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ABSTRACT. The objective of this study was to determine the genome association between markers of
bovine LD BeadChip with dairy important traits. Information of breeding program of the Universidad
Nacional de Colombia was used. BLUP-EBVs were used for dairy yield (DY), fat percentage (FP), protein
percentage (PP) and somatic cell score (SCS). 150 animals were selected for blood or semen DNA
extraction and genotyping with BovineLD BeadChip (Illumina). Autosomal information was retained and
the editing information was performed using Plink v1.07 software. The eftects of SNPs were determined
by Bayes C with GS3 software. The minor allele frequency for most of the markers on the bead chip was
high, which increases the probability of finding important loci segregating in the population. Estimations of
fraction markers with an effect were close to zero in almost all cases. The most important markers were
mapped by trait using ENSEMBL. A total of 6,510 autosomal SNPs were retained, out of which only a
proportion with effect was taken from the mixed function of Bayes C. Important genes as ANKS1B,
CLCN1, NMBR and CTSD, were found for each trait for AL, FP, PP and SCS respectively. Finally, Bayes
C estimation allowed to identify specific SNPs possibly associated with QTLs.

Keywords: dairy cattle; GWAS; QTLs, single nucleotide polymorphism.

Associagao gendmica usando o método Bayes C para caracteristicas importantes na
producao leiteira em Gado Holandés na Colombia.

RESUMO. O Objetivo deste estudo foi determinar a associagio gendmica entre os marcadores do chip
bovino LD (LD BeadChip) com caracteristicas importantes na produgio de leite. Foram utilizadas
informagoes do programa de melhoramento genético da Universidade Nacional de Colémbia. BLUP-
EBVs foram utilizados para a produgio de leite (DY), porcentagem de gordura (FP), porcentagem de
proteina (PP) e escore de células somadticas (SCS). 150 animais foram selecionados para extragio de DNA
do sangue ou sémen e genotipados com o chip BovineLD (Illumina). A informagio autossdmica foi mantida
¢ a edi¢io da informacio foi executada usando o programa Plink v1.07. Os efeitos dos SNPs foram
determinados por Bayes C com o programa GS3. A frequéncia do alelo menor para a maioria dos
marcadores no chip foi alta, o que aumenta a probabilidade de encontrar locos importantes segregando na
populacio. As estimativas da fragio de marcadores, com efeito, foram préximas de zero em quase todas as
situagoes. Os marcadores mais importantes foram mapeados com ENSEMBL. Um total de 6510 SNPs
autossdmicos foram preservados, dos quais apenas uma proporg¢io foi tomada com efeito a partir da fungio
mista de Bayes C. Para cada caracteristica foram encontrados genes importantes, como ANKS1B, CLCNI1,
NMBR e CTSD, para AL, FP, PP e SCS, respectivamente. Finalmente, a estimativa de Bayes-C permitiu a
identificagio de SNPs com possivel associagio com QTLs.

Palavras-chave: gado leiteiro; GWAS, QTLs; Polimorfismo de nucleotideo tnico.

Introduction

The identification of millions of Single Nucleotide
Polymorphisms (SNPs) in the bovine genome
(Daetwyler et al.; 2014; Gibbs et al., 2009), along with
the gradual reduction in genotyping and resequencing
cost (Meuwissen & Goddard, 2010) have generated a
real opportunity to use information from thousands of
molecular markers for implementing the genomic

selection. These advances have allowed association
studies on a large scale, with the aim of strengthen
breeding programs and improve understanding of the
genetic variation of important traits in dairy yield
(Dacetwyler et al., 2014).

Genomic selection has been implemented mainly
with high density bead chips in different dairy cattle
breeds around the world (VanRaden et al., 2009).
This uses information from a large number of DNA
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markers to estimate individuals breeding values
based on Linkage Disequilibrium (LD) between a
specific marker and the Quantitative Trait Locus
(QTL) (Meuwissen, Hayes, & Goddard, 2001).

Works based on Genome-Wide Association
(GWAS), intend to identify markers, genomic
regions, or causative mutations associated with
productive traits, in order to improve the accuracy of
estimated breeding values and the understanding of
physiological processes and genetic architecture of
dairy yield traits (Makowsky et al,, 2011; Zhang
etal., 2014).

GWAS  studies have used  estimation
methodologies based on least squares or Restricted
Maximum Likelihood (REML) repeatedly, with
different settings for inferring the significance of the
SNP effects and map specific QTLs, to reduce the
problem of false positives rate and overestimation
effect. To alleviate some of these problems, different
approaches have been raised, including Bayesians
that can reduce the problem (Peters et al., 2012) and
can be used for Genome-Wide Association studies
analysis as it is the case of the so-called Bayes C, and
Bayes Cr implemented for GWAS analysis (Legarra
etal., 2015).

