

Educação e Pesquisa

ISSN: 1517-9702 ISSN: 1678-4634

Faculdade de Educação da Universidade de São Paulo

Tolentino de Carvalho, Alexandre; Gontijo, Cleyton Hércules; Fonseca, Mateus Gianni Pensamento crítico e criativo no ensino de probabilidade nos anos iniciais do ensino fundamental Educação e Pesquisa, vol. 49, e250774, 2023 Faculdade de Educação da Universidade de São Paulo

DOI: https://doi.org/10.1590/S1678-4634202349250774por

Disponível em: https://www.redalyc.org/articulo.oa?id=29874394047

Número completo

Mais informações do artigo

Site da revista em redalyc.org

acesso aberto

Sistema de Informação Científica Redalyc

Rede de Revistas Científicas da América Latina e do Caribe, Espanha e Portugal Sem fins lucrativos acadêmica projeto, desenvolvido no âmbito da iniciativa

Pensamento crítico e criativo no ensino de probabilidade nos anos iniciais do ensino fundamental¹

Alexandre Tolentino de Carvalho²
ORCID: 0000-0002-8770-1314
Cleyton Hércules Gontijo³
ORCID: 0000-0001-6730-8243
Mateus Gianni Fonseca⁴
ORCID: 0000-0002-3373-2721

Resumo

Objetiva-se trazer uma discussão acerca dos desafios e possibilidades que perpassam o desenvolvimento dos pensamentos crítico e criativo quando se trabalha probabilidade nos anos iniciais do ensino fundamental. Com uma abordagem qualitativa, analisou-se, por meio da análise de conteúdo, o livro didático e os protocolos produzidos pelos alunos ao realizarem as atividades propostas e discutirem-nas durante momentos de interação em aulas remotas. Buscou-se compreender como o livro didático tratou o ensino de probabilidade, observando em que nível se adequou à BNCC quanto à abordagem metodológica (possibilitando a atividade heurística do aluno e emersão de seus conhecimentos prévios) e quanto à potencialidade de desenvolvimento do pensamento crítico e criativo. Analisou-se, também, as soluções dos alunos às atividades propostas, com vistas a averiguar indícios de possibilidades de desenvolvimento dessas formas de pensamento. Os resultados indicam como desafios romper com práticas de ensino que apresentem conceitos sem recorrer à atividade heurística e conhecimentos prévios dos alunos, priorizar que experienciem colocar em atividade o pensamento probabilístico e permitir que deixem emergir criatividade e criticidade. Por outro lado, emergiram possibilidades no que diz respeito ao como articular as diretrizes defendidas na BNCC, na medida em que, ao realizarem a sequência didática proposta, nota-se que os alunos tiveram a oportunidade de desenvolver conhecimentos probabilísticos e exercitar os pensamentos crítico e criativo. Conclui-se que os documentos oficiais e pesquisas têm se esforçado para implementar melhorias na educação, porém, os professores precisam se apropriar dessas mudanças em suas atividades de sala de aula.

Palavras-chave

Pensamento probabilístico – Pensamento crítico – Pensamento criativo – BNCC – Pensamentos crítico e criativo em matemática.

- 1- Estudos realizados no âmbito do Grupo de Pesquisa e Investigação em Educação Matemática PI.
- 2- Secretaria de Estado de Educação do Distrito Federal, Brasília, DF, Brasil. Contato: alexandre.tolenca@gmail.com
- 3- Universidade de Brasília, Brasília, DF, Brasil. Contato: cleyton@mat.unb.br
- 4- Instituto Federal de Educação, Ciência e Tecnologia de Brasília. Brasília, DF, Brasil. Contato: mateus.fonseca@ifb.edu.br

https://doi.org/10.1590/S1678-4634202349250774por

This content is licensed under a Creative Commons attribution-type BY 4.0.

Critical and creative thinking in probability teaching in the early years of elementary school

Abstract

The aim is to discuss the challenges and possibilities that permeate the development of critical and creative thinking in teaching probability concepts in the early years of elementary school. With a qualitative approach, the textbook and the protocols the students produced when executing the proposed activities and discussing them at moments of interaction in remote classes were explored through content analysis. We sought to understand how the textbook dealt with probability teaching, observing at what level it adapted to Brazil's National Common Curricular Base (BNCC) regarding the methodological approach (allowing students' heuristic activity and the emergence of their prior knowledge) and regarding the potential for developing critical and creative thinking. Students' solutions to the proposed activities were also analyzed, with a view to finding evidence of possibilities for the development of those forms of thinking. The results indicate the following challenges: breaking with teaching practices that present concepts without resorting to heuristic activity and students' prior knowledge, enabling them to put into action probabilistic thinking and allowing creativity and criticality to emerge. On the other hand, possibilities emerged regarding how to articulate the guidelines advocated in the BNCC, insofar as, when carrying out the proposed didactic sequence, we realized that students could develop probabilistic knowledge and exercise critical and creative thinking. We conclude that official documents and research have been striving to implement improvements in education. However, teachers must appropriate those changes in their classroom activities.

Keywords

Probabilistic thinking – Critical thinking – Creative thinking – Brazil's National Common Curricular Base – Critical and creative thinking in mathematics.

Introdução

Em seu best seller Sapiens: uma breve história da humanidade, Yuval Noah Harari (2018) justifica como o homem distanciou-se dos demais seres e tornou-se, há 70 mil anos, um sujeito inteligente por meio de uma verdadeira revolução cognitiva. À inteligência diferenciada das demais espécies, acrescenta-se uma característica que passa pela transformação do ambiente por meio do manuseio do mundo físico e intelectual: a criatividade.

Para Harari (2018), com o desenvolvimento de uma linguagem complexa, capaz de comunicar não somente fatos relacionados ao mundo físico, mas também sobre "a realidade imaginada", o *Homo sapiens* criou entidades fictícias, mitos partilhados que existem apenas no imaginário coletivo das pessoas. Esse poder de criação de entidades não físicas possibilitou um salto evolutivo, transformando o *Homo sapiens* em quem sabe e em quem

cria (ferramentas físicas e intelectuais, entidades abstratas, movimentos culturais). Portanto, também se pode considerar a nossa espécie como *Homo creativus* (KAKKO; INKINEN, 2009; LUBART, 2018), denotando a natureza essencialmente criativa dessa espécie.

Essa perspectiva permite aos educadores olhar para os aprendizes não mais como sujeitos que somente precisam receber o que os mais experientes já sabem. Freire (1974) chamaria de depósito de conhecimentos. Sendo conjuntamente *Homo sapiens e Homo creativus*, é preciso acreditar no aprendiz como quem se nutre de conhecimentos para avaliar a realidade, perceber problemas nas situações vividas, inovar e criar soluções para antigos e novos problemas. Portanto, salienta-se a necessidade da transformação dos espaços de aprendizagem, escapando da visão enraizada de educação como reprodução de conhecimentos e procedimentos em direção à perspectiva na qual os aprendizes são considerados seres ativos, críticos e criativos.

Neste artigo, busca-se discutir duas competências objetos da educação que costumam ser negligenciadas nas salas de aula: pensamento crítico e pensamento criativo (LEE *et al.*, 2019; SOPHOCLEOUS; PITTA-PANTAZI, 2017). Realizado no contexto de aulas remotas dadas as circunstâncias da pandemia que nos acometeu a partir do início de 2020, o estudo objetiva: a) analisar como o tópico de probabilidade é tratado no livro didático adotado na escola investigada, observando em que nível se adequa à Base Nacional Comum Curricular - BNCC (BRASIL, 2018) no que diz respeito à abordagem metodológica (possibilitando a atividade heurística do aluno e emersão de seus conhecimentos prévios) e quanto à potencialidade de desenvolvimento do pensamento crítico e criativo; e b) analisar os "efeitos" de sequências didáticas elaboradas seguindo as orientações da BNCC, que recomenda priorizar conhecimentos prévios dos alunos, atividade heurística e desenvolvimento da criticidade e criatividade, investigando as soluções dos alunos às atividades propostas, com vistas a averiguar indícios de desenvolvimento dessas formas de pensamento.

