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ABSTRACT. The objectives of this study were (1) to quantify imputation accuracy and to assess the factors
affecting it; and (2) to evaluate the accuracy of threshold BayesA (TBA), Bayesian threshold LASSO (BTL) and
random forest (RF) algorithms to analyze discrete traits. Genomic data were simulated to reflect variations in
heritability (h* = 0.30 and 0.10), number of QTL (QTL = 81 and 810), number of SNP (10 K and 50 K) and
linkage disequilibrium (LD=low and high) for 27 chromosomes. For real condition simulating, we randomly
masked markers with 90% missing rate for each scenario; afterwards, hidden markers were imputed using
FImpute software. In imputed genotypes, a wide range of accuracy was observed for RF (0.164-0.512) compared
to TBA (0.283-0.469) and BTL (0.272-0.504). Comparing to original genotypes, using imputed genotypes
decreased the average accuracy of genomic prediction about 0.0273 (range of 0.024 to 0.036). Comparing to
Bayesian threshold, using RF was improved rapidly accuracy of genomic prediction with increase in the marker
density. Despite the higher accuracy of BTL and TBA at different levels of LD and heritability, the increase in
accuracy was greater for RF. Furthermore, the best method for prediction of genomic accuracy depends on
genomic architecture of population.

Keyword: accuracy; genomic architecture; linkage disequilibrium; machine learning; masked genotypes.

Avaliacao de dados genémicos imputados em caracteristicas distintas usando os métodos

de Random Forest e de limiares Bayesianos

RESUMO. Os objetivos deste estudo foram (1) quantificar a precisio de imputacio e acessar os fatores que
as afetam; e (2) avaliar a precisio do principio de BayesA (TBA), do modelo Bayesiano LASSO (BTL), ¢ o
algoritmo Random Forest para analisar as caracteristicas distintas. Dados gendmicos foram simulados para
indicar variagdes na herdabilidade (h* = 0.30 e 0.10), ntimero de QTL (QTL = 81 e 810), niimero de SNP
(10 k e 50 k) e desequilibrio de ligacio (LD = baixo e alto) para 27 cromossomos. Para uma simulac¢io mais
realista, nés cobrimos os marcadores aleatoriamente com 90% da taxa ausente para cada cenirio, depois, os
marcadores foram imputados usando o soffware FImpute. Nos gendtipos imputados uma grande oscilagio
de precisio foi observada pelo modelo RF (0.164-0.512) comparado com TBA (0.283 - 0.469) e BTL (0.272
- 0.504). Comparando com os gendtipos originais, os gendtipos imputados decairam a precisio média da
predi¢io gendmica em cerca de 0.0273 (oscilagio de 0.024 para 0.036). Comparando-se ao principio
Bayesiano, o uso de RF melhorou a precisio de predi¢io com o aumento da densidade do marcador. Além
disso, o melhor método para predi¢io de precisio gendmica depende da arquitetura gendmica da sua
populagio.

Palavras-chave: precisio; arquitetura genémica; desequilibrio de ligagio aprendizado maquinal; gendtipos mascarados.

Introduction

Genomic selection (GS) plays an important role
to estimate genomic breeding values (GEBVs) of
continuous traits that follow approximately a
Gaussian phenotypic distribution in livestock
(Meuwissen, Hayes, & Goddard, 2001). However,
some traits for instance, litter size, degree of calving
difficulty and resistance to disease are the most
prominent traits in animal breeding that often
termed discrete traits and present a categorical
distribution of phenotypes, where current livestock

breeding programs are aiming at including discrete
traits that reflect animal health, behavior, and
product quality (Konig, Briigemann, & Pimentel,
2013). Discrete traits are influenced by multiple
genes and deviate from Mendelian inheritance
(Blazer & Hernandez, 2006). Obviously, the focused
GS methods on continuous traits cannot be
adequately useful for these traits (Wang et al., 2013).
Hence, GS methods must be adapted to cope with
challenges of discrete traits. Therefore, threshold
versions of Bayesian regressions and machine
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learning methods are applied for genomic prediction
such kind of traits analyses (Gonzilez-Recio &
Forni, 2011). Machine-learning methods are
improving predictive ability in repeated observation.
In discrete traits, methods such as random forest
algorithm (Breiman, 2001) could help to achieve
high genomic accuracy for human (Sun et al., 2008)
and livestock (Chen, Li, Sargolzaei, & Schenkel,
2014; Nguyen, Huang, Wu, Nguyen, & Li, 2015).
Therefore, using these methods to include discrete
traits in animal breeding schemes could increase
accuracy of prediction and consequently, it results in
higher genetic gain.