GWAS analyses typically select a small number
of DNA markers, usually SNPs, which are closely
linked with functional polymorphisms associated
with quantitative traits of economic importance in
the domestic species. The markers identified are
subsequently subjected to post-GWAS tests with
fine mapping techniques, in order to validate causal
mutations with specific traits of interest (VYi,
Breheny, Imam, Liu, & Hoeschele, 2015).

Holstein cattle has been selected for decades in
many places around the world under different
selection criteria and in accordance with production
and market conditions of each country involved.
Colombian Holstein cattle are the most used on
specialized dairy farms and it is located in the high
tropic under conditions different from those of
other countries. Several GWAS in dairy yield have
been reported in different countries (Zhang et al.,
2014), but in tropical conditions there are few
reports that allow to identify important regions for
genetic improvement.

Given the above, the objective of this work was
to contribute to the understanding of the genetic
variance explained by multiple SNP of the
BovineLD Bead Chip (Illumina, San Diego CA),
using GWAS with Bayes Cr approach, in order to
identify also polymorphisms associated with Dairy
Yield (DY, h* = 0.16), Fat Percentage (FP, h* =
0.32), Protein Percentage (PP,h > = 0.30), and
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Somatic Cell Score (SCS, h* = 0.01) which genetic
parameters were previously estimated (Rincén,
Zambrano, & Echeverri, 2015).

Material and methods

Study population

This work was performed with the information
collected in dairy herds enrolled in the program of
genetic evaluation and dairy control of the
Universidad Nacional de Colombia at Medellin, and
Colanta Cooperativa Ltda. The specific management
conditions, food and health were variable in all
herds, as well as its topography and geographical
location.

Breeding values of 150 bovines, choosing as
many bulls with daughters in different dairy herds in
Antioquia, were taken. The animals were in areas of
lower montane rainforest, with an average
temperature of 14°C and at an altitude between 1800
and 2500 Meters Above Sea Level (MASL). The
evaluated traits were Dairy Yield per lactation (DY),
Fat Percentage (FP), Protein Percentage (PP), and
Somatic Cell Score (SCS). Genetic values were used
for each aspect of the 150 individuals (37 bulls and
113 cows), from which a blood sample in the case of
cows or semen in sires were taken for DNA
extraction and subsequent genotyping. Parents were
taken given the lowest possible relationship between
groups, but in some cases, there were a few couples
and triplets (father-mother-daughter). The animal
selection took into account the choice of bulls with
as many daughters as possible in the population (9
national and 28 foreigners) and the sperm available

in the market, because these can be very
informative, possessing a number of major
population haplotypes.

DNA extraction and genotyping

Blood samples were taken from the middle
coccygeal vein using 5SmL BD vacutainer tubes, with
18 needles and ethylene diamine tetra acetic acid
(EDTA) as anticoagulant (BD Vacutainer TM).
Once the samples were taken, they were stored at
4°C until processing. DNA extraction of some sires
was made from semen straws of 250 and 400uL.

For blood and semen DNA extraction DNeasy
Blood & Tissue Kit® and QIAamp® DNA Mini Kit
were used respectively according to  the
manufacturer recommendations. DNA  samples
were analyzed in a NanoDrop (Qiagen, USA) to
determine its concentration and to adjust them to 50
ug/uL. Purity was also determined by the absorbance
ratio A260/A280 and finally, DNA integrity was
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determined by electrophoresis in agarose gel at 0.8%
(Amresco®). DNA samples were stored at 4°C until
genotyping.

A total of 150 animals were genotyped with
BovineLD Bead Chip (Illumina, San Diego CA)
which covers a panel of 6,909 SNPs, in KosGenetic
laboratory of the University of Milan (Italy). It was
determined that the test of missing data was less
than 0.1% and SNPs with Minor Allele Frequency
(MAF) below 0.03 were discarded. Genotypes with
Mendelian errors greater than 0.05 were also
declared as missing data and only the SNPs present
in autosomal chromosomes were used. R software
(R Development Core Team, 2012) and plink v1.07
(Purcell, et al., 2007) were used for data editing. The
genotypes were coded as 0, 1, or 2 according to the
number of alternative alleles present. Missing data
were imputed by Beagle software (Browning &
Browning, 2009).

Statistical analysis

Traditional genetic values

Estimated Breeding Values (EBV) were taken
from the predicted values using the Best Linear
Unbiased Predictor (BLUP) in the breeding
program of the Universidad Nacional de Colombia
at Medellin, and Colanta Cooperativa Ltda.

SNPs estimated effects

The general statistical model used was:

I
y=ptu+ ZZl-ai+e

i=1

where y is the vector of genetic values for each
evaluated trait, p is the overall average, u is the
vector of polygenic effects of individuals in the
pedigree, i is SNPs number, Z; corresponds to the
vector of genotypes for the i — th SNP, q; is the
additive effect of each SNP, and ¢ is the vector of
residual effects.