Se criatividade e criticidade encontram pouco espaço nas salas de aula num sentido amplo, tal espaço é ainda menor no trabalho pedagógico em disciplinas como a matemática (GONTIJO, 2007). No entanto, por meio de um estudo realizado com uma turma do quinto ano do ensino fundamental de uma escola pública do Distrito Federal, buscarse-á evidenciar como o ensino de probabilidade pode apresentar alternativas promissoras para que alunos coloquem em ação tanto pensamento crítico quanto criativo nas aulas de matemática. Em contrapartida, colocam-se para reflexão desafios encontrados em decorrência da inadequação das abordagens de ensino utilizadas em livros didáticos.

O pensamento crítico e criativo no ensino de probabilidade

A BNCC aborda a importância de se desenvolver o pensamento crítico e criativo nas escolas, sobretudo quando trata das competências gerais, explicitando, dentre as dez prescritas nesse documento, que as aprendizagens essenciais devem concorrer para assegurar aos estudantes:

Exercitar a curiosidade intelectual e recorrer à abordagem própria das ciências, incluindo a investigação, a reflexão, a análise crítica, a imaginação e a criatividade, para investigar causas,

elaborar e testar hipóteses, formular e resolver problemas e criar soluções (inclusive tecnológicas) com base nos conhecimentos das diferentes áreas. (BRASIL, 2018, p. 9, grifo nosso).

Portanto, a BNCC apregoa a importância do pensamento crítico e criativo como competências que concorrem para que os sujeitos atuem consciente e ativamente no mundo, baseando-se nos conhecimentos científicos, compreendam a realidade e criem soluções para problemas que emergem nos contextos sociais. O documento defende que:

[...] reconhecer-se em seu contexto histórico e cultural, comunicar-se, ser criativo, analítico-crítico, participativo, aberto ao novo, colaborativo, resiliente, produtivo e responsável requer muito mais do que o acúmulo de informações. (BRASIL, 2018, p. 14).

Embora a BNCC não apresente explicitamente o que caracteriza o pensamento criativo em um sentido geral, tampouco relacionado ao campo da matemática, mostrando uma lacuna a ser preenchida (FONSECA; GONTIJO, 2020), afirma que "é de fundamental importância também considerar o papel heurístico das experimentações na aprendizagem da Matemática" (BRASIL, 2018, p. 265), o que pode dar margem ao pensamento criativo, uma vez que o aluno, ao buscar aprender por meio da experimentação, pode criar ferramentas matemáticas próprias, fomentando a criatividade. Tal conclusão encontra respaldo nos estudos de Valdés (2010), quem trata o pensamento heurístico (ao lado dos pensamentos intuitivo, especulativo e divergente) como um traço importante da criatividade que se une ao pensamento lógico na descoberta de ideias matemáticas durante as aulas.

Atrelado à atividade heurística, que permite a realização de descobertas via experimentação, nos anos iniciais do ensino fundamental "deve-se retomar as vivências cotidianas das crianças com números, formas e espaço, e também as experiências desenvolvidas na Educação Infantil, para iniciar a sistematização dessas noções" (BRASIL, 2018, p. 276). Portanto, o documento assinala como essencial a retomada dos conhecimentos prévios como passo inicial no itinerário de construção de conhecimentos.

Diversos autores (UJIIE *et al.*, 2017; MADRUGA; GALLON; SILVA, 2017; CARRILLO; CONTRERAS; ZAKARYAN, 2014; FIORENTINI; LORENZATO, 2012) insistem na importância dos conhecimentos trazidos pelos alunos como fonte inicial de informações para que o professor organize o processo de ensino. Madruga; Gallon; Silva (2017) enfatizam que o fato de ignorar tais conhecimentos e optar por um ensino que olha para o aluno:

[...] como uma folha em branco, pode contribuir na consolidação de ideias equivocadas sobre determinados conteúdos, não oferecendo oportunidades para que sejam substituídas ou complementadas ao longo de sua escolarização. (MADRUGA; GALLON; SILVA, 2017, p. 149).

Ao analisar a BNCC, compreende-se que há lugar privilegiado para o desenvolvimento dos pensamentos crítico e criativo como uma demanda da sociedade atual, tendo como itinerário metodológico a consideração da atividade heurística e dos conhecimentos prévios trazidos pelos alunos na organização do processo de ensino e aprendizagem.

Pensamento crítico e criativo em matemática

Segundo a Organização para a Cooperação e Desenvolvimento Econômico (OCDE), um papel fundamental da educação consiste em favorecer o desenvolvimento, nos alunos, de competências que são necessárias para terem sucesso na sociedade; entre elas está o pensamento crítico e criativo (OCDE, 2019). Nota-se, na atualidade, que o mercado de trabalho busca cada vez mais sujeitos com habilidades de pensar crítica e criativamente, pois:

[...] com a possibilidade de que a inteligência artificial e a robótica acarretem a automação de parcela significativa da economia, as competências menos fáceis de automatizar, como a criatividade e o pensamento crítico, ganharão ainda mais valor. (VINCENT-LANCRIN *et al.*, 2020, p. 14).

Para além dos argumentos econômicos, vale destacar que tais competências colaboram para o bem-estar humano e para o bom funcionamento das sociedades democráticas.

Ressalta-se que em alguns estudos que investigaram o pensamento crítico e a criatividade como um domínio geral dos indivíduos (WECHSLER *et al.*, 2018) e que trataram essas formas de pensamento em domínios específicos, como na área da matemática (SOPHOCLEOUS; PITTA-PANTAZI, 2017), foram encontradas correlações positivas entre o pensamento crítico e aspectos próprios do pensamento criativo. Do mesmo modo, Lee *et al.* (2019) afirmam que resultados de pesquisas apontam que alunos mais propensos a pensar criativamente têm níveis mais elevados de pensamento crítico.

Os estudos permitem compreender que a apresentação de conceitos e definições como forma de instrução direta, do professor para os alunos, e atividades de resposta única precisam abrir espaço para momentos de reflexão, análise de situações reais ou imaginadas, conexão de conhecimentos diversos, produção das próprias ferramentas matemáticas, resolução de problemas abertos e tomada de decisões, colocando os alunos como protagonistas do seu processo de aprendizagem (CARVALHO; GONTIJO, 2020; CARVALHO, 2019; FONSECA, 2019).

A respeito do que caracteriza o pensamento criativo em matemática, este trabalho apoiase no conceito de Gontijo (2007) por considerar que pode ser aplicado tanto na elaboração de atividades práticas para serem desenvolvidas no cotidiano escolar quanto na pesquisa empírica. Para Gontijo (2007, p. 38), a criatividade em matemática se caracteriza como:

[...] a capacidade de apresentar inúmeras possibilidades de solução apropriadas para uma situação-problema, de modo que estas focalizem aspectos distintos do problema e/ou formas diferenciadas de solucioná-lo, especialmente formas incomuns (originalidade), tanto em situações que requeiram a resolução e elaboração de problemas como em situações que solicitem a classificação ou organização de objetos e/ou elementos matemáticos em função de suas propriedades e atributos, seja textualmente, numericamente, graficamente ou na forma de uma sequência de ações.

Destaca-se que a capacidade de apresentar muitas respostas para uma mesma situação é denominada de fluência de pensamento. A capacidade de apresentar respostas que podem ser classificadas em categorias diferentes, por focalizarem aspectos distintos do problema ou formas diferenciadas de solucioná-los, é denominada de flexibilidade de pensamento. A originalidade corresponde à capacidade de apresentar respostas infrequentes ou incomuns.

