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Since its beginnings, Psychology has been prone to both data gen-
eration and understanding of human behavior through data analysis.
Back in 1879, Dr. Wilheim Wundt opened the first experimental psy-
chology lab at the University of Leipzig to study reaction times. To
many, this is considered the start of Psychology as a separate scientific
discipline and the use of data analysis for data-driven decision making
in the field (Flis, 2019; Tweney, 2003). In this Editorial, we briefly
discuss how Psychology students, clinicians, and researchers may take
part of the data revolution and help transforming Psychology, as we
know it, into Machine Learning Psychology.

1. Data Explosion in Psychology: A Place for Data
Science

Nowadays, there is an explosion of data in different areas, and
Psychology is no exception (Mabry, 2011; Zhu et al., 2009). In fact,
considering the different branches of modern Psychology today (King
University, 2019; Ritchie & Grenier, 2003), it seems that the amount
of data generated by psychologists is far away from decreasing. Hence,
there is no doubt that psychologists would greatly benefit from com-
bining theoretical models with the right Data Science tools to correctly
analyze data from experiments and surveys (Loftus, 1996). Thus, train-
ing psychologists in Data Science is essential for understanding and
visualizing data, developing predictive models, and, as a consequence,
fostering knowledge generation (Neth, 2021a, 2021b). In other words,
we need, starting from undergraduate programs, to provide the neces-
sary tools to Psychology students to take part of the data revolution
and, in the near future, being able to make data-driven decisions (Jack
et al., 2018; Mandinach, 2012; Tolle et al., 2011).

Data Science is an exciting multidisciplinary and broad discipline
that allows you to turn raw data into understanding and insight,
and involves principles, processes, and techniques for understanding
phenomena through the analysis of data using a Galaxy of connected
topics ranging from basic Statistics and Probability (i.e., descriptive
and inferential statistics) to Machine Learning (ML) and Artificial
Intelligence (AI; Provost & Fawcett, 2013). Broadly speaking, there are
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five types of analytical approaches in Data Science: (1)
descriptive analytics, which explains what happened;
(2) diagnostic analytics, which explains why things hap-
pened; (3) predictive analytics, which, by using predic-
tive models, forecasts what is likely to happen based on
observed data; (4) prescriptive analytics, which recom-
mends a course of action based on the results of a predic-
tive model; and (5) cognitive analytics, which exploits
the advances in ML and AI (i.e., intelligent systems)
through High Performance Computing to develop ana-
lytic models with a human-like intelligence (Dey, 2016;
Gudivada et al., 2016; Lepenioti et al., 2020). Note that
these approaches open new possibilities on analysing
Psychology data that go beyond traditional summary
statistics (i.e., mean, median, range, and standard devi-
ations), correlation/regression analyses, and the assess-
ment of psychometric properties of a clinical instrument
(Cuartas Arias, 2017).

2. ML Psychology: Predictive Models,
Clustering, and Intelligent Systems

In Psychology, data can be generated from different
and diverse sources: ranging from surveys and clinical
instruments/batteries, which asses important aspects of
human behavior, to EEG, reaction times, and genetic
and omics data that quantify changes in the brain and
the frequency distribution of traits or gene/protein ex-
pression function and evolution (Bell & Cuevas, 2012;
Bragazzi, 2013; Jiménez-Figueroa et al., 2017; Suarez
et al., 2020). ML has called the research communi-
tys attention for disclosing patterns, detecting objects,
and developing predictive frameworks in several diseases
(Dey, 2016; Dhall et al., 2020) as well as in several areas
of Psychology, including Psychometrics, Experimental
Psychology, Diagnosis, Treatment, follow-up, and Per-
sonalized and Predictive Care (Dwyer et al., 2018; Ja-
cobucci & Grimm, 2020; Koul et al., 2018; Lin et al.,
2020; Orrù et al., 2020; Rosenfeld et al., 2012; Shatte et
al., 2019), demonstrating its usefulness for elucidating
important aspects of disease.