In this study the Bayesian regression method
called Bayes Cm (Habier, Fernando, Kizilkaya, &
Garrick, 2011) was used, where a priori constant for
u is assumed, and a distribution ulAdd,
approximately N (0, Ad®,); where A is the matrix of
relationships between individuals and o, is the
additive genetic variance not explained by SNPs.
The distribution a priori for a; was a mixed
distribution dependent on the variance O'zai and the
probability m of having SNPs with effect. It is

important to note that (Legarra et al., 2016) define ©
contrary to what (Meuwissen et al., 2001).
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In Bayes Cr it is assumed that all the effects of
SNPs have a common variance, distributed as an
inverted chi-squared escalated with parameters v,
and S2 taken as in Bayes B (Meuwissen et al., 2001).
For m a priori distribution U(0, 1) was assumed,
considering the convergence difficulties when m is
estimated simultaneously (Van den Berg, Fritz, &
Boichard, 2013), an approach in which parameters
were estimated first was prepared, and in cases
where convergence was not achieved the proportion
of SNPs with effect was fixed at 1% in order to
estimate later the effect solutions of the SNPs
included. In all cases the same approach was
conducted, but in a way that all markers will be used
(mr=1).

The determination of markers association was
performed directly on Estimated Breeding Values
(EBV) of the general population, because this is a
direct additive genetic effect. To this end, the GS3
software that allows using the approach of Markov
chain Monte Carlo (MCMC) to estimate the effect
of each SNP among all was used. The procedure
had 100000 iterations with a period of heating of
20000 and with corrections every 1000, according to
the recommended minimum to  achieve
convergence (Legarra et al., 2016). The convergence
diagnosis was verified visually by R software (R
Development Core Team, 2012).

The eftects of molecular markers were plotted by
R Development Core Team, (2012) software
according to their location in the genome.
Additionally, the distribution was presented a
posteriori for m and for the variance percentage
explained by markers.

Defining localization map

The localization map for the most important
markers was performed based on the assembly
UMD 3.1 (Bos taurus) of NCBI and ENSEMBL,
using Variant Effect Predictor (VEP) tool (McLaren
et al., 2010). Clusters of genes were performed
according to ENSEMBL based on construction
UMD 3.1 of Variant effect predictor (VEP)
(McLaren et al.,, 2010). Later, ontology was used
(Gene Ontology Consortium) and previous reports
of analyzed QTLs were searched, according to
Animal QTLdb public database in section cattle
QTLdb (Hu, Park, Wu, & Reecy, 2012), looking in
windows of maximum 1.5Mb.
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Results

Used breeding values show a significant variation
between genetic values of sampled individuals. It is
important to note that both positive and negative
individuals were taken into account for genetic
merit of the traits. Once filtered the information, it
went from 6909 of SNPs to a total of 6716 SNPs
that met set out criteria in editing. SNPs were found
distributed in all chromosomes in the way presented
in Table 1, out of which 6510 were autosomal and
were used in subsequent analyzes.

Table 1. Description of SNPs number present in the bovineLD
Bead Chip for each chromosome.

Chromosome 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of

SNIPs 390 341 310 301 305 306 282 292 268 269 275 224 209 18 219
Chromosome 16 17 18 19 20 21 22 23 24 25 26 27 28 29 X

I;‘g“;:’e“’f 205 190 176 180 205 184 163 150 176 134 142 138 124 134 206

Out of all evaluated SNPs, 6899 were processed by
VEP, 6880 of which were recognized as existing
variants and 19 as new or unreported. In total, 2251
SNPs of the BeadChip overlapping genes and 1303
with transcripts were found. Most of the mutations
found in 6k Illumina BeadChip correspond to SNPs
located in the intergenic spaces (57%), intronic regions
(29%), or are synonymous mutations (1%). Only a
small portion are in untranslated regions (UTRs) and
missense mutations (1%) or upstream (5%) or
downstream variants of a gene (5%), so that they can be
biologically  suggested as mutations.
However, it has been shown that some intronic and/or
non-coding variants often have some sort of
relationship with specific QTLs, either because they
have an unknown function or because they are
associated with regions that affect expression
(promoters, enhancers, among others) and messengers
maturation, or because they are in LD with the
causative mutation.

In determining the allele frequencies of different
markers in the population, it was possible to observe a
trend toward alleles of higher Minor Allele Frequency
(MAF), which shows a clear trend towards
intermediate and polymorphic markers selection in
genotyping BeadChips, so that they segregate in
different populations, generating a bias for assessment
in population genetics. Only 11 markers out of all
presented frequencies between 0.03 and 0.05; while 83
had MAF under 0.1. However, the markers with MAF
higher values provide greater statistical power and in
formativeness for association with phenotypic traits

causative
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and may be a better alternative to use them in genomic
selection programs, taking into account that there is a
greater chance that they segregate in the population.