A caracterização de uma resposta como original depende do grupo onde essa foi produzida, observando um conjunto de variáveis. No contexto escolar, seriam observadas a idade dos estudantes, o ano escolar, o tipo de escola etc. (GONTIJO; CARVALHO; FONSECA, 2019; GONTIJO; FONSECA, 2019). Ao solucionar problemas abertos, mesmo que os participantes da presente pesquisa tenham apresentado somente uma resposta em cada item, observa-se que precisaram pensar fluente, flexível e originalmente para questões que, *a priori*, não apresentavam uma resposta única e previsível.

No que diz respeito ao pensamento crítico associado ao pensamento criativo, Fonseca e Gontijo (2020, p. 971) também contribuem com este trabalho ao descrever essa relação como uma:

[...] ação coordenada de geração de múltiplas e diferentes ideias para solucionar problemas (fluência e flexibilidade de pensamento) com o processo de tomadas de decisão no curso da elaboração dessas ideias, envolvendo análises dos dados e avaliação de evidências de que os caminhos propostos são plausíveis e apropriados para se chegar à solução, argumentando em favor da melhor ideia para alcançar o objetivo do problema (originalidade ou adequação ao contexto).

Tal definição também contempla as características do pensamento criativo e as formas de estimulá-lo, associando-as às características do pensamento crítico, numa perspectiva integradora, de modo a favorecer a mensuração dessas habilidades a partir de pesquisas psicométricas ou qualitativas. A definição pode ainda colaborar com a implementação dos objetivos contidos nos documentos oficiais, tal como a BNCC, bem como com a estruturação e organização do trabalho pedagógico docente.

O texto a seguir abordará o ensino da probabilidade, considerando-o como um campo que "pode promover o desenvolvimento da capacidade crítica e da autonomia" (SANTANA, 2011, p. 12), abordando como o trabalho com esse tópico do currículo pode favorecer os pensamentos crítico e criativo dos estudantes.

Probabilidade nos anos iniciais do ensino fundamental

Pensamento probabilístico está presente em nosso cotidiano quando buscamos realizar previsões a respeito de eventos futuros. Também se faz presente nos currículos escolares como uma habilidade a ser desenvolvida na escola. Antes destinado aos últimos anos da educação básica, a partir dos *Parâmetros Curriculares Nacionais* - PCN (BRASIL, 1997), pensamento probabilístico passou a fazer parte das habilidades a serem trabalhadas desde o início do ensino fundamental, pois, colabora nas tomadas de decisões em situações da vida social e econômica por meio de análises, comparações, sondagens e escolhas amostrais (MENEGHETTI; BATISTELA; BICUDO, 2011).

Com a BNCC (BRASIL, 2018), houve dois importantes avanços no que diz respeito ao ensino de probabilidade: passou a integrar o conjunto de conhecimentos matemáticos desde o primeiro ano do ensino fundamental e foi destacado em uma unidade temática própria chamada de Probabilidade e Estatística, o que demonstra maior ênfase e importância a esse tipo de conhecimento dentro do arcabouço apresentado no documento. Segundo a BNCC, a junção do estudo sobre a incerteza e o tratamento de dados presentes na vida

cotidiana permitiria o desenvolvimento de habilidades voltadas para a coleta, organização, representação, interpretação e análise de dados em contextos variados. Essas ações realizadas na realidade poderiam levar as pessoas a "fazer julgamentos bem fundamentados e tomar as decisões adequadas. Isso inclui raciocinar e utilizar conceitos, representações e índices estatísticos para descrever, explicar e predizer fenômenos" (BRASIL, 2018, p. 274).

O documento defende que o trabalho com probabilidade no ensino fundamental deve ser centrado "no desenvolvimento da noção de aleatoriedade, de modo que os alunos compreendam que há eventos certos, eventos impossíveis e eventos prováveis" (BRASIL, 2018, p. 274). Na Figura 1, o esquema apresenta habilidades relacionadas ao pensamento probabilístico elencadas na BNCC para os anos iniciais, etapa de ensino na qual realizamos os estudos.

Figura 1 – Probabilidade ao longo dos anos iniciais do ensino fundamental

Fonte: BNCC (BRASIL, 2018).

Para Bryant e Nunes (2012), o pensamento probabilístico é um conhecimento complexo que envolve o desenvolvimento de quatro habilidades cognitivas: 1-Compreender a natureza e as consequências da aleatoriedade; 2- Formar e categorizar o espaço amostral; 3- Comparar e quantificar probabilidades; 4- Entender correlações. Depreende-se das habilidades apresentadas na figura 1 que a BNCC destinou para os anos iniciais as duas primeiras habilidades dessa lista, ou seja, espera-se que os alunos desenvolvam habilidades voltadas para a compreensão da aleatoriedade, que se referem "ao entendimento de que há certezas (em eventos determinísticos) e incertezas (em eventos aleatórios) no mundo que nos cerca" (BORBA, 2017, p. 87) e ao "levantamento das possibilidades que compõem o espaço amostral" (BORBA, 2017, p. 88).

Desafios para o ensino de probabilidade no ensino fundamental

Pesquisas recentes (BORBA, 2017; BATISTA; BORBA, 2017; VERBISCK; BITTAR, 2019) evidenciam que crianças pequenas em início de escolarização já apresentam noções básicas que lhes permitem desenvolver o pensamento probabilístico. Os pesquisadores defendem a necessidade de um olhar especial para a construção de conceitos probabilísticos, pois, nessa etapa de escolarização, "as crianças já podem começar a serem familiarizadas com noções de probabilidade, fazendo experimentos e observações de acontecimentos equiprováveis" (VERBISCK; BITTAR, 2019, p. 14). Porém, o desenvolvimento do pensamento probabilístico de alunos do ensino fundamental depende:

[...] das ações didáticas que necessitam ser realizadas com os alunos, nas escolas, uma vez que pouca ou nenhuma experiência probabilística é experienciada e/ou observada por eles, sem que haja uma intervenção. (SANTOS, 2010, p. 11).

Tal intervenção enfrenta algumas preocupações das quais destacaremos o modo como os livros didáticos têm abordado o trabalho com probabilidade nos anos iniciais, uma vez que esses materiais são responsáveis por traduzir os currículos oficiais em forma de atividades práticas (LIMA, 2020) e, por isso, mostram-se um importante recurso para auxiliar o professor no desenvolvimento de sua prática pedagógica com vistas à aprendizagem dos alunos (FRISON *et al.*, 2009). Portanto, é necessário observar como os livros didáticos tratam metodologicamente o tema, se estão adequados ao que apregoa a BNCC em relação à atividade heurística do aluno, à suscitação dos conhecimentos prévios e ao desenvolvimento dos pensamentos crítico e criativo.

Estudos têm apontado tipologias para conceituar probabilidade (SANTOS; GOMIDE, 2011; LIMA, 2020). Uma tipologia recorrente refere-se aos estudos de Godino; Batanero; Cañizares (1996), que abordam quatro conceitos distintos de probabilidade: a) clássico, b) frequentista ou empírico, c) subjetivista e d) axiomático ou formal.

No conceito clássico, define-se probabilidade como a razão entre números de casos favoráveis em relação ao número total de casos possíveis em fenômenos equiprováveis. Levados por essa concepção, professores costumam apresentar o algoritmo de cálculo de probabilidade sem permitir que alunos possam experienciar situações que envolvam aleatoriedade. Assim, podem emergir concepções equivocadas (SANTOS; GOMIDE, 2011), levando os alunos a não perceberem a simetria de resultados prováveis e a acreditarem que em determinadas situações possa haver vantagens a depender da escolha realizada.