Marker density is one of the most important
factors in order to achieve appropriate accuracy of
genomic prediction. However, the economic aspect
of genotyping should not be ignored. Nowadays,
animal breeding researchers are trying to genotype
more individuals with low-density chips and obtain
the remaining genotypes through imputation from a
higher density panel (Toghiani, Aggrey, & Rekaya,
2016). However, re-sequencing all individuals by
the high density chip is not cost-eftective. The
technique known imputation allows researchers to
have more accurate estimate of association evidence
at genetic single nucleotide polymorphisms (SNPs)
that are not directly genotyped (Li, Willer, Sanna, &
Abecasis, 2009). For more detections of genes
associated with discrete traits, genotypes imputation
is more affordable compared to whole-genome
sequencing at current prices (Yang et al., 2015).
FImpute (Sargolzaei, Chesnais, & Schenkel, 2011) is
way to impute missing genotypes based on pedigree
information and linkage information, which was
developed for animal applications (Toghiani et al.,
2016).

In addition to marker density from low to high
SNP chip, other factors such as reference population
size, genetic relationships among genotyped
individuals and the animals to be imputed and level
of linkage disequilibrium (LD) have impact on
accuracy of genotype imputation (Hickey, Crossa,
Babu, & de los Campos, 2012). Many studies
(Badke, Bates, Ernst, Fix, & Steibel, 2014;
Sargolzaei, Chesnais, & Schenkel, 2014) were
carried out to evaluate the efficiency of SNP
genotype imputation under different architecture
emphasizing on the accuracy of imputed genotypes.
According to literature, little attention has been paid
to the imputation accuracy and its impact on the
quality of genomic accuracy.

Furthermore, the accuracy of genotype
prediction is also depended on other factors related
to population structure and genetic architecture,
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such as size of the reference data set (VanRaden &
Sullivan, 2010), trait heritability (Guo et al., 2014),
markers density (Meuwissen, 2009), the number of
loci affecting the trait (Daetwyler, Villanueva, &
Woolliams, 2008) and LD (Yin, Pimentel, Borstel, &
Konig, 2014).

In GS, simulation allows researchers to discover
the influences of the genetic architecture of the trait,
the number of markers used for analysis, and the
data also allows for evaluating some sources of
variability, such as drift, which cannot be assessed
with the most of real data (Daetwyler et al., 2010).
In this respect, the simulation study can be carried
out to investigate the advantage of the threshold
methods in terms of accuracy with the GEBVs of
discrete traits with considering different aspects of
genomic structures. Therefore, the objective of this
study was to compare the accuracy of genomic
predictions using threshold Bayes A, Bayesian
threshold LASSO and RF for simulated binary traits
by altering heritability, number of QTL, marker
density, and the LD structure of the genotyped
population when original (before masking a
proportion of SNPs) and imputed genotypes were used.

Material and methods

Simulation of population

The simulation was implemented using the
QMSim software (Sargolzaei & Schenkel, 2009) to
generate phenotypes, genotypes and true breeding
values using the following parameters: at first,
during 1000 generations, a historical population was
provided from 10000 females and 200 males in order
to produce a realistic level of LD for the platform.
Bottleneck was used to create a population with a
higher level of LD. However, we initiated the same
simulation process, but after 1000 generations, the
population size decreased over 100 generations to
400 individuals. Afterward, the population size was
increased over 100 generations. Then, 10,000
females and 400 males from the last historical
population were selected. In the second step, all
individuals from the last generation of the historical
population served as founders in the recent
population. Using a random mating design, the
recent population was expanded by simulating an
additional 10 generations. Per mating produced only
one offspring with a same probability of being each
sex. Replacement rates were 80 and 20 percent for
males and females, respectively.

Selection for both sexes was based on estimated
breeding values. Biallelic SNP markers were evenly
placed along 27 chromosomes of sheep, each 100
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cM long. Simulations of 370 and 1,850 biallelic
markers per chromosome depicted applications with
9,990 SNP (10 K chip) and 49,950 SNP (50 K chip),
respectively. For each marker density, two different
numbers of QTL (either 3 or 30 QTL on each
chromosome) affected the trait. A gamma
distribution was sampled for QTL effects with a
shape parameter of 0.4. For ecach locus and
generation, the mutation rate was fixed on 2.5 X
107° for all of SNPs and QTLs. Moreover, the total
amount of additive-genetic variance was ascribed to
the QTL. We considered two levels of heritability
(low = 0.1 and moderate = 0.3). More explanation
for parameters is summarized in Table 1. There
were eight scenarios (I to VIII; Table 2) to reflect
variations  regarding too number of QTL,
heritability, level of LD and number of markers. To
create a binary phenotype, we defined code 1 as
diseased and code 0 as healthy depending on
whether simulated phenotype was lower or higher
of the population phenotype mean, respectively. We
performed 10 replicates for each scenario to evaluate
the models.

Table 1. Parameters of the simulation process.

Low linkage
disequilibrium

High linkage

Parameter . T
disequilibrium

Historical population

No. of generations (population
size) in phase 1

No. of generations (population

1,000 (10,400) 1,000 (10,400)

size) in phase 2 B 100 (400)
No. gfgcneration (population B 200 (10,400)
size) in phase 3

Recent population
No. of founder sires (dams) 400 (10,000)
No. of generations 10
No. of offspring per dam 1
Mating system Random
Replacement ratio for males
(females) 08(02)
Criteria for selection/culling EBV/age
Sex probability for offspring 0.5

Genome

No. of chromosomes 27
Total length of chromosomes 2,700
(M)
Marker distribution Evenly spaced
No. of QTL alleles Random (2, 3, or 4)
Effects of QTL alleles Gamma (0.4)
Marker and QTL mutation rate 25107
Position of marker and QTL Random
No. of QTL 81 or 810
No. of markers 9990 or 49950
Heritability of the trait 0.10r0.3

Table 2. The simulated scenarios (I to VIII) with respect to the
number of markers and QTL, the heritability of the trait and the
level of linkage disequilibrium.