Considering that less frequently found variants
(MAF < 0.05) correspond to rare variants in the
population, they were selected to identify their
location. Most of them were found in intergenic
regions on different chromosomes and 3 of them
within CNIH3, KCNIP1 and PPP1R13B genes, but
in intronic regions.

Moreover, no evidence (p > 0.05) was found to
claim that even one out of the 6510 markers remaining
after editing was deviated from Hardy Weinberg
equilibrium (HWE). However, some markers showed
important differences between the observed and
expected heterozygosity.

Subsequently, components of variance and posterior
probability for 7 in each case were estimated using the
MCMC algorithm of GS3 (Legarra et al., 2016). It is
important to note that the 7 parameter has an opposite
meaning to that defined by Meuwissen et al. (2001),
it is the fraction of SNPs that have an effect. The trait
with the highest value of  was fat percentage, and the
lowest was somatic cell score, however, by plotting the
distribution a posteriori, it was not possible to
differentiate in any case a strong peak in the estimation
and generally a strong trend toward values near to zero
was observed (Figure 1A).

According to the results, T values were set in 0.01
for all traits, since the results were very close to zero,
but without a well — defined peak. Once w was set, the
variance percentage explained by the markers was
determined, the feature with higher value of the
explained variance was SCS and the lowest was PP
(Figure 1B).

In the case of fat percentage in milk, SNPs
accounted for approximately 0.3% out of the genetic
variance, 18% for DY, 1.8% for PP, and 97% for SCS
(Figure 1B), which is a bit contrasting and evidences an
effect of different genetic architectures among the
evaluated traits.

The inclusion of all markers in the evaluation,
allowed to estimate the variance effect again, showing
that the use of all SNPs in the analysis causes a slight
decrease in variance proportion explained by markers.
Thus, FP had approximately 0.28% out of the variance
explained by all markers, DY 0.39%, PP 1.4%, and
SCS 78%.

It was possible to find SNPs with a greater effect
for each trait when m was fixed in 0.01 (Figure 2B).
However, some of the markers were close to zero
and a much smaller proportion than © showed a
significant peak in its magnitude. Table 2 presents a

Acta Scientiarum. Animal Sciences, v. 40, €39015, 2018



Bayes C method for dairy

description of the five most important markers by
evaluated trait, including the gene to which it is
related and its function. Among these the most
important marker was rs110718748 because of its
effect and its posterior probability for DY, it was
found within an intron in ANKS1B gene, according
to the version Bos faurus UMD 3.1 of NCBL
According to ontology, this gene is involved in
various routes according to its isoform, with a
significant function in overall protein synthesis
(Table 2).

Furthermore, the most important marker for FP
was 15109245784, this marker represents an intronic
variation in the CLCN1 gene according to version
NCBI UMD 3.1. This gene has a direct activity on
chloride channels, according its ontology (Table 2).
The most important marker for PP was rs29014693,
which was found near the NMBR gene that plays an
important role in various biological functions,
including  sensory  activity,  diet,  gastric
and pancreatic secretion, among others (Table 2).
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Finally, for SCS the marker rs109548201 had the
biggest effect, it was found inside CTSD gene, and
presents a clear immunological effect in animals
(Table 2). Out of all markers tested, none was
reported as a mutation with consequences on the
loss of meaning or not synonymous.

The minor allele frequencies in the most
important SNPs on different traits were between
0.19 and 0.49, evidencing greater importance of
SNPs with intermediate frequencies (Table 2 in all
cases, presumably because of their informativeness
and importance on the genetic variance. In order to
compare if there was a similar pattern in the
solutions when a different value of m is used, the
solutions graph was performed considering the
inclusion of all markers on the BeadChip (n=1)
(Figure 2B).

The figure shows that the higher values in
solutions do not match for different traits; however,
some individual solutions are important in both
cases.
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Figure 1. Distribution a posteriori with Bayes Crt (A) Distribution a posteriori of markers with eftect proportion (n) (B) Distribution a

posteriori of variance percentage explained by molecular markers.
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Figure 2. Eftects of SNPs (A) with © = 0.01 and (B) with © = 1, on fat percentage, dairy yield, protein percentage, and somatic cell score

in milk.

For example, in the BTA-6 for fat percentage
(Figure 2B), it can be observed a sharp peak
which is much lower when ®© = 0.01 (Figure 2A)
but corresponding to the same marker at the top.
Moreover, it is interesting to note that by
including all markers, a peak on chromosome 14
is evidenced for fat percentage, which although is
the largest, is important
corresponds to DGAT1 gene, which has been
proposed repeatedly as a major gene for fat
content in milk (Grisart et al., 2002; Wang et al.,
2012). However, this peak is not observed when &t
= 0.01, possibly because there are some markers
with greater effect. Finally, it should be noted that
the estimation with a markers fraction allowed to

not because it

explain a greater proportion of the variance in
some cases and was therefore used in this work.

