grčar, M., Žnidaršič, M., & Lavrač, N. (2015).

Active learning for sentiment analysis on data streams: Methodology and workflow
implementation in the ClowdFlows platform. Information Processing & Manage-
ment, 51(2), 187-203. doi: 10.1016/j.ipm.2014.04.001

Krippendorff, K. (2004). Content analysis: An introduction to its methodology. Thou-
sand Oaks, CA: Sage.

Leetaru, K. (2012). Data mining methods for the content analyst: An introduction to the
computational analysis of content. New York: Routledge.

Li, J., & Xu, H. (2016). Suggest what to tag: Recommending more precise hashtags ba-
sed on users’ dynamic interests and streaming tweet content. Knowledge-Based
Systems, 106, 196-205. doi: 10.1016/j.knosys.2016.05.047

Madlberger, L., & Almansour, A. (2014, November). Predictions based on Twitter—A
critical view on the research process. In Data and Software Engineering (ICODSE),

C.Arcila, F.Ortega, M.Álvarez y M. Vicente � Análisis distribuido...   135

EMPIRIA. Revista de Metodología de Ciencias Sociales. N.o 42 enero-abril, 2019, pp. 113-136.
ISSN: 1139-5737, DOI/empiria.42.2019.23254

2014 International Conference on (pp. 1-6). IEEE. pp. 1-6. doi: 10.1109/ICOD-
SE.2014.7062667

Makice, K. (2009). Twitter API: Up and running: Learn how to build applications with
the Twitter API. Sebastopol, CA: O’Reilly Media, Inc.

Neuendorf, K. A. (2016). The content analysis guidebook. Thousand Oaks, CA: Sage.
Nodarakis, N., Sioutas, S., Tsakalidis, A. K., & Tzimas, G. (2016, March). Large Scale

Sentiment Analysis on Twitter with Spark. In EDBT/ICDT Workshops (pp. 1-8).
O’Connor, B., Balasubramanyan, R., Routledge, B. R., & Smith, N. A. (2010). From

tweets to polls: Linking text sentiment to public opinion time series. ICWSM, 11, pp.
122-129.

Pang, B., Lee, L., & Vaithyanathan, S. (2002, July). Thumbs up?: sentiment classifica-
tion using machine learning techniques. In Proceedings of the ACL-02 conference
on Empirical methods in natural language processing, Volume 10, pp. 79-86. Asso-
ciation for Computational Linguistics.

Pond, P. (2016). Twitter time: A temporal analysis of tweet streams during televised
poli t ical debate. Television & New Media , 17(2), 142-158. doi:
10.1177/1527476415616190

Preethi, P. G., & Uma, V. (2015). Temporal sentiment analysis and causal rules extrac-
tion from tweets for event prediction. Procedia Computer Science, 48, 84-89. doi:
10.1016/j.procs.2015.04.154

Raschka, S. (2015). Python machine learning. Birmingham: Packt Publishing Ltd.
Pentreath, N. (2015). Machine Learning with Spark. Birmingham: Packt Publishing Ltd.
Roesslein, J. (2009). Tweepy. An easy-to-use Python library for accessing the Twitter

API. Retrieved from http://www.tweepy.org/
Shahin, S. (2016) When Scale Meets Depth: Integrating Natural Language
Processing and Textual Analysis for Studying Digital Corpora. Communication Methods

and Measures, 10(1), 28-50, doi: 10.1080/19312458.2015.1118447
Sluban, B., Smailović, J., Battiston, S., & Mozetič, I. (2015). Sentiment leaning of influ-

ential communities in social networks. Computational Social Networks, 2(1), 1-21.
doi: 10.1186/s40649-015-0016-5

Smailović, J., Kranjc, J., Grčar, M., Žnidaršič, M., & Mozetič, I. (2015, October). Mon-
itoring the Twitter sentiment during the Bulgarian elections. In Data Science and
Advanced Analytics (DSAA), 2015. 36678 2015. IEEE International Conference on
(pp. 1-10). IEEE. doi: 10.1109/DSAA.2015.7344886

Smailović, J., Grčar, M., Lavrač, N., & Žnidaršič, M. (2013). Predictive sentiment anal-
ysis of tweets: A stock market application. In Human-Computer Interaction and
Knowledge Discovery in Complex, Unstructured, Big Data (pp. 77-88). Springer
Berlin Heidelberg.

Spark Kafka Integration (2016). Spark Streaming + Kafka Integration Guide. Available
at: http://spark.apache.org/docs/latest/streaming-kafka-integration.html

Turck, M. & Hao, J. (2016). The Chart of the Big Data Landscape 2016 (Version 3.0).
Available at: http://mattturck.com/big-data-landscape-2016-v18-final/

Turney, P. D. (2002, July). Thumbs up or thumbs down?: semantic orientation applied to
unsupervised classification of reviews. In Proceedings of the 40th annual meeting on
association for computational linguistics (pp. 417-424). Association for Computa-
tional Linguistics.

van Zoonen, W., & Toni, G. L. A. (2016). Social media research: The application of
supervised machine learning in organizational communication research. Computers
in Human Behavior, 63, 132-141. doi: 10.1016/j.chb.2016.05.028

136	 C.Arcila, F.Ortega, M.Álvarez y M. Vicente � Análisis distribuido...

EMPIRIA. Revista de Metodología de Ciencias Sociales. N.o 42 enero-abril, 2019, pp. 113-136.
ISSN: 1139-5737, DOI/empiria.42.2019.23254

Vinodhini, G., & Chandrasekaran, R. M. (2012). Sentiment analysis and opinion mining:
a survey. International Journal of Advanced Research in Computer Science and
Software Engineering, 2(6), 282-292.

Wang, H., Can, D., Kazemzadeh, A., Bar, F., & Narayanan, S. (2012, July). A system for
real-time twitter sentiment analysis of 2012 us presidential election cycle. In Pro-
ceedings of the ACL 2012 System Demonstrations (pp. 115-120). Association for
Computational Linguistics.

Wilson, T., Wiebe, J. & Hoffmann, P. (2005). Recognizing Contextual Polarity in
Phrase-Level Sentiment Analysis. In Proceedings of the conference on Human Lan-
guage Technology and Empirical Methods in Natural Language Processing (pp.
347-354). Association for Computational Linguistics.

Endnotes

2	 For trial, the models can be trained with positive/negative movie reviews in
English of IMDB provided by NLTK or freely available in the Internet.