Na concepção frequentista ou empírica, a experimentação de situações para se estabelecer resultados e generalizações futuras recebe papel de destaque. Na sala de aula, experimentações desse tipo podem ajudar estudantes a compreenderem com mais clareza conceitos como aleatoriedade e espaço amostral. Porém, como sinalizam Santos e Gomide (2011, p. 4), atividades realizadas sob essa concepção podem:

[...] levar os alunos a uma interpretação falaciosa, pois, ao realizar esse tipo de experimento, é possível obter eventos pouco prováveis, o que poderia conduzir os alunos a conclusões ingênuas de que eventos desse tipo tenham maior chance de ocorrer.

A visão subjetivista refere-se ao modo como as pessoas constroem concepções recorrendo às suas crenças (número da sorte, cor preferida etc.) ou experiências pessoais (algum episódio de sucesso, presenciar a ocorrência de repetições dadas ao acaso) para aferir a chance de determinados resultados ocorrerem. Essas impressões podem não condizer com a realidade, ocorrendo equívocos nos cálculos, uma vez que se orientam não pela precisão matemática, mas pelas impressões pessoais. Dessa forma, "o entendimento da aleatoriedade e demais conceitos probabilísticos pode enfrentar obstáculos que são resultantes de concepções errôneas, subjetivas dos estudantes" (LIMA, 2020, p. 5).

Na concepção formal ou axiomática, o conceito de probabilidade expande-se ao usar leis matemáticas para calcular, com precisão, a probabilidade de eventos não equiprováveis e com espaço amostral infinito. Para o ensino fundamental, espera-se que os alunos possam desenvolver bem as habilidades voltadas para eventos equiprováveis, para, posteriormente, experimentarem eventos mais complexos dessa natureza.

A partir de análise de livros didáticos dos anos finais do ensino fundamental, Lima (2020) concluiu que esses têm apresentado atividades voltadas para uma abordagem clássica de probabilidade, sugerindo a necessidade de mudanças substanciais no sentido de realização de uma articulação que envolva as diversas abordagens, tornando o ensino mais favorável ao desenvolvimento pleno do pensamento probabilístico. A autora analisou livros aprovados anteriormente à homologação da BNCC, portanto, emerge a necessidade de estudos que avaliem coleções produzidas após essa homologação, abarcando as orientações atuais. Por esse motivo, nota-se que os livros didáticos precisam seguir a recomendação da BNCC, considerando que "a confrontação entre os resultados obtidos a partir de uma e outra concepção deve ter espaço no tempo dedicado ao trabalho com a Probabilidade" (LIMA, 2020, p. 5).

Metodologia⁵

Utilizamos uma metodologia qualitativa, recorrendo à análise de conteúdo para responder aos objetivos de nosso estudo sob uma ótica interpretativa dos dados apresentados. Compreendemos a análise de conteúdo como:

[...] um conjunto de técnicas de análise das comunicações visando obter, por procedimentos sistemáticos e objetivos de descrição do conteúdo das mensagens, indicadores (quantitativos ou não) que permitam a inferência de conhecimentos relativos às condições de produção/ recepção (variáveis inferidas), destas mensagens. (BARDIN, 2002, p. 38).

Nessa direção, buscamos, por meio da realização de inferências realizadas pelo estudo dos dados coletados, compreender em que medida o dito e o não-dito revelam as possibilidades e os desafios para o desenvolvimento do pensamento crítico e criativo no trabalho com probabilidade: (a) no livro didático; (b) nas interações comunicativas realizadas durante as aulas remotas ocorridas em decorrência do afastamento social decretado devido à pandemia da Covid 19; e (c) nos registros dos alunos. Concordamos com Bardin (2002, p. 114) ao

⁵⁻ Disponibilidade de dados: O conjunto de dados que dá suporte aos resultados deste estudo não está disponível publicamente devido a envolver imagem e voz de crianças e para garantir anonimato dos participantes da pesquisa. A solicitação de acesso aos dados pode ser feita diretamente aos autores, pelo *e-mail*: alexandre.tolenca@qmail.com

compreender que "a abordagem não quantitativa recorre a indicadores não frequenciais suscetíveis de permitir inferências, por exemplo, a presença (ou ausência) pode constituir um índice tanto (ou mais) frutífero que a frequência de aparição.

Participaram da pesquisa uma turma de 12 alunos matriculados no quinto ano do ensino fundamental de uma escola pública do Distrito Federal. O pesquisador desenvolveu as atividades durante três encontros remotos cedidos pela docente da turma após autorização dos pais e dos alunos. Os encontros foram realizados por meio da plataforma *Google Meet*, uma vez que estávamos em pleno contexto de pandemia e os alunos estavam sob o regime de aulas remotas.

Com o intuito de "desmascarar a axiologia subjacente aos manuais escolares" (BARDIN, 2002, p. 31), escolhemos como corpus de análise o livro didático adotado pela escola com o objetivo de avaliar a concepção de probabilidade adotada e a adequação das atividades às orientações da BNCC em dois aspectos: quanto à abordagem metodológica (possibilitando a atividade heurística do aluno e emersão de seus conhecimentos prévios) e quanto à potencialidade de desenvolvimento do pensamento crítico e criativo. Para tanto, analisamos semanticamente como o livro apresenta a introdução dos conhecimentos e as atividades propostas, avaliando as categorias temáticas (BARDIN, 2002) tratadas no texto.

Com essas análises iniciais, elaboramos sequências didáticas que permitiram apresentar possibilidades de superação das lacunas encontradas nas atividades do livro. Em seguida, essas atividades foram realizadas pelos alunos e, posteriormente, discutidas em grupo em aulas remotas, que foram gravadas para fins de análise das interações entre os estudantes e das tarefas por eles realizadas.

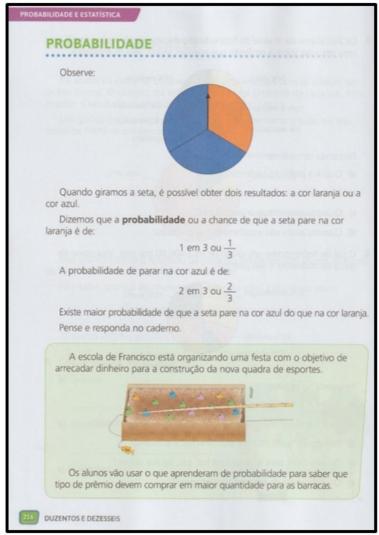
Resultados e análises

A análise de conteúdo foi realizada por meio da técnica de análise semântica, observando no *corpus* estudado na pesquisa a presença ou ausência das seguintes categorias temáticas abordadas na BNCC:

Quadro 1 - Categorias temáticas de análise

Categorias que representam presença do tema	Categorias que representam ausência do tema	
Atividade heurística (AH)	Atividade heurística (AH–)	
Conhecimentos prévios (CP)	Conhecimentos prévios (CP–)	
Pensamento crítico (PCT)	Pensamento crítico (PCT-)	
Pensamento criativo (PCA)	Pensamento criativo (PCA-)	

Fonte: elaboração própria.


Livro didático

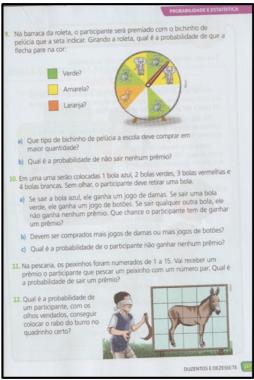
O livro didático adotado pela escola, *Meu livro de matemática* (YOUSSEF, GUELLI, 2017), apresenta duas páginas nas quais o tema probabilidade é tratado. Ao analisar

as atividades acerca do tema presentes no volume, observou-se que não privilegiam o conhecimento prévio dos alunos e a atividade heurística.