Discussion

The use of breeding values as response variable
for estimating the effects of the markers, can include
only additive genetic effects and isolate additional
effects of more complex models, such that
computational requirements can be reduced,
looking to promote convergence and decrease
computing time, especially in complex models that
require joint estimation of several different
parameters. Some works have directly used genetic
merit to estimate additive effects of genetic variants
(Calus, De Haas, & Veerkamp, 2013; Van Hulzen
etal., 2012).
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Table 2. Description of polymorphisms with greater effect on Dairy Yield per lactation (DY), milk Fat Percentage (FP), Protein

Percentage (PP), and Somatic Cell Score (SCS).

Chromosome /

Trait s code e
position

MAF Gene/consequence

Function

Rs110718748  5/63899453  0.40 ANKS1B/intronic variant

Rs41607880  4/89380482  0.49 .
variant
DY
Rs110425841 22/60508872  0.14 ABTBI
Rs43483670  6/103079093  0.23 MAPK10/Intronic variant
Rs41913085 11/19125116  0.45 VIT/Nearby intergenic variant

TMEM229A/close intergenic

There are different isoforms of the gene with neuronal regulation
functions, regulation of global protein synthesis, APP regulated.

Activity with binding transcription factors to specific DNA sequence

PODXL2/Intronic variant and upstream of ~ PODXL2: transmembrane proteins binding to glycosaminoglycans

ABTBI1: Elongation factor activity in translation.
JUN kinase activity and MAP kinase (Signaling)
glycosaminoglycan binding

Rs109245784  4/107540967  0.29
Rs41571534  19/26182297  0.19

CLCN1/Intronic variant

FP Rs41670205  2/55831708  0.45 LRP1B/Intronic variant

WSCD1/Nearby intergenic variant

Chloride channels activity
sulfotransferase activity, milk fat
Activity in cell surface proteins that bind and internalize ligands in the
process of receptor - mediated endocytosis. Calcium and low - density
lipoprotein binding.

Rs43655765  11/2350093  0.49 SNRNP200 / Synonymous variant. Small nuclear ribonucleoprotein (determining role in splicing)
Rs110897514  17/20336068  0.43 PCDH18/ Nearby intergenic variant Calcium dependent cell adhesion protein
Involved in many biological functions such as feeding, pituitary,
Rs29014693  9/80015418  0.45 NMBR / Nearby intergenic variant gastric and pancreatic secretion, cell development and differentiation,
among others.
Rs41772701  15/57260972  0.47 CAPNS5 / Intronic variant Endopeptidase activity calcium dependent cysteine type.
PP Re20023352 4118676822 038 INSIG1/ Nearby intergenic variant Intermediary in cholesterol synthesis control. Plays a role in the
growth and differentiation of tissue involved in metabolic control.
Rs41576177  24/32677985 0.38 OSBPL1A / Intronic variant It binds to phospholipids and cholesterol.
Re41624303  5/82878525  0.26 Arntl2 / Intronic variant Activity in protein dlmtrlzatlon'and activity of binding transcription
factors to specific DNA sequence
Rs109548201  29:50361506  0.28 CTSD / Downstream variant (9PB) Acid protease activity in 1ntraccl}tllar protein breakdown. Involved in
the pathogenesis of several diseases.
Rs41589068 530275164  0.25 Among NCKAP5L a‘f‘d TMBIM6 / TMBIMé6: qup?osm modulator, c.alcmAm homcost;sm.
Intergenic NCKAPSL; Activity associated to signaling mechanisms.
Rs41797394  16:33121540  0.39 Locus uncharacterized near EFCAB2 EFCAB?2 Binding activity to calcium ions

SCS Rs41602750  5:93871154  0.44

Intergenic variant near to immunological
important gene cluster PVRL1, THY1,

Rs109119975  15:31153296  0.41

CI1QTNF5

MGST1/ Nearby intergenic variant

Glutathione peroxidase activity and homodimerization
PVRLI1: protein homodimerization activity.
THY1: binding and activating protein kinase, cell-cell interaction and
cell ligand.
C1QTNEF5: Plays a role in cell adhesion, related to tumor necrosis
factor.

Generally, genetic values of sampled animals
showed a significant variability, with values almost
near zero, so it was possible to have animals
positively and negatively assessed to estimate
additive effects on evaluated markers. The polygenic
effect was used in the model in order to reduce false
positives showing up (Legarra et al., 2015), given
that the used BeadChip includes only a small
proportion of genetic variants that can be found, and
therefore it is normal not to reach to explain a large
proportion of the genetic variance in some traits.