When using ML, the data can be of any nature (i.e.,
binary, multinomial, ordinal or continuous), and the un-
derlying assumptions are minimal. Whether or not we
have an outcome variable for each individual in our sam-
ple, it defines the type of ML techniques to be applied
(i.e., Supervised ML vs. Unsupervised ML). Broadly
speaking, supervised ML refers to developing predictive
models for an outcome of interest Y based on a set of
predictors X = (X1,X2, . . . ,XP )T ; the selection of the
predictive model fitting the data best is performed based
on an error-related measure (i.e., the root mean squared
error [RMSE] and the mean absolute error [MAE] for
continuous outcome variables, and the sensitivity, speci-
ficity, accuracy, and lift for dichotomous variables; Kuhn,
2008, 2020). Some of the most common supervised ML

algorithms include Classification and Regression Trees
(CART; Breiman et al., 1984), Random Forrest (RF;
Breiman, 2001), Support Vector Machines (SVMs; Cortes
& Vapnik, 1995) and eXtreme Gradient Boosting (XG-
Boost; Chen & Guestrin, 2016).

Whenthedata lacksanoutcomevariable (i.e., case/con-
trol status or ‘labels’) while having different measures
available (i.e., responses for a clinical battery), unsu-
pervised ML techniques can be used to identify hid-
den complex structures in the data. Three of the main
methods used in unsupervised ML are principal compo-
nent analysis (PCA), multidimensional scaling (MDS),
and clustering. PCA is a dimensionality reduction ex-
ploratory technique, based on the eigenvalue decompo-
sition of the variance-covariance matrix, that allows vi-
sualizing high-dimensional data (i.e., k ≥ 3 variables are
measured) while preserving as much statistical informa-
tion as possible (Joliffe & Morgan, 1992; Ringnér, 2008;
Ritchie & Grenier, 2003). MDS allows the visualiza-
tion of the similarity level of individuals in a data set
by calculating a dissimilarity or distance function D(X)
such that individuals closely related to each other have
low dissimilarity (Mead, 1992). In this sense, the choice
of an appropriate dissimilarity function is crucial (Har-
mouch, 2021). Clustering methods, on the other hand,
help to identify, based on a set of features or variables,
groups of individuals that would be impossible to spot
otherwise. Multiple clustering techniques available in
the literature could be applied (i.e., K-means cluster-
ing, Hierarchical clustering, and distribution-, model-
and density-based clustering techniques; Roman, 2019).
However, the choice of which of these methods should
be used depends heavily on the data and involves assess-
ing the stability and compactness of the derived clusters
using different performance measures (Pedregosa et al.,
2011; Scikit-learnProject, 2021).

For high-dimensional data, combining PCA+cluster-
ing or MDS+clustering is a go-to recipe to graphically
represent individuals relationships and subgroups accord-
ing to some features. Subsequent work may include to
develop ML predictive models that can classify new indi-
viduals to such derived groups (Roman, 2019). Interest-
ingly, the combination unsupervised ML techniques may
lead to the identification of individuals exhibiting differ-
ential clinical profiles (i.e., extreme phenotypes; Acosta
et al., 2011; Arcos-Burgos et al., 2019; Elia et al., 2009;
Pérez-Gracia et al., 2010; Vidal et al., 2020; Yu et al.,
2017; Yu et al., 2018), hence contributing to the devel-
opment of personalized interventions, treatments, and
follow-up strategies. The combination of supervised and
unsupervised ML techniques as well as the automation
of the data analysis process could allow the development
of data-driven Intelligent Systems supporting psycholo-
gists to make more accurate and timely decisions (de
Mello & de Souza, 2019; Luxton, 2016).
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3. R, Python and the Democratization of ML
Despite how promising transitioning to ML Psychology
may seem, data-driven decision making requires not only
a proficient understanding of Data Science, Data Ana-
lytics, and ML/AI techniques, as well as the Psychology
component associated to the data at hand, but also a
comprehensive computational set of tools that facilitates
the implementation, validation, and deploying of ML
models. Thus, ML Psychology imposes new challenges
in terms of the level of training in computational tools
and abstract thinking that Psychology students need to
develop. In what follows, we present some open-source
free-of-charge alternatives to get started.