Na introdução dos conhecimentos (Figura 2), encontram-se quatro frases afirmativas, de modo que o conceito de probabilidade é logo apresentado sem que os alunos possam refletir a respeito. Essas frases são categorizadas como AH- e CP-, pois apresentam ausência de comandos que permitam a atividade heurística e o surgimento do conhecimento prévio dos alunos. Nota-se ausência de frases interrogativas que poderiam mobilizar a problematização de conhecimentos prévios e guiar os alunos a buscar, em suas experiências de vida, algo que pudesse levá-los às descobertas (UJIIE *et al.*, 2017).

Figura 2 – Introdução Probabilidade

Fonte: Youssef; Guelli (2017, p. 216).


Na Figura 3, encontram-se dois itens que mobilizam pensamento crítico, pertencentes à categoria temática PCT. Solicita-se que os alunos analisem a situação para decidir qual objeto deve ser comprado em maior quantidade devido à probabilidade de sua saída ser maior. Os termos "deve comprar" e "devem ser comprados" são pertencentes ao campo semântico pensamento crítico, pois requerem a análise da situação para tomadas de decisões (LEE *et al.*, 2019) embasadas em pensamento probabilístico.

Em quantidade superior, encontram-se atividades que solicitam o cálculo de probabilidade, apresentando como termos "qual a probabilidade" e "que chance". Essas atividades tomam boa parte da ação discente, não sobrando espaço para interações comunicativas que privilegiem o pensamento criativo. Tais excertos foram assinalados como PCA- pela ausência de momentos de exercício da criatividade. Carvalho e Gontijo (2020) enfatizam que para favorecer a produção de conhecimentos de modo criativo nas aulas de matemática:

[...] faz-se necessário a instauração de formas de interações comunicativas que privilegiem o protagonismo dos alunos e professores, reconhecendo que ambos têm o que comunicar, sendo, ao mesmo tempo, atores e audiência, autores e coautores. (CARVALHO; CONTIJO, 2020, p. 113).

Portanto, a inexistência de atividades que privilegiam tais protagonismos se deve à abordagem tomada pelo livro em relação ao campo de conhecimento probabilidade, considerando-a em sua concepção clássica (ênfase no cálculo de probabilidades) em detrimento de outras concepções (LIMA, 2020).

Figura 3 – Atividades de probabilidade

Fonte: Youssef; Guelli (2017, p. 217).

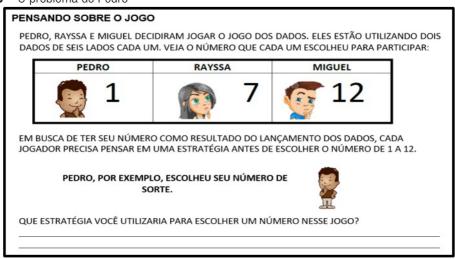
Apesar das atividades estarem de acordo com os objetos de conhecimentos enunciados na BNCC (Espaço amostral: análise de chances de eventos aleatórios e cálculo de probabilidade de eventos equiprováveis) e de apresentar questões que requerem o pensamento crítico, não existe articulação entre as habilidades prescritas e as competências gerais, uma vez que as atividades não mobilizam conhecimentos prévios, atividade heurística e desenvolvimento do pensamento criativo.

Atividades elaboradas para o estudo e registros dos alunos

Diante das lacunas encontradas nas atividades do livro didático, foram propostas três sequências didáticas para trabalhar pensamento probabilístico. A primeira teve como objetivo introduzir o tema, aproximando os alunos da matemática existente em situações de sorteios. Assim, buscou-se construir conceitos de probabilidade e levantar o vocabulário do cotidiano dos alunos com termos que remetem ao tema, além de calcular probabilidade de ocorrência de eventos equiprováveis. A segunda sequência didática pretendeu promover a compreensão a respeito da aleatoriedade no contexto dos jogos e construir e explorar o espaço amostral. A terceira sequência didática pretendeu aprofundar a construção e exploração do espaço amostral por meio de jogos e investigar a compreensão sobre aleatoriedade. Neste artigo, serão apresentadas e analisadas as atividades que compõem a segunda sequência didática.

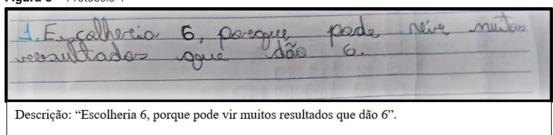
Nas próximas figuras, pode-se averiguar que foram abordadas as quatro categorias temáticas (CP, AH, PCT, PCA) durante a realização dessa sequência didática. Junto às sequências didáticas, serão apresentadas algumas soluções dos estudantes enviadas por eles na plataforma *Google* sala de aula.

O jogo (Figura 4) foi idealizado para que os alunos pudessem analisar as situações ocorridas, perceber regularidades e construir conhecimentos por meio de experimentações (BRASIL, 2018). Na atividade, encontra-se a categoria temática AH. Sua realização contou com o apoio dos familiares, uma vez que os alunos estavam em aulas remotas.


Figura 4 – Apresentação do jogo de dados

Fonte: Elaboração própria.

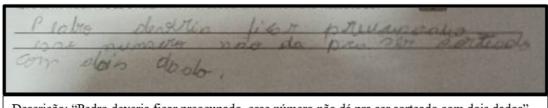
Após algumas rodadas do jogo, foram propostas atividades para que os alunos colocassem em ação o pensamento probabilístico. Na primeira questão "Que estratégia você utilizaria para escolher um número nesse jogo?" (Figura 6), pretendeu-se evocar conhecimentos prévios dos alunos, avaliando o que sabiam sobre probabilidade e como aplicavam seus conhecimentos para tomar decisões. Importante salientar que "desconsiderar esses aprendizados é pensar na criança como um indivíduo sem voz ativa, disposto apenas a receber o conhecimento" (MADRUGA; GALLON; SILVA, 2017, p. 148). Com essas informações, foi possível conduzir discussões e apresentar indicações para que os alunos sistematizassem os conhecimentos trabalhados. Classificou-se tal atividade na categoria temática CP.


Figura 5 – O problema de Pedro

Fonte: Elaboração própria.

Ao analisar as soluções apresentadas pelos alunos, testemunha-se como emergiram conhecimentos trazidos de suas experiências com jogos em geral e, especialmente, com jogos de dados e ainda se observam lacunas em relação aos conhecimentos sobre probabilidade. A Figura 6, apresentada a seguir, mostra a resposta de um estudante à primeira questão.

Figura 6 - Protocolo 1



Fonte: Dados da pesquisa.

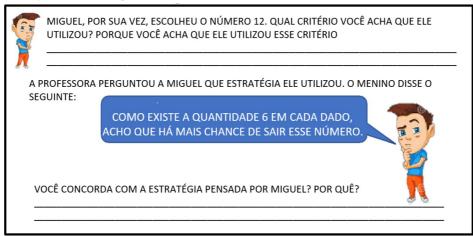
Outras respostas emergiram durante a realização dessa atividade, tais como: "Escolheria o 2 porque é meu número da sorte", "Escolheria o 11 porque é minha idade". Muitas dessas soluções se deram na medida em que os alunos recorriam às suas experiências pessoais com os jogos, apontando uma concepção subjetiva de probabilidade. Nessa concepção, é preciso atenção, porque as experiências pessoais podem guiar os alunos a construir visões equivocadas a respeito do conhecimento probabilístico (LIMA, 2020).

Outras soluções mostram indícios de pensamento probabilístico mais criterioso. Um aluno, por exemplo, preferiu não responder à questão expondo a sua escolha, mas decidiu analisar a resposta correspondente à escolha do personagem Pedro, indicando que ele escolheu um resultado impossível. A resposta desse aluno encontra-se na Figura 7, apresentada a seguir.

Figura 7 - Protocolo 2

Descrição: "Pedro deveria ficar preocupado, esse número não dá pra ser sorteado com dois dados".