Scenarios
Variable I I II IV VvV VI VII VII
h’ 03 03 0.1 0.1 03 03 0.1 0.1
No. of QTL 810 81 81 81 810 81 81 81
No. of SNP 10k 10k 10k 10 k 50 k 50 k 50 k 50 k

Level of linkage disequilibrium low low low high low low low high
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Calculation of linkage disequilibrium

The level of LD in the simulated scenarios was
assessed by calculating the squared correlation
coefficient () between all possible pairs of markers
according to Hill and Robertson (1968):

2=__ D
f(A)f(a)f(B)f(b)

where, D = {(AB)-f(A)f(B), and {(AB), f(A), f(a),

f(B), f(b) are observed frequencies of haplotypes AB

and of alleles A, a, B, b, respectively. The PLINK

software (Purcell et al., 2007) was used to estimate

LD between marker pairs in the last generation.

Imputation

To simulate a real condition, we randomly
masked a major proportion of markers (90%) in
low-density SNP platform (10 K) and medium-
density SNP platform (50 K); afterwards, masked
markers were imputed by considering a family and
population-based algorithm with FImpute program
(Sargolzaei et al., 2011). The Flmpute software uses
a deterministic approach that combines family and
population imputation methods. The population
imputation method is based on the assumption that
all individuals have some degree of relationship and
share haplotypes that may differ in frequency and
length depending on the relationships. Imputation
by Flmpute is a two-step procedure, ie. first it
searches for long haplotypes by applying a family
imputation method, and second, it identifies short
segments (two SNPs) by applying a population
imputation method that analyzes overlapping sliding
windows. Flmpute uses deterministic methods to
infer missing or un-typed marker genotypes.
FImpute offers the option to impute genotypes
based on Mendelian inheritance and segregation
rules without using population information.

Accuracy of imputation (per SNP in all
chromosomes) was assessed by
between imputed and original genotypes for all
replications as an appropriate approach to
minimize the dependency on allele frequency. It
estimates the ability of a linear model to depict
the relationship between two wvariables. These
imputed genotype probabilities, one for each
genotype class (e.g. AA, AB, or BB), are
transformed to dosage values by multiplying by 0,
1 or 2 for each genotypic class.

correlation

Genome-enabled evaluation models

To estimate genomic breeding values, we applied
three different evaluation models (two linear
regressions using a Bayesian framework (Threshold
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Bayes A and LASSO), and one machine-learning
ensemble algorithms (Random forest).

Model 1: Threshold Bayes A (TBA)

Meuwissen et al. (2001) had proposed Bayesian
regressions on the genomic markers. We utilized
TBA as proposed Gonzélez-Recio and Forni (2011).
Wright (1934) postulates an underlying random
variable, called liability (A) that followes a
continuous distribution, and that the observed
dichotomy is the result of the position of the liability
with respect to a fixed threshold (t):

0ift> 21
Phenotype = {1 ift <2
where, A is taken as the response variable. The
suggested change consists of the linear regression of
the single nucleotide polymorphism (SNP)
coefficients on a liability variable with Gaussian
distribution. The TBA can be described as follows:

A=ul+Xb+e

where, the underlying liability variable vector for y is
A, p is the population mean, column vector (nX1) of
ones is 1; b indicates (bj) the vector for the
regression coefficient estimates of the p markers
assumed normally and independently distributed a
priori as N (0, ¢;), which o/ is assumes to an
unknown variance related with SNP j. The scaled
inverse chi square 67~ v’y with v; = 4 and %, =
0 002 assume for prior distribution of 6.”. Elements

of the incidence matrix X, of order n X pJ, may be set
up as for different additive, dominant or epistatic
models. In the more practical scenario, it takes
values -1, 0 or 1 for marker genotypes aa, Aa and
AA, respectively. The residuals (e) are assumed to be
distributed as N (u = 0, 6.2 = 1), as stated above. As
in a regular threshold model, threshold and the
residual variance have to be set fixed (0 and 1,
respectively) since these parameters are not
identifiable in a liability model.