Given that present markers on the BeadChip are
often selected following a uniform distribution in
the genome, we can see that there is a relationship
between the size of the chromosome and the
number of variants within it (Table 1), which can
exert additional ascertainment bias on markers on
the BeadChip. This type of markers distribution has
been previously reported and secks to place at least
one marker in each haplotype block linked to a QTL
and to promote the imputation process (VanRaden
et al, 2013; Wiggans, Cooper, Van Tassell,
Sonstegard, & Simpson, 2013).

Moreover, it is important to mention that in the
search process for causative mutations and relevant

biological information, it was possible to identify
generally that most SNPs present on 6k genotyping
BeadChip are located in regions in which an
important biological consequence (synonymous or
non-coding mutations) cannot be attributed.
However, a small number of markers could have
consequences in the expression of specific genes,
although it must be noted that most non-
synonymous mutations have deleterious effects and
therefore decrease segregation in population
likelihood. It is also worth clarifying that it is logical
to have few markers in coding regions if it is
considered that a very small percentage of genetic
material corresponds to genes (< 3%), for this reason
most of reported variations are found in noncoding
regions. However, markers with great eftect in genome
sections without apparent or noncoding function can
be found, possibly because they have a role in
regulating expression or messengers’ maturation.
Furthermore, it is possible to find molecular
markers in intergenic regions or non-coding regions
with a significant effect, because they are linked with
an important QTL for a special trait, which is very
common and significant in species with a small
effective number of population (Ne) without recent
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expansion, such as Holstein cattle (Dactwyler et al.,
2014; Villa-Angulo et al., 2009).

MAF distribution allowed to observe a trend
toward markers with intermediate frequencies in the
Holstein individuals sample, because genotyping
BeadChip are biased towards common variants, so
that they could be found segregating in different
cattle populations worldwide. This bias has been
known as “Ascertainment bias” and can be a problem
for population genetics studies, especially those
related to diversity and genetic differentiation
(Lachance & Tishkoff, 2013).

On the other hand, this type of intermediate
allele frequencies may be more important for
genetic evaluation, because it improves testing
power and different gene variants informativeness,
due to the increase in the likelihood of identifying
markers segregating in the population, so that a
significant proportion of the genetic variance of
important traits for dairy production can be
explained. Importantly rare variants (MAF > 0.05)
were few and were found in regions that apparently
do not involve a direct genetic consequence, so they
can be neutral variants that tend to fixation.
However, it is necessary to note that rare variants are
difficult to associate with a significant effect and
require a high statistical power to one of these
variants be significant on a specific feature, even in
populations as Holstein which has a small effective
number of the population. This can be one of the
reasons why the increase from a density point is not
advantageous for genomic selection genotyping
(Lohmueller, 2014).

The ® fraction assessment of SNPs with effects
on phenotypic traits is defined in this work
accordingly as presented by Legarra et al. (2016),
which is the opposite to what Meuwissen et al.
(2001) defined for Bayes B. In estimates achieved in
this work, it was observed a trend towards T near to
zero in all evaluated traits, indicating that only a
small number of markers has effect and is important.
Similar results have been reported in previous studies
(Peters et al., 2012; Van den Berg et al., 2013). It should
be clarified that convergence where T was deemed
simultaneously was elusive and sometimes the
distribution had trouble exhibiting defined peaks
(Figure 1A); however, this has already been reported
by using Bayes C in a genome-wide association study,
it has even been reported that fixing 7 yields better
results (Van den Berg et al., 2013).

On the other hand, Bayes C has been reported as
a successful method for identifying great QTLs
(Sun, Habier, Fernando, Garrick, & Dekkers, 2011)
and has been used for different traits in beef cattle
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(Peters et al., 2012; Peters et al., 2013), pigs (Fan et
al.,, 2011), and simulation studies with different
genetic architectures (Van den Berg et al.,, 2013).
Even recently Habier, Fernando, and Garrick (2013)
discussing the linkage disequilibrium, concluded
that BLUP is not able to define effects in some
genome linked regions and recommended Bayesian
methods with t distributions a priori that fit better in
some cases where LD decays rapidly with distance.
However, for large QTLs detection it was reported a
significant effect of the genetic architecture of the
evaluated traits, so that detection is more accurate
using Bayes C for traits of medium to high
heritability, with a moderate or low number of
QTLs, and when it has a large number of records
(Van den Berg et al., 2013), some of which are not
met with the sample taken, so the mapping results
should be approached with caution.