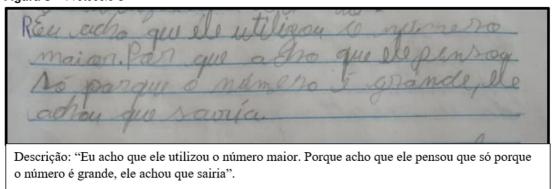
Fonte: Dados da pesquisa.


Em outras respostas, esses indícios também surgiram. Um aluno respondeu: "Escolheria um número que sai mais, ou seja, nem alto, nem baixo demais", indicando compreensão de que os números medianos, no conjunto de resultados possíveis, apresentam maior quantidade de combinações e, portanto, maior probabilidade. Outras soluções que apresentaram indícios de pensamento probabilístico foram: "Pensaria na soma de maior probabilidade" e "Escolheria qualquer número, menos o 1".

Após o levantamento dos conhecimentos prévios, pretendeu-se colocar à prova possíveis soluções que alunos dessa faixa etária poderiam apresentar, de modo que fossem refletindo sobre possibilidades de estratégias para sucesso no jogo. Nesse sentido, apresentou-se uma atividade com o objetivo de favorecer a mobilização do pensamento criativo (PCA), ao buscar soluções diferentes, uma vez que se trata de uma questão aberta (CARVALHO; GONTIJO, 2020). A atividade proposta consistia no seguinte questionamento: "Miguel, por sua vez, escolheu o número 12. Qual critério você acha que ele utilizou? Por que você acha que ele utilizou esse critério?" (Figura 8).

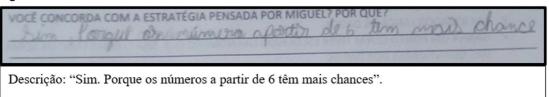
Em seguida, mostra-se um pensamento probabilístico equivocado que alguns alunos poderiam ter pensado: que o resultado 12 tem mais chance de ocorrer por ter dois lados 6, um em cada dado (o que ocorre para todos os outros valores também). Essa hipótese foi levantada por um aluno que deu a seguinte resposta sobre o critério utilizado pelo personagem para escolher o resultado 12: "Pode ser que ele tem um pensamento de que a maior probabilidade é de cair 6 em cada dado". Esperava-se que os alunos percebessem o equívoco e buscassem soluções baseadas em conhecimento matemático. Como se trata de

uma reflexão a respeito de uma situação hipotética (LEE *et al.*, 2019; FONSECA; GONTIJO, 2019), considerou-se a atividade como pertencente à categoria temática PCT.


Figura 8 – O problema de Miguel

Fonte: Elaboração própria.

Nos registros de alguns alunos, a percepção é a de que o personagem escolheu esse resultado devido a achar que o maior número teria mais chances de ser obtido no lançamento dos dados:


Figura 9 - Protocolo 3

Fonte: Dados da pesquisa.

Outro aluno levantou a hipótese de que o personagem pode ter se guiado por uma experiência pessoal com o lançamento dos dados, uma compreensão subjetiva de probabilidade (LIMA, 2020): "Ele viu o dado dando toda hora o 12". Ao refletir sobre o raciocínio do personagem estar certo ou não, poucos alunos se equivocaram e concordaram com a estratégia apresentada:

Figura 10 - Protocolo 4

Fonte: Dados da pesquisa.

A maioria conseguiu refletir a respeito do pensamento equivocado do personagem: "Não concordo porque a chance de sair outros números é maior". Uma aluna, mesmo sem utilizar o termo, apresentou uma ideia em construção a respeito do conceito de aleatoriedade: "Não porque cada dado tem um número, ou seja, pode cair qualquer um, não só o 6".

Na última atividade (Figura 11), busca-se conduzir os alunos à construção do espaço amostral como estratégia de tomada de decisões. Por ser uma questão aberta na qual os alunos podem registrar da forma que acharem melhor o conjunto de possibilidades de resultados 7, considera-se tal atividade como pertencente à categoria temática PCA.

Figura 11 - O problema de Rayssa

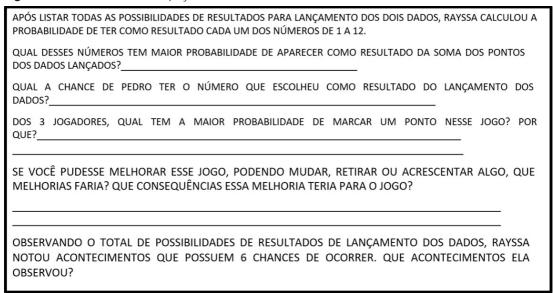
Fonte: Elaboração própria.

As atividades que constam na Figura 12 buscam mobilizar as formas de pensamento crítico e criativo e consolidar conhecimentos sobre probabilidade. Na construção do espaço

amostral, sugere-se uma forma de registro das possibilidades, o que de fato conduz os alunos à resposta única (GONTIJO, 2007). Portanto, classificamos a atividade como PCA-, uma vez que não é típica para a expressão do pensamento criativo.

Figura 12 - Construção do espaço amostral de Rayssa

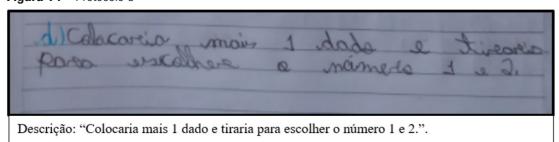
RAYSSA COMEÇOU A REGISTRAR AS POSSIBILIDADES PARA TER COMO RESULTADO O NÚMERO 12. AJUDE A MENINA A COMPLETAR ESSE REGISTRO DESENHANDO TODAS AS COMBINAÇÕES POSSÍVEIS DOS DADOS QUE RESULTEM EM CADA NÚMERO QUE UM JOGADOR POSSA ESCOLHER.


RESULTADOS DA SOMA DOS LADOS	POSSIBILIDADES DE COMBINAÇÕES DOS LADOS DOS DADOS	
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12	1111	

Fonte: Elaboração própria.

Entendemos esse tipo de atividade como importante para, após a mobilização de conhecimentos prévios e atividade heurística dos alunos, ocorrer a sistematização dos conhecimentos, elevando aquilo que o aluno descobriu ao patamar de conhecimento científico (VIGOSTKI, 2001). No entanto, não pode ser o único tipo de atividade a ser explorado, como ocorrido no livro avaliado, mas sim precisam constituir um conjunto articulado de concepções de probabilidade a serem trabalhadas em sala de aula (LIMA, 2020; SANTOS; GOMIDE, 2011).

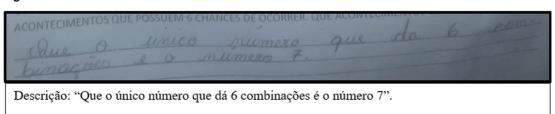
Do mesmo modo, pode-se classificar as duas questões que se seguem (Figura 13) como PCA-, na medida em que são de resposta única, não favorecendo a geração de muitas ideias como devem ser as atividades voltadas para a expressão da criatividade. Na questão "Dos 3 jogadores, qual tem a maior probabilidade de marcar um ponto nesse jogo? Por quê?", espera-se que os alunos relacionem os pensamentos crítico e probabilístico para analisar a situação de jogo apresentada e avaliar quem teria maior probabilidade de ganhar. Considera-se essa atividade, na qual o aluno precisa analisar a situação e argumentar a respeito na modalidade do tipo PCT (FONSECA; GONTIJO, 2019).


Figura 13 – Questões sobre espaço amostral

Fonte: Elaboração própria.