This method can be solved through the Gibbs
sampler described in Meuwissen et al. (2001), with
the simple incorporation of the data augmentation
algorithm to sample the individual liabilities from
their corresponding truncated normal distribution as
described in Tanner and Wong (1987). The joint
posterior distribution of the n liabilities is:

Prob Gl b,t) = [ [ w 1 1
i=1 €

@[t — (1 +x;b)]
B —

}Yi
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Model 2: Threshold Bayesian LASSO (BTL)

BTL was described by Park and Casella (2008),
afterwards, De Los Campos et al. (2009) has been
applied BTL genomic version for continuous traits,
and furthermore, Gonzilez-Recio, Maturana, Vega,
Engelman, and Broman (2009) extended for binary
traits. This methodology considers a Laplace (double
exponential) prior distribution on the markers
effects. BTL depends on shrinkage parameters over
the distribution of the effects of marker. As stated in
the previous model, the response variable is a
liability response (A) that follows a continuous
distribution. BTL can be solved as:

A=ul+XB+e

where A represents the vector of liabilities for all
individuals, p is the average of population, 1 shows a
column vector (n X 1) of ones; B are the LASSO
estimates with their respective incidence matrix X as
described for model TBA. The residuals (e) were
considered the wvector of independently and
identically distributed residuals, as N (0, 6.7). As
described for model TBA, the threshold and the
residual variance fixed 0 and 1 respectively; alternate
choices result in the same model.

In a fully Bayesian context, the LASSO estimates
(B) can be interpreted as posterior modes estimates
when the regression parameters have independent
and identical double-exponential priors (Tibshirani,
1996). Park and Casella (2008) have proposed a
conditional Laplace prior specification for the
LASSO estimates of the form:

n

Y _yiBi|/Vo2
P (Blo?) = e VIBjl/Vo§
(Bloe) | |2\/0g

i=1

where 02 s the residual variance, and Y is a
parameter controlling the shrinkage of the
distribution. Inferences about y may be done in
different ways (Park & Casella, 2008). To follow the
Bayesian specifications, a gamma prior is proposed
here for *, with known rate (r) and shape (8) hyper-
parameters, as described by De Los Campos et al.
(2009). Samples from posterior distributions of
those estimates are drawn from the Gibbs sampling
algorithm as described by De Los Campos et al.
(2009), with the corresponding data augmentation
algorithm for liabilities, as described for TBA.

Model 3: Random Forest (RF)

One of the machine learning ensemble
algorithms is RF which was first proposed by

Acta Scientiarum. Animal Sciences, v. 40, €39007, 2018
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Breiman (2001). Gonzilez-Recio and Forni (2011)
used the java package RanFoG for RF analyses in GS
of discrete traits. RF was also explored for genome-
wide association studies by Li et al. (2014) and
Nguyen et al. (2015). This algorithm is strongly
non-parametric, powerful to over fitting, able to
capture complex interaction structures in the data,
which may alleviate the problems of analyzing
genome-wide data. In validation data many
classification ~ trees  were  constructed by
bootstrapping (Efron & Tibshirani, 1994) in the RF
analysis. RF uses bagging strategy and reduces error
prediction.

The RF prediction for an observation, ff]’c (%), 1s
computed by averaging the predictions over P trees,
(T(x,¥p))¥, for which the given observation was
not used to build the tree and ¥p characterises the
pus RF tree in terms of split variables, cut points at
each node, and terminal node values. The RF
framework was used in the following model:

P
“ 1
B0 =5 ) 16, W)

p=1

RF used on mean almost two-thirds of the data and
a random subset p of the m SNP (p ~ 2/3 X m) for
the construction of each tree. Animals not included
in the bootstrapped sample were defined as “out of
bag”, being the validation set for each tree. At each
node, data were split in 2 branches based on the
genotype at SNPj by minimizing a loss function for
classification. Repetition of this procedure implied a
large number of trees i.e., RF, until the convergence
criterion was achieved. The convergence criterion
used classification errors of out of bag samples. In
current study, 2,000 and 5,000 trees were
constructed for 10K and 50 K SNP chips,
respectively. Random sampling of the data
contributed to the formation of de-correlated trees.
Each tree reflected the most frequent outcome for a
given combination of SNP genotypes. The average
of the predicted value of each tree was the
probability of being susceptible to the disease.

Prediction accuracy

Predicted accuracy was calculated by phi-
correlation coefficient between the true BVs and the
genomic predicted BVs (r,) or genomic imputed
BVs (r;,) for all scenarios per the testing set. Analysis
of variance was performed to investigate the
different effects of method, heritability, LD, QTL
and marker density for the accuracy using the R
software. Figure 1 shows all operation steps that are
applied at current research.
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| Heritability=0.1 or 0.3

Genomic No. of QTL=81 or 810
architectures I

Level of LD =Low or High

| No. of markers =10K or S0K

L !

True genotypes

90% of the
masked markers

¥

- -

’» +
{ imputation
-

No masked
markers

-

I Accuracy of |
imputation

L - — —

Training set

Testing set (20%) (80%)

/ Threshold Bayes A |
Estimation of GEBV: Bayesian threshold LASSO |
Random Forest I

! |
| Prediction Accuracy 1

e |

e rmwmey
Figure 1. Schematic of the whole process from simulated
scenarios to the prediction accuracy.

Results and discussion

The first purpose of this study was to investigate
the accuracy of imputation in simulated data with
1K and 5 K SNPs up to 10 K and 50 K SNPs,
respectively, based on difterent patterns of genomic
architecture.