An interesting result emerges from the variance
percentage assessment explained by genetic markers,
because this percentage may be increased by fixing a
7 fraction of markers with effect, regarding the use
of all markers. This means that it is possible to
generate excess noise markers in the assessment, and
therefore a much smaller proportion of variants can
be used with the same advantages for the estimation,
may even exceed them. However, to assess the
actual effect it is necessary to propose scenarios that
allow to properly define the true purpose of setting a
7 fraction for genome-wide association studies.
Pérez-Enciso, Rincén and Legarra (2015), argued
that using relevant biological information for genetic
evaluation may be important, even recently it has
been suggested a methodology that leverages the use
of information from the GWAS studies for genomic
evaluation programs, showing some interesting
advantages especially in cases where small samples
and low heritability traits are used, depending on
traits genetic architecture thereof (Van den Berg,
Boichard, Guldbrandtsen, & Lund, 2016; Zhang et
al., 2014).

GWAS analyses have been successful in
identifying new mutations associated with diseases
and production traits. However, variants identified
as statistically significant often explain a very low
fraction of the genetic variance, even in features
having high heritability (Clarke & Cooper, 2010).
Many explanations have been proposed taking into
account modeling issues, contrasting genetic
architecture of the traits, including epistatic effects,
problems of sample size, reference population and
statistical technique applied (Makowsky et al., 2011).

In this paper the variance percentage explained by
the markers was variable depending on the property,
which in turn depends on the genetic architecture that
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can be contrasting in the productive traits evaluated
(Hayes, Pryce, Chamberlain, Bowman, & Goddard,
2010). Some studies indicate that the fraction of the
additive variance explained by genes or regions near
genes may be from 0.05 to 0.2, but more recent studies
have reported up to 0.5, which is consistent with DY,
FP and PP traits, but far from the explained variance in
the case of Somatic Cell Score (SCS) (Misztal, 2011).

Some research has suggested that SNPs density
increases the accuracy in the estimation of genomic
breeding values of animals up to a tipping point
where it begins to decrease the increase rate to form
a plate, where increased density does not improve
accuracy achieved (Harris, Creagh, Winkelman, &
Johnson, 2011; VanRaden et al., 2013), although this
depends on the genetic architecture of the evaluated
traits (Gibbs et al., 2009). However, the importance
of identifying specific regions where the SNPs has
been highlighted, with the intention to reduce
interference (noise) generated by the amount of
information and to improve estimates for genetic
values (Zhang et al., 2014). Although the BeadChip
intensity used in this work is not the highest, it
could be used for estimation and identification of
significant effects and markers associated with
important traits in milk production.

It is clear that the genetic architecture differs
between the quantitative traits of importance for the
dairy industry (Hayes et al., 2010). However, for
some traits a large proportion of the genetic variance
is associated with genomic regions with very small
effect variants, and only a few traits present variants
of great effect on a phenotypic characteristic and
explain large proportion of the genetic variance
(Dekkers, 2012). According to the genetic
architecture, features which are governed by a
greater number of QTLs, are less likely to identify
false positives using the methodology Bayes C. In
the same way the power of the test increases with
heritability (Van den Berg et al., 2013).

The Bovine HapMap consortium (Gibbs et al.,
2009), reported a low level of linkage disequilibrium
(LD) above 1000 kb in different breeds of dairy
cattle, which obviously has an influence on GWAS
studies, as these exploit the LD between the marker
and the QTL. A low density of QTLs may decrease
the chance of finding a marker associated with QTL
but also decreases the probability of having
redundant markers, taking into account the
homogeneous distribution of SNPs in commercial
BeadChips (Wiggans et al., 2013). Related
individuals can generate significant LD even in cases
where there is no connection. However, it is
possible to reduce false positives by the presence of
related individuals with a model that uses the
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information in the pedigree (MacLeod, Hayes, &
Goddard, 2009), as in the present work.

It is important to note that QTL mapping is
generally accompanied by a large confidence interval in
chromosomes (Manichaikul, Dupuis, Sen, & Broman,
2006), thus, identifying the causative mutation and
important genes on a feature is often difficult to
achieve even in specialized cattle as Holstein and where
the effective number of the population is small and the
haplotype blocks are larger (Villa-Angulo et al., 2009).
By using linked markers and not directly causal
mutation or a mutation closed to QTL, losses of
accuracy for genomic selection after generations due to
recombination processes are presented (Meuwissen &
Goddard, 2010).

It is interesting to note that in graphics of effects,
when © = 0.01 (Figure 2A) and © = 1 (Figure 2B)
set scales were very different and the magnitudes of
the estimated effects were much greater in the case
of choosing a fraction of variants with effect.

Identifying markers when © = 0.01, allowed to
present a summary of SNPs with greater effect, 2
out of which were previously reported as directly
associated with a QTL, although not necessarily on
the same assessed trait. Others were almost all in the
region attributed to a QTL (without direct proof) or
close to this (Table 3).