As duas últimas atividades requerem que os respondentes busquem, no arcabouço de conhecimentos construídos a respeito de probabilidade, soluções para os problemas abertos. Além disso, ao solicitar que os alunos propusessem melhorias para o jogo, percebeu-se como esses alunos recorreram ao pensamento probabilístico para refletir a respeito de lacunas presentes (PCT) e criar alternativas que permitiam a superação desses problemas (PCA), tomando decisões matematicamente acertadas (CARVALHO, 2019; FONSECA; GONTIJO, 2019). Na solução a seguir, o aluno decidiu acrescentar mais um dado ao jogo, aumentando as opções de resultados. Ele percebeu que, como consequência, os resultados 1 e 2 não seriam possíveis de ocorrer e, nesse sentido, acrescentou como regra a proibição de escolher essas alternativas:

Figura 14 - Protocolo 5



Fonte: Elaboração própria.

Outras sugestões interessantes emergiram, demonstrando traços de criticidade e criatividade na medida em que os alunos se mostram capazes de criar soluções para lacunas percebidas no jogo (CARVALHO; GONTIJO, 2020): "retiraria o número 1", "Ninguém poderia escolher o número 7", "Colocaria dados em que a soma pudesse ir até o 20 aumentando o total de lados dos dados".

Em relação à última questão, os alunos puderam refletir criativamente sobre o espaço amostral percebendo e indicando padrões nas informações presentes (LEE *et al.*, 2019), colocando em prática o pensamento criativo (PCA). Apesar do espaço amostral apresentar diversos padrões com possibilidade de seis acontecimentos, somente três alunos conseguiram perceber uma regularidade desse tipo, todos se referindo à escolha da personagem Rayssa:

Figura 15 - Protocolo 6

Fonte: Dados da pesquisa.

Percebe-se que é possível criar sequências didáticas que abordem categorias temáticas defendidas tanto na BNCC quanto na literatura sobre educação matemática. Na sequência didática proposta, atividade heurística, conhecimento prévio, pensamentos crítico e criativo emergiram como consequência de um conjunto de atividades concatenadas que partiram da mobilização de conhecimentos trazidos das experiências anteriormente vividas e da ação sobre o conhecimento em que descobertas foram se realizando para, em um segundo momento, construir conhecimentos sólidos de forma crítica e criativa.

Conclusão

Como implicações dos resultados deste estudo, emergem desafios e possibilidades no que diz respeito ao processo de ensino e aprendizagem de probabilidade nos anos iniciais do ensino fundamental, que perpasse pela articulação de orientações da BNCC, reforçadas por pesquisas atuais da área e que se mostram favoráveis ao oferecimento de educação matemática de qualidade caracterizada pela possibilidade de desenvolvimento pleno dos alunos, tornando-os cidadãos participativos, críticos e criativos na sociedade volátil e complexa de nossos tempos.

Os desafios elencados decorrem do modo como o livro didático analisado abordou o trabalho com probabilidade. Optou-se por uma abordagem mais tradicional, na qual os conceitos foram apresentados anteriormente à ação dos alunos, privando-os de experienciar situações em que o pensamento probabilístico pudesse ser colocado em

atividade. Com essa escolha, os alunos não teriam chances de realizar descobertas e deixar fluir seus conhecimentos prévios.

Do mesmo modo, as atividades propostas requeriam cálculo de chances de ocorrência de eventos, guiando-se pela abordagem clássica de probabilidade. Apesar de contemplar as habilidades propostas pela BNCC e de apresentar itens que favoreciam o pensamento crítico, deixou-se de articular tais habilidades com orientações importantes do documento que defendem a descoberta heurística de recursos matemáticos, a mobilização de conhecimentos prévios e o pensamento criativo.

A proposta do livro didático carece de uma abordagem metodológica guiada pelas três diretrizes a seguir: a) que mobilize os conhecimentos prévios discentes para orientar o ensino (tomadas de decisões do professor) e a aprendizagem (confrontação do já sabido com o conhecimento a saber), b) que permita a atividade heurística dos alunos sobre o objeto de conhecimento e c) estimule os pensamentos crítico e criativo. Não basta que os livros didáticos contemplem todas as habilidades prescritas na BNCC. É necessário que tais habilidades sejam abordadas de modo que possibilitem o desenvolvimento de competências que englobem, também, os pensamentos crítico e criativo. A elaboração de propostas de introdução de probabilidade e de atividades sob uma concepção mais empírica, que mobilizem a experimentação, os conhecimentos prévios e atividade heurística do aluno e que coloquem em ação os pensamentos crítico e criativo são, portanto, desafios a serem empreendidos por autores de livros didáticos e professores.

Por fim, as atividades elaboradas e interações realizadas entre pesquisador e alunos apontam possibilidades no que dizem respeito ao como, na prática, podemos articular essas três diretrizes defendidas na BNCC. Os alunos demonstraram não somente aprender conceitos, como também foram capazes de evidenciar o que já sabiam, independentemente de apresentar equívocos em suas enunciações, puderam experienciar situações matemáticas mobilizando conceitos de probabilidade, conseguiram refletir a respeito dessas situações, criar soluções criativas e tomar decisões orientadas por conhecimentos matemáticos.

Com esse trabalho, espera-se lançar luzes que podem orientar os formuladores de políticas educacionais, formadores de professores, professores e demais profissionais da educação a respeito da importância de se organizar a sala de aula para que os alunos sejam autônomos e ativos em suas aprendizagens, podendo desenvolver competências cognitivas e socioemocionais, com destaque para o exercício da criatividade e criticidade em sala de aula. As mudanças estão sendo implementadas no que diz respeito à educação em geral. Porém, este trabalho vem sinalizar que tais mudanças precisam ser incorporadas aos livros didáticos e ao trabalho realizado no cotidiano das salas de aula.

Referências

BARDIN, Laurence. **A análise de conteúdo.** Lisboa: Edições 70, 2002.

BATISTA, Rita Cassia; BORBA, Rute Elizabete de Souza Rosa. No jogo é a moeda que diz, não é a gente que quer não: o que dizem crianças sobre a probabilidade. **Vidya**, Santa Maria, v. 36, n.2, p. 237-255, 2016.

BORBA, Rute Elizabete de Souza Rosa. Crianças de anos iniciais levantando espaços amostrais: relações entre pensamentos combinatório e probabilístico. **Jieem**, Londrina, v. 10, n. 2, p. 86-92, 2017.

BRASIL. Ministério da Educação. **Base Nacional Comum Curricular**. Brasília, DF: MEC, 2018.

BRASIL. Ministério da Educação. Secretaria de Educação Fundamental. **Parâmetros curriculares nacionais**: matemática. Brasília, DF: MEC/SEF, 1997.

BRYANT, Peter; NUNES, Terezinha. **Children's understanding of probability**: a literature review. Oxford: Oxford University: Nuffield Foundation, 2012.

CARRILLO, José; CONTRERAS, Luís Carlos; ZAKARYAN, Diana. Oportunidades de aprendizaje y competencias matemáticas: un estudio de dos casos. **Bolema**, Rio Claro, v. 28, n. 48, p. 89-109, abr. 2014.

CARVALHO, Alexandre Tolentino. **Criatividade compartilhada em matemática**: do ato isolado à ação coletiva. 2019. 350 f. Tese (Doutorado em Educação) — Faculdade de Educação, Universidade de Brasília, Brasília, DF, 2019.

CARVALHO, Alexandre Tolentino; GONTIJO, Cleyton Hércules. Discursos em interações comunicativas em aulas de matemática e o desenvolvimento da criatividade compartilhada. **Quadrante**, Lisboa, v. 29, n. 2, p. 109-131, 2020.

FIORENTINI, Dario; LORENZATO, Sérgio. **Investigação em educação matemática**: percursos teóricos e metodológicos. 3. ed. Campinas: Autores Associados, 2012.

FONSECA, Mateus Gianni. **Aulas baseadas em técnicas de criatividade**: efeitos na criatividade, motivação e desempenho em matemática com estudantes do ensino médio. 2019. 175 f. Tese (Doutorado em Educação) — Faculdade de Educação, Universidade de Brasília, Brasília, DF, 2019.