For more than three decades, R (www.r-project.org)
and Python (www.python.org) have taken the lead to de-
mocratize the use of ML algorithms to the general public
by making them easily accessible at no cost. More re-
cently, Julia (www.julialang.org) has emerged as a pow-
erful, suitable, and efficient alternative.

Established as an open source project in 1995, R
is a language and environment that provides a great
variety of statistical and graphical techniques, includ-
ing classical statistical tests, predictive modelling, clus-
tering, and other ML algorithms, and it is highly ex-
tensible (R Core Team, 2021). For ML, R has multiple
freely-available packages, which focused on ML, namely
caret, dplyr, tensorflow, DataExplorer, ggplot2, kernLab,
MICE, mlr3, plotly, randomForest, rpart, e1071, keras,
and OneR. For more details, see the Comprehensive R
Archive Network (CRAN) Task View (Hothorn, 2021).

On the other hand, Python, which was created by
Guido van Rossum in 1991, is a widely-used, interpreted,
object-oriented, and high-level programming language
with dynamic semantics, used for general-purpose pro-
gramming (Python Software Foundation, 2021, van Ros-
sum 2009). For ML in Python, the scikit-learn (Pe-
dregosa et al., 2011) is the go-to library. This library
offers an open-source collection of simple, reusable and
efficient classification, regression, clustering methods, as
well as dimensionality reduction techniques, model selec-
tion algorithms, and pre-processing routines tools (Pe-
dregosa et al., 2011) accessible to everybody for devel-
oping predictive models.

Finally, Julia is a general-purpose, dynamic, high-
level, and high-performance programming language that
started in 2012 by Jeff Bezanson, Stefan Karpinski, Vi-
ral B. Shah, and Alan Edelman. Julia was conceived to
be as usable for general programming as Python, as easy
for statistics as R, and as natural for string processing as
Perl, as powerful for linear algebra as Matlab, as good at
gluing programs together as the shell (Bezanson et al.,
2012, para. 4). Similar to R and Python, Julia also of-
fers tools for Data Visualization, Data Science, and ML.

4. Getting Closer and Closer to the Promised
Land

With the explosion of data in Psychology, ML meth-
ods hold promise for personalized care by tailoring treat-
ment decisions and clustering patients into taxonomies
clinically meaningful. In other words, ML methods can
be used to take us to a Promised Land where clinicians
provide diagnosis and suggest treatment options based
on data from an individual, instead of using a ‘one-
size-fits-all’ approach (Cuartas Arias, 2019; Joyner &
Paneth, 2019).

A recent review identified that depression, schizophre-
nia, and Alzheimer’s disease were the most common
mental health conditions studied via ML methods (Shatte
et al., 2019). Other conditions included autism (Bone et
al., 2015), frontotemporal dementia (Bachli et al., 2020),
cognitive impairment (Na, 2019; Youn et al., 2018), and
post-traumatic stress (Wani et al., 2020). Certainly, the
challenge in the years to come is to expand the appli-
cation of ML methods to other pathologies, especially
in developing countries. Even more importantly, ML
methods, properly applied, may lead to the discovery,
for example, of relevant clinical aspects of understudied
populations (Fröhlich et al., 2018). In this Promised
Land, psychologists provide faster, timely, and more ac-
curate diagnosis, and are able to dissect and identify
individuals with subtle forms of the disease, and offer
appropriately treatment options.

Despite getting us to this Promised Land where per-
sonalized psychological care is a reality for most people,
ML can lead to misinformed conclusions in the absence
of clinical domain expertise; focusing on Data Science
and the application of ML methods only can produce
misleading results and conclusions (Bone et al., 2015).
Thus, it is not only important to deeply understand the
clinical background of the field, but also to differenti-
ate which ML methods can be used and how. In this
regard, interdisciplinary collaboration between psychol-
ogists and researchers in areas related to Data Science
and ML is crucial (Shatte et al., 2019). Because of this
continuous interaction, communication is another rele-
vant aspect. In ML Psychology, the practitioner must
have excellent communication skills to be able to express
his/her research questions to collaborators to synergi-
cally work and successfully address them as a team. It
is also important for the ML Psychology practitioner to
interpret and follow the results of applying ML methods,
and be able to gain relevant insights into the psychology
aspects of the condition under study (Bone et al., 2015).
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