Effect of genomic architecture on imputation accuracy

For different patterns of genomic architectures,
the box-plots of correlation between imputed and
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original genotypes are shown in Figure 2.
Imputation accuracies show numerically for
different genomic architectures in Table 3. The
accuracy of imputation ranged from 0.929 to 0.979.
The average of imputation accuracy increased by
2.34% from 10 to 50 K scenarios. The accuracies
were 0.931 and 0.956 for low (III) and high LD (IV)
scenarios, respectively. The highest accuracy of
imputation was belonged to VIII scenario. Since the
average accuracy of imputation was lower when the
sparse panels (1K SNPs) were used, it seems that
use the 5 K chip could be a good choice to improve
imputation accuracy. The within-breed accuracy of
imputation had ranged from 0.578 to 0.854 when
markers were imputed from 5 to 50 K SNPs for
Romney sheep Ventura et al. (2016). Previous
studies showed that a 7 K marker panel can give
better accuracy than a 3 K SNP panel to reach a 50 K
marker panel (Boichard et al., 2012; Dassonneville,
Fritz, Ducrocq, & Boichard, 2012). While, based on
Toghiani et al. (2016) results, imputation of
genotypes from 3 K panel to HD panels leads to
acceptable results.

1.00
I

0g8
I

098
1

Imputation accuracy

0c4
1

0

o i
o i

082
I

o o e § -
T T T T T T
1Kt 10K chip SKioSO0Kchip  QTL=81 QIL-810 LD-Low LD-High =il I

{omcfrreneeeee

g
T
=03

Figure 2. The box-plots of correlation between imputed and
original genotype for the main eftects.

Table 1. Mean and standard deviation (in bracket) of correlation
between imputed and observed genotypes by scenarios.

Correlation between imputed and

Scenarios
observed genotypes

I (10K SNP, h2 = 0.30, 810 QTL

and LD=Low) 0.929 (0.012)
iflélgléilffv’vﬁ’z - 00,81 QTL 0.932 (0.011)
mdDoton 0931 0011
?r:d( ?é{fﬁfgﬁz = 010,81 QTL 0.956 (0.010)
;&5%25\;};2 =030, 810QTL 0.949 (0.012)
Eé?gfﬁz;)m =00, 81QTL 0.953 (0.011)
g%ff,ﬁsﬁgp;ﬁ; 010,81 0.955 (0.012)
VIII(50K SNP, h2 = 0.10, 81 0979 (0:010)

QTL and LD=High)
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To infer masked genotypes, imputation methods
depend partially on density and LD among markers.
Nevertheless, factors affecting the accuracy of
genotype imputation obtained in this study are
comparable to reports published by Hickey et al.
(2012) in maize and Khatkar, Moser, Hayes, and
Raadsma (2012) in Australian Holstein-Friesian
cattle, Mulder, Calus, Druet, and Schrooten (2012)
in Dutch Holstein cattle, Pausch et al. (2013) in the
Fleckvieh cattle, Badke et al. (2014) in Yorkshire
boar, Boison et al. (2014) in simulated population of
Brazilian Nellore cattle, Ogawa et al. (2016) in
Japanese Black cattle and Pausch et al. (2017) in
Fleckvieh and Holstein cattle. However, differences
in level of LD showed limited effects on imputation
accuracy in French cattle breeds (Hozé et al., 2013).
According to Ogawa et al. (2016) studies, an increase
on accuracy of imputation was observed with
increasing the density of markers. Carvalheiro et al.
(2014) was evaluated genomic-imputation accuracy
for difterent low density chips in Nellore cattle. To
predict 99.1% missing rate, they obtained high
imputation accuracy (0.925) using 7 K SNPs chips.
As previously reported in the literature (Van Raden
et al., 2013), some regions of the genome have less
than 0.60 imputation accuracy. A more careful
analysis revealed that these regions contain very low
levels of LD between markers, which emphasize the
role of LD on imputation accuracy.

Accuracy of genomic prediction

The second aim of the study was to investigate
the effect of different genomic architectures,
accuracy of imputation and also to compare RF,
TBA and BTL models on the accuracy of genomic
prediction in imputed and original genotypes.

Effect of genotype imputation on accuracy of genomic
prediction

Table 4 presents the accuracies of estimated GEBVs
using original and imputed genotypes (with the 90 %
missing rate) via RF, TBA and BTL models.

In all scenarios, little mean difference on the
accuracies was evident, when original genotypes and
imputed genotypes were compared. Due to low
imputation accuracy, the decay of genomic
prediction accuracies was higher in low density
scenarios in comparison with medium density
scenarios; this decline was 8.56 and 6.95% for 10 and
50 K SNPs chip, respectively. These results show
that improvement in accuracy of genomic prediction
is mainly, due to the increase in markers density and
imputation accuracy. Toghiani et al. (2016) reported
the accuracies of estimated GEBVs for the true and
imputed SNP genotypes (with the 92.86% missing
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rate) via BayesA method and concluded that
accuracy was higher for the true SNP genotypes.
Comparing to original genotype, the imputed 50 K
SNP genotypes reduced accuracies of genomic
perdition by 0.6 using Bayesian methods. Also,
including genotypes imputed from the 6 K panel
achieved almost the same accuracy of genomic
prediction as that of the 50 K panel (Chen et al.,
2014). It is obvious that (i) imputation accuracy has
a large influence on the accuracy of GEBVs (Wang,
Lin, Li, & Stothard, 2016), (ii) Mulder et al. (2012)
after using a deterministic equation, concluded that
accuracy of GEBV increased linearly with increase in
imputation accuracy. Pimentel, Edel, Emmerling,
and Gotz (2015) showed that performance of
genomic accuracy was influenced by imputation
errors. Decrease of genomic accuracy based on
imputed genotypes in previous published results
(Cleveland & Hickey, 2013) acknowledges our
results. Comparing genomic accuracy through
genotype imputation, Badke et al. (2014) reported
no difference among accuracy of genomic prediction
when markers had imputed with high accuracy (R
= 0.95) instead of true genotypes. However,
accuracy of genomic evaluation significantly
decreased when genotypes were imputed with lower
accuracy (R* = (.88).