FONSECA, Mateus Gianni; GONTIJO, Cleyton Hércules. Pensamento crítico e criativo em matemática em diretrizes curriculares nacionais. **Ensino em Re-Vista**, Uberlândia, v. 27, p. 956-978, 2020.

FREIRE, Paulo. **Pedagogia do oprimido**. Rio de Janeiro: Paz e Terra, 1974.

FRISON, Marli Dallagnol *et al.* Livro didático como instrumento de apoio para construção de propostas de ensino de ciências naturais. *In*: ENCONTRO NACIONAL DE PESQUISAS EM EDUCAÇÃO E CIÊNCIAS (ENPEC), 7., 2009, Florianópolis. **Anais** [...]. Florianópolis: UFSC, 2009. p. 1-13.

GODINO, Juan Díaz; BATANERO, Maria del Carmen; CAÑIZARES, Maria Jesús Castellanos. **Azar y probabilidad**: fundamentos didácticos y propuesta curriculares. Madrid: Síntesis, 1996.

GONTIJO, Cleyton Hércules. **Relações entre criatividade, criatividade em matemática e motivação em matemática de alunos do ensino médio**. 2007. 194 f. Tese (Doutorado em Psicologia) — Instituto de Psicologia, Universidade de Brasília, Brasília, DF, 2007.

GONTIJO, Cleyton Hércules; FONSECA, Mateus Gianni (org.). **Criatividade em matemática**: lições da pesquisa. Curitiba: CRV, 2019.

HARARI, Yuval Noah. **Sapiens**: uma breve história da humanidade. Tradução Janaína Marcoantonio. Porto Alegre: L&PM Editores, 2018.

KAKKO, Ilkka; INKINEN, Sam. Homo creativus: Creativity and serendipity management in third generation science and technology parks. **Science & Public Policy**, Surrey, v. 36, n. 7, p. 537-548, ago. 2009. https://doi.org/10.3152/030234209X465570

LEE, Yujin *et al.* Students' conceptions of mathematical creative thinking and critical thinking in STEM PBL activities. *In*: INTERNATIONAL MCG CONFERENCE, 11., 2019, Hamburgo. **Anais...** Hamburgo: Universidade de Hamburgo, 2019. p. 197-201.

LIMA, Ewellen Tenorio. **Probabilidade em livros didáticos de matemática dos anos finais**: diferentes concepções Zetetiké, Campinas, v. 28, p. 1-18, 2020. https://doi.org/10.20396/zet.v28i0.8656908

LUBART, Toddy. Creativity across the Seven Cs. *In*: STERNBERG, Robert; KAUFMAN, James (ed.). **The nature of human creativity**. Cambridge: Cambridge University Press, 2018. p. 134-146.

MADRUGA, Zulma Elizabete de Freitas; GALLON, Mônica da Silva; SILVA, Carla Melo. Percepções sobre os conhecimentos prévios em matemática nos anos iniciais e possíveis caminhos. **Revista Exitus**, Santarém, v. 7, n. 3, p. 146-171, set./dez. 2017. https://doi.org/10.24065/2237-9460.2017v7n3lD352

MENEGHETTI, Renata C. Geromel; BATISTELA, Rosemeire de Fátima; BICUDO, Maria Aparecida Viggiani. A pesquisa sobre o ensino de probabilidade e estatística no Brasil: um exercício de metacompreensão. **Bolema**, Rio Claro, v. 24, n. 40, p. 811-833, dez. 2011.

OCDE. Organização para a Cooperação e Desenvolvimento Econômico. **Pisa 2021 Creative Thinking Framework (Third Draft)**: abr. 2019. [S. I.]: OCDE, 2019. Disponível em: https://www.oecd.org/pisa/publications/PISA-2021-creative-thinking-framework.pdf Acesso: 27 fev. 2021.

SANTANA, Michaelle Renata Moraes. **O acaso, o provável, o determinístico**: concepções e conhecimentos probabilísticos de professores do ensino fundamental. 2011. 96 f. Dissertação (Mestrado em Educação Matemática) — Universidade Federal de Pernambuco, Recife, 2011.

SANTOS, Jaqueline Aparecida Foratto Lixandrão. **O movimento do pensamento probabilístico mediado pelo processo de comunicação com alunos do 7º ano do ensino fundamental**. 2010. 200 f. Dissertação (Mestrado em Educação) — Universidade São Francisco, Itatiba, 2010.

SANTOS; Jaqueline Aparecida Foratto Lixandrão; GOMIDE, Cristiane Guerra dos Santos. O desenvolvimento do pensamento probabilístico e combinatório no contexto de sala de aula. *In*: CONFERÊNCIA INTERAMERICANA DE EDUCAÇÃO MATEMÁTICA, 13., 2011, Recife. **Anais...** Recife: [s. n.], 2011. p. 1-7.

SOPHOCLEOUS, Paraskevi; PITTA-PANTAZI, Demetra. What is the relationship between critical thinking and problem posing ability? *In*: INTERNATIONAL MCG CONFERENCE, 10., 2017, Nicosia. **Anais** [...]. Nicosia: Universidade de Cyprus, 2017. p. 79-85.

UJIIE, Nájela Tavares *et al.* Os conhecimentos prévios de matemática de estudantes do ensino fundamental: O que é matemática? De onde ela veio? Como seria um mundo sem matemática? **Alexandria**, Florianópolis, v. 10, n. 1, p. 57-73, maio 2017. https://doi.org/10.5007/1982-5153.2017v10n1p57

VALDÉS, C. Eloy Artega. El desarrollo de la creatividad en la educación matemática. In: CONGRESO IBERAMERICANO DE EDUCACIÓN: Metas 2021, 2021, Buenos Aires. **Anais** [...]. Buenos Aires: [s. n.], 2010. p. 1-14.

VERBISCK, Janielly Taila dos Santos; BITTAR, Marilena. O ensino de probabilidade em uma coleção de livros didáticos dos anos iniciais do ensino fundamental. **Educação Matemática Pesquisa**, São Paulo, v. 21, n. 5, p. 469-484, 2019.

VIGOTSKI, Lev Semenovich. **A construção do pensamento e da linguagem**. São Paulo: Martins Fontes, 2001.

VINCENT-LANCRIN, Stéphan *et al.* **Desenvolvimento da criatividade e do pensamento crítico dos estudantes**: o que significa na escola. Tradução Carbajal Traduções. São Paulo: Fundação Santillana, 2020.

WECHSLER, Solange Muglia *et al.* Creative and critical thinking: Independent or overlapping components? **Thinking Skills and Creativity**, Amsterdam, v. 27, p. 114-122, 2018.

YOUSSEF; Antonio Nicolau; GUELLI, Oscar Augusto. Meu livro de matemática: 5º ano. São Paulo: AJS, 2017.

Recebido em: 06.04.2021 Revisado em: 02.08.2021 Aprovado em: 07.12.2021

Editor: Prof. Dr. Marcos Sidnei Pagotto-Euzebio

Alexandre Tolentino de Carvalho é professor doutor pela Faculdade de Educação da Universidade de Brasília. Atua como professor na Secretaria de Educação do Distrito Federal. É membro do Grupo de Pesquisa e Investigação em Educação Matemática (PI).

Cleyton Hércules Gontijo é professor doutor pelo Departamento e Psicologia da Universidade de Brasília. Atua como docente no Departamento de Matemática da Universidade de Brasília (UnB) e no programa de pós-graduação da Faculdade de Educação da Universidade de Brasília. É coordenador do Grupo PI.

Mateus Gianni Fonseca é professor doutor pela Faculdade de Educação da Universidade de Brasília. Atua como docente no Instituto Federal de Educação, Ciência e Tecnologia de Brasília. É membro do Grupo de Pesquisa e Investigação em Educação Matemática (PI).