In this study no significant association with the
DGAT1 gene was found for fat percentage, when
Bayes C was used setting © = 0.01, which is strange
if you consider that this gene has been considered a
major gene for fat percentage in milk. However,
when the analysis was performed including all
markers, it was possible to observe a peak on
chromosome 14 that corresponded with a marker
into the gene (Grisart et al., 2002; Wang et al., 2012).
According to the above, it is possible to fix a fraction
of markers with effect on a feature; some important
SNPs go unnoticed or are overshadowed by markers
with a greater effect on the assessed trait.

The summary of assessed markers and the traits
they were associated to, according to the report in the
public database cattle QTLdD section Animal QTLdb
(Hu, Park, Wu, & Reecy, 2012) is presented in Table 3.

It is worth noting that greater effect markers
often were corroborated with QTLs, supporting the
estimate presented in this paper when a fraction of ©
markers was fixed by Bayes C.

The results should be interpreted with caution
because the number of animals may not be large
enough, and for that reason only 5 markers with
greater effect were taken, to make a subsequent
possible fine mapping work in order to find QTN
directly or better map identified QTLs, as they often
have very wide confidence belts.
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Table 3. Relationship of polymorphisms with greater effect on Dairy Yield per lactation (DY), milk Fat Percentage (FP), Protein
Percentage (PP), and Somatic Cell Score (SCS) with previous reports of mapped QTLs.

Trait rs code Location QTL type associated
In the interval attributed to a QTL. Direct R .

Rs110718748 association reported Dairy yield, % fat, pregnancy and calving case.

Rs41607880 Close toa QTL (< 1Mb). Milk production, fat and protein prodl\gtlon, delivery first estrus interval,
DY consumption.

Rs110425841 In the interval attributed to a QTL. Fatty acids in milk and somatic cell score, weight.

Rs43483670 Close toa QTL (< 1.5 Mb) Meat quality

Rs41913085 In the interval ae rlbutcd t0a QTL. Direct Reproductive traits and content of Beta-lactoglobulin.

association reported
Rs109245784 No QTL reported in the region.
Rsd1571534 In the interval attributed to a QTL. Myristoleic acid content, EBV for .mlllk faF production, percentage of linoleic
acid in milk,

Fp Rs41670205 Close to a QTL (< 1 Mb). Protein production, grade of milk.

Rs43655765 In the interval attributed to a QTL. Logissimus lean muscle area, pentadecanoic acid content.

Rs110897514 Close to a QTL (<0.5 Mb). Production of milk fat, energy producnqn in milk, fat percentage and protein

production.

Rs29014693 Close to a QTL (< 0.5 Mb). Capric acid content.

Rs41772701 Close to a QTL (< 0.5 Mb). Relationship Omega 3 / Omega 6 content of docosahexaenoic acid
PP Rs29023352 Close toa QTL (< 0.5 Mb). Birth weight

Rs41576177 Close toa QTL (< 1.5 Mb). Fertility rates and feed conversion

Rs41624303 Close to a QTL (< 1.5 Mb). C22:1 fatty acid content

Rs109548201 Close to a QTL (< 0.5 Mb). Lignoceric acid content, iron content.

Rs41589068 In the interval attributed to a QTL. Udder height, croup lenght, cell-mediated immune response, protein

SCS Rs41797394
Rs41602750

Close to a QTL (< 1.5 Mb).
No QTL reported in the region.

Rs109119975 Close to a QTL (< 0.5 Mb)

percentage in milk, fat production.
Paratuberculosis susceptibility, early embryonic survival.

Somatic cell score, udder composition index, subcutaneous fat, milk
production.

Finally, some of the current approaches suggest
to find strategies to identify causal variants in
complex traits, with the aim of accelerating progress
towards QTN (Quantitative Trait Nucleotide)
based selection and more accurate prior knowledge-
based technologies and genetic architecture of traits
to be assessed (MacLeod, Hayes, & Goddard, 2014;
Zhang et al., 2014). Future strategies may include
selection markers with great effects for future high
density BeadChips, development of technologies
such as "Genome Editing", and selection with the
intention of obtaining optimized individuals for
specific environments, and genomic
programs calibrated in particular conditions. It is
important to note that the estimates and important
markers can be variable among populations, and the
more remote populations are the less likely the same
regions have similar effects on a specific aspect.

selection

Conclusion

The Bayes-C estimation allowed the identification of
difterent regions possibly associated with QTLs for the
evaluated traits.  Markers in important genes as
ANKS1B, CLCN1, NMBR and CTSD were found for
DY, FP, PP and SCS, respectively. The reported genes
corresponding with metabolic functions like protein
synthesis regulation, sulfotransferase activity, cholesterol
metabolism intermediary, among other functions. On
the other hand, according to the genetic architecture, it

was possible to predict more or less the genetic variance
percentage of the traits, even the proportion of
significant markers for traits were biased towards zero,
which suggests that much of the molecular information
generated noise in the estimates, so their debugging
could have important effects on the estimates for
genomiic selection programs.
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