Effect of marker density

Accuracy of genomic prediction for original
genotypes (r,) and imputed genotypes (r;,) is shown
in Table 4. For the low-density 10K SNP panels, the
total average of genomic prediction accuracy for
imputed genotypes were 0.246, 0.362 and 0.366
using RF, TBA and BTL, respectively (Figure 3). In
addition, application of original genotypes increased
accuracy 11.7, 6.89% and 7.03 % for RF, TBA and
BTL, respectively. According to the results, a small
absolute improvement (0.023 to 0.033 and on
average 0.0265 across all scenarios) in prediction
accuracy has been seen when prediction was based
on original genotypes. There was more increase in
prediction accuracy (0.027 to 0.033 and on average
0.029) for RF. Generally, prediction accuracies from
RF  always  underperformed  those  from
corresponding TBA and BTL methods; and
standard  deviations
homogeneous compared with Bayesian threshold
methods for both genotype sets. Gonzilez-Recio
and Forni (2011) with simulation of 10 K SNP chips
for a binary trait observed that accuracies ranging
from 0.30 to 0.36 for RF, 0.26 to 0.32 for TBA
and 0.33 to 0.35 for BTL. Similarly, Naderi, Yin,

from RF were more
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and Konig (2016) simulated different scenarios
to investigate the performance of RF and
GBLUP.

In the case of the medium-density panel, a wide
range of accuracy was observed for RF comparing to
TBA and BTL for both imputed and original
genotypes (Figure 3). The later findings showed that
accuracy improvement was more obvious for RF
(r,,=52.8% and r,,= 47.6%) than TBA (r;;=12.0%
r,,.= 12.01%) and BTL (r,;=17.6 % and r,,=16.3%)
by the increase of marker density. When Bayes A
was used, imputed genotypes (3K SNP to 42K SNP
panel) had decreased the accuracy of genomic
prediction by 12.8% (r;;=0.528 and r,,= 0.596) in
comparison with true genotypes (Toghiani et al.,
2016). Naderi et al. (2016) reported the range of
0.30 to 0.53 using RF for scenarios with similar
genomic architecture in simulated genotypes. In
contrast to with our current study, Spindel et al.
(2015) reported that with increase in marker density,
RF has more accuracy than Bayesian regression
methods in rice. According to other study Wang, Li
et al. (2017), increase in marker densities generally
resulted in raised accuracy predicted by Bayes A and
Bayesian LASSO. In human for height trait,
accuracy of genomic prediction improved rapidly
with increase of marker density (approximately
150,000 markers), while plateaued at between
200,000 and 400,000 markers (Desta & Ortiz, 2014).
As in GS, all genetic variance is described by the
markers which are distributed in the whole genome;
the predictive ability of GEBVs is deeply dependent
with on marker density (Bo et al., 2017; Wang, Yu et
al., 2017). Generally, because of increasing marker
density, the level of LD among QTL and SNPs
increased and then the accuracy of genomic
prediction improved.
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Figure 3. Effect of different marker density on accuracies of
GEBVs estimated by threshold BayesA (TBA), Bayesian
threshold LASSO (BTL) and random forest (RF) for original and
imputed genotypes.
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Table 4. The accuracies of estimated GEBVs using the original and imputed SNP genotypes from RF, TBA, BTL models (values in

parentheses show the SD from 10 replicates).

T,

T,

TBA

TBA

Scenarios RF BTL RF BTL

I (10K SNP, h2 = 0.30, 810 QTL and LD=Low) 0.284(0.01)  0.408(0.04)  0.443(0.03)  0.311(0.01)  0.433(0.03)  0.467(0.02)
II (10K SNP, h2 = 0.30, 81 QTL and LD=Low) 0.316(0.02)  0.445(0.03)  0.458(0.03)  0.349(0.02)  0.478(0.03)  0.484(0.04)
III(10K SNP, h2 = 0.10, 81 QTL and LD=Low) 0.164(0.02)  0.283(0.02)  0.272(0.03)  0.191(0.02)  0.306(0.03)  0.297(0.03)
IV (10K SNP, h2 = 0.10, 81 QTL and LD=High) 0.223(0.01)  0.314(0.04)  0.291(0.03)  0.252(0.02)  0.343(0.04)  0.319(0.04)
V (50K SNP, h2 = 0.30, 810 QTL and LD=Low) 0.512(0.02)  0.469(0.08)  0.504(0.07)  0.548(0.02)  0.494(0.06)  0.531(0.07)
VI (50K SNP, h2 = 0.30, 81 QTL and LD=Low) 0.397(0.03)  0.457(0.06)  0.482(0.06)  0.430(0.04)  0.488(0.06)  0.508(0.06)
VII (50K SNP, h2 = 0.10, 81 QTL and LD=Low) 0.244(0.03)  0.325(0.03)  0.342(0.04)  0.271(0.02)  0.354(0.03)  0.366(0.03)
VIII(50K SNP, h2 = 0.10, 81 QTL and LD=High) 0.355(0.04)  0.373(0.07)  0.394(0.08)  0.380(0.04)  0.401(0.06)  0.418(0.07)

RF=Random forest; TBA=Threshold BayesA; BTL=Bayesian threshold LASS.

Effect of the number of QTL

For the low-density panel, the accuracy of
genomic prediction was evaluated for scenarios with
identical architecture, except for two different QTL
numbers [i.e., scenario I (81 QTL) vs. II (810
QTL)] from RF, TBA and BTL in imputed and
original genotypes (Table 4 and Figure 4). Under
scenarios of 81 or 810 QTL, TBA and BTL methods
showed better accuracy than RF. Significant
difference  between accuracies of Bayesian
regressions and RF were found in both imputed and
original genotypes. By the decrease of QTL
numbers in imputed and original genotypes,
accuracy of TBA improved more than RF; it seems a
few large QTL that affects scenarios are reason for

higher accuracy of BayesA methods (Hayes,
Bowman, Chamberlain, & Goddard, 2009).
Ghafouri-Kesbi, Rahimi-Mianji, Honarvar, and

Nejati-Javaremi (2017) results, increase in QTL
number have an inverse minor effect on accuracy of
genomic prediction.

In the case of the medium-density panel, with
considering 0.30 heritability in imputed and original
genotypes, accuracies of GEBVs have been assessed
for TBA, BTL and RF in scenarios V (810 QTL)
and VI (81 QTL) (Figure 4). In the VI scenario,
BTL had better performance, whereas higher
accuracy was belonged to V scenario in RF. In
contrast with low-density, with increase in number
of QTLs, accuracies were partially higher for TBA.
In current study, increasing the number of QTLs
had negligible effect on genomic prediction accuracy
for TBA and BTL methods, while for RF, a
significant effect was found. Using Bayesian
regressions and LASSO  methods, Coster,
Bastiaansen, Calus, Van Arendonk, and Bovenhuis
(2010) showed that high accuracies could be
achieved when the number of QTLs decreased,
while accuracy of partial least square regression was
unaffected.  Abdollahi-Arpanahi,  Pefagaricano,
Aliloo, Ghiasi, and Urioste (2013) simulated a trait
with different QTL levels and observed that with
increasing the number of QTLs, accuracy was
decreased. When number of QTL increased, the

total genetic variance was divided among more
QTL, therefore, the efficiency of methods decreased
for estimating such small QTL effects. The same
result was reported by Wientjes et al. (2015). With
higher number of QTL, greater accuracies were
reported with Bayesian regression comparing to
machine learning methods (Gonzilez-Recio &
Forni, 2011). At constant heritability (h*=0.3) and
high-density SNP  platforms, GBLUP  was
insensitive to genetic architecture (i.e., the number
of QTL), while the accuracy of RF method
improved as the number of QTL increased (Naderi
et al, 2016). Different number of simulated
chromosomes (Dactwyler et al., 2010), effective
population sizes (Andonov et al, 2017) and
architectures (Ghafouri-Kesbi et al., 2017) might be
reasons for inconsistency of earlier finding with our
results. With increase in both QTL and marker
numbers, accuracy could be impact more by
application of RF than other methods. Generally,
the higher sensitivity of RF on QTL alterations than
Bayesian threshold methods can be explained by RF
based on a sampling technique for predictors (SNP).
Therefore, by applying 50 K chip combined with
810 QTLs, SNPs in close distance to a QTL were
sufficiently sampled.

Effect of heritability

For the low-density panel, the effect of different
heritability levels on accuracy of genomic prediction
in imputed and original genotypes is represented in
Table 4 and Figure 5 (scenarios II and III). With
increase in heritability, we recognized an evident
increase on accuracy; as this increase was more
pronounced for Bayesian threshold methods than
for RF in both genotypes. Our results are in
accordance to Bo et al. (2017) theory concerning
direct relationship between heritability and accuracy
of genomic prediction. Furthermore, Neves,
Carvalheiro, and Queiroz (2012) compared different
methods for evaluation of mice population with a
wide range of heritability (0.16 — 0.89) on accuracy
of genomic prediction and did not find any
significant differences among these methods.
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Figure 4. Effect of different number of QTL on accuracies of
GEBVs estimated by threshold BayesA (TBA), Bayesian
threshold LASSO (BTL) and random forest (RF) in original and
imputed genotypes for 10 K (a) and 50 K (b) SNP panels.

In the case of the medium-density panel, the
accuracy of genomic prediction in imputed and
original genotypes was evaluated for different
heritability levels [i.e., scenarios VI (h* = 0.3) vs. VII
(h* = 0.1)] by RF, TBA and BTL methods (Tale 4
and Figure 5). As was expected, accuracy
improvement for both genotypes was accompanied
by the growth in heritability. Whereas, the increase
of heritability had stronger effect on accuracy of RF;
nonetheless, BTL in imputed (r;,=0.482) and
original  (r,,=0.508)  genotypes had  better
performance than other methods. In several
previous studies (Atefi, Shadparvar, & Hossein-
Zadeh, 2016; Wang, Li et al., 2017), the profitable
effects of increasing heritability on accuracy of
genomic prediction has been proved by Bayesian
model. These positive effects may be result of higher
genetic variations and contributing to accurate
predictions of marker effects.

Effect of LD structure

For the low-density panel, we presented the pattern
of LD difterent structures [i.e., scenario III (LD = low)
vs. IV (LD = high)] on accuracy of genomic prediction
according to RF, TBA and BTL in imputed and
original genotypes (Tale 4 and Figure 6).
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The average LD (r?) for III scenario and IV
scenario were 0.175 and 0.323, respectively, at
distances of 0.05 ¢cM. Increasing level of LD had
obvious effects on improvement of accuracy for RF
in imputed (35.9%) and original (31.9%) genotypes.
Nonetheless, TBA model had higher accuracy than
RF. It is considerable that this difference was slightly
higher than BTL model within each scenario. Jénis,
Ducrocq, and Croiseau (2017) reported that using
LD information along the genome to build
haplotypes specifically for genomic prediction is a
favorable step to improve the accuracy of genomic
prediction. Wientjes, Veerkamp, and Calus (2013)
results indicated that LD has a small effect on the
reliability of genomic prediction.
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Figure 5. Effect of different level of heritability on accuracies of
GEBVs estimated by threshold BayesA (TBA), Bayesian
threshold LASSO (BTL) and random forest (RF) in original and
imputed genotypes for 10 K (a) and 50 K (b) SNP panels.

In the case of the medium-density panel and
with considering the similar levels of h’=0.1 and
QTL = 81 in imputed and original genotypes, the
genomic accuracy was investigated for different
levels of LD (e.g., VII scenario (LD = low) and VIII
scenario (LD = high)) from RF, TBA and BTL
(Tale 4 and Figure 6). At distances of 0.05 cM, the
average observed LD (r%) for VII and VIII scenarios
were 0.241 and 0.438, respectively. Compared to the
low LD scenario, the accuracy of regression
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threshold models increased obviously for RF in the
high LD scenario; nonetheless the increase level of
LD was more effective on RF. The detection of
disease-causing  variants by association with
neighboring SNPs depends on the existence of
strong LD between them in the human genome (Ke
et al.,, 2004). Theoretically, the extent of LD in a
population is related to the effective population size
(Ne) (Wang, Yu et al, 2017; Bohlouli, Alijani,
Javaremi, Konig, & Yin, 2017). It is generally
accepted that LD between markers and QTL is a
main source of information, which is contributed to
the accuracy of genomic prediction (Sun, Fernando,
& Dekkers, 2016). Accuracies of estimated genomic
breeding value showed an increase alongside with
the enlargement of LD size, especially for RF, which
is in agreement with simulated study by Naderi et al.
(2016). Accuracy of the BayesA was improved with
increase in LD of historical population in the half-
sib families (Sun et al., 2016). A higher level of LD
between QTL and marker showed that more
markers are capturing higher proportion of the
genetic  variance  (Goddard, 2009), and are
prerequisite for an efficient performance of RF
(Naderi et al., 2016).
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Figure 6. Effect of difterent level of LD on accuracies of GEBVs
estimated by threshold BayesA (TBA), Bayesian threshold
LASSO (BTL) and random forest (RF) in original and imputed
genotypes for 10 K (a) and 50 K (b) SNP panels.
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Conclusion

Imputation can be used to prediction of missing
genotypes for the 10K and 50K SNP panels with
imputation accuracy higher than 0.929 (on average
0.948) in simulated scenarios with 90% missing rate.
In addition to quantifying imputation accuracy,
results of current study shed light on the effects of
level of LD and marker density on imputation
accuracy. More importantly, application of these
imputed genotypes will have little effect on the
accuracy of estimated GEBVs. Anyway, a medium-
density marker panel could be imputed from an
available lower density marker panel, which will also
have a lower cost.

The structure of genomic architecture and
accuracy of imputation were the most important
factors to analyze discrete traits affecting prediction
accuracy in RF, TBA and BTL. The effect of
structures including number of QTL, level of LD,
marker density and heritability were more
pronounced on the accuracy of GEBVs for RF than
TBA and BTL. Generally, prediction accuracies
were higher when using the Bayesian regressions
(especially BTL). Only in the scenario combining
the highest heritability, the dense marker panel, and
the largest number of QTL, RF (despite the high
computational time) was more precise.
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