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ABSTRACT. Data collected on 2550 Kurdi lambs originated from 1505 dams and 149 sires during 1991 to
2015 in Hossein Abad Kurdi Sheep Breeding Station, located in Shirvan city, North Khorasan province,
North-eastern area of Iran, were used for inferring causal relationship among the body weights at birth
(BW), at weaning (WW), at six-month age (6MW), at nine-month age (9MW) and yearling age (YW). The
inductive causation (IC) algorithm was employed to search for causal structure among these traits. This
algorithm was applied to the posterior distribution of the residual (co)variance matrix of a standard
multivariate model (SMM). The causal structure detected by the IC algorithm coupling with biological
prior knowledge provides a temporal recursive causal network among the studied traits. The studied traits
were analyzed under three multivariate models including SMM, fully recursive multivariate model (FRM)
and IC-based multivariate model (ICM) via a Bayesian approach by 100,000 iterations, thinning interval of
10 and the first 10,000 iterations as burn-in. The three considered multivariate models (SMM, FRM and
ICM) were compared using deviance information criterion (DIC) and predictive ability measures including
mean square of error (MSE) and Pearson's correlation coefficient between the observed and predicted
values (1(y,9)) of records. In general, structural equation based models (FRM and ICM) performed better
than SMM in terms of lower DIC and MSE and also higher r(y,9). Among the tested models ICM had the
lowest (36678.551) and SMM had the highest (36744.107)DIC values. In each case of the traits studied, the
lowest MSE and the highest r(y,y) were obtained under ICM. The causal effects of BW on WW, WW on
6MW, 6MW on 9MW and 9MW on YW were statistically significant values of 1.478, 0.737, 0.776 and 0.929
kg, respectively (99% highest posterior density intervals did not include zero).
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Introduction

In livestock species, body weight of domestic animals at different ages has deterministic effects on the
profitability of breeding enterprises. Therefore, these traits may be considered as efficient selection criteria for
developing breeding programs (Tosh & Kemp, 1994). Selection of the best animals for body weight recorded at
different ages to be parents of the next generation is a possible way for increasing meat production (Boujenane &
Kansari, 2002). Because of nutritional habits, mutton is the main source of animal protein in Iran and
approximately 40 percent of red meat supplied through sheep production which does not satisfy the increasing
demand of consumers. Therefore, increasing production efficiency in any sheep breeding system is required
(Rashidi, Mokhtari, Jahanshahi, & Abadi, 2008). Developing an appropriate selective procedure considering
breeding values requires accurate estimates of genetic parameters obtained under multivariate models.

Rosa et al. (2011) pointed out that in any breeding program dealing with multiple trait genetic
evaluation; it is of great importance to study potential causal relationships among the traits. In the classical
animal breeding and genetic evaluation programs, breeding values of the selection candidates are predicted
under standard mixed models (SMMs), which ignore the potential causal relationships may exist among the
traits (Valente, Rosa, Gianola, Wu, & Weigel, 2013). Gianola and Sorensen (2004) developed theory of
quantitative genetics to become suitable for situations in which causal relationships including recursiveness
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or simultaneity exists between the phenotypes in a multivariate system. Structural equation models (SEMs)
enable fitting and studying cause-and-effect relationships between phenotypes (Wright, 1934) and were
first introduced in genetics by Wright (1921) but have been ignored in quantitative genetics for many years.
The work of Gianola and Sorensen (2004) stimulated application of SEMs in animal breeding and genetics
(Maturana et al., 2010; Valente, Rosa, Campos, Gianola, & Silva, 2010; Inoue et al., 2016; Mokhtari, Moghbeli
Damaneh, & Arpanahi, 2018). Genetic parameters pertaining to SEMs can be useful for modeling biological
relationships among phenotypes (Valente et al., 2010)

The application of structural equation models allows for inferring of direct genetic effects and the
magnitude of causal effects between traits. A breeding strategy based only on standard multivariate model
(SMM) would cause a delay in achieving the breeding goal if interventions, which would block indirect
genetic effects, exist among the traits (Valente et al., 2013).

A number of studies have applied mixed effects structural equation models in the animal breeding
context (Maturana et al., 2010; Mokhtari et al., 2018). However, these studies assumed that causal structures
were known a priori. More recently, some studies fitted structural equation models based on a data- driven
causal structure search, namely applications to European quail (Valente, Rosa, Silva, Teixeira, & Torres,
2011) and to bovine milk fatty acids (Bouwman, Valente, Janss, Bovenhuis, & Rosa, 2014).

Kurdi sheep is an important native dual-purpose (meat and milk) sheep breed in Iran, numbering about
3.5 million heads and mainly distributed in North Khorasan province, North-eastern of the country (Saghi,
Shahdadi, Borzalabad, & Mohammadi 2018). The breed is kept mainly for meat production by nomadic
pastoralists under low quality pastures (Saghi & Shahdadi, 2017), is fat-tailed, light-brown to yellowish in
color, relatively large-sized and suitable for fattening purposes.

Previous studies conducted on genetic evaluation of growth traits in Kurdi sheep (Shahdadi & Saghi,
2016; Saghi et al., 2018) without considering possible causal relationships among them. AmouPosht-e
Masari et al. (2018) studied genetic parameters for growth traits in Lori Bakhtiari sheep using structural
equation models and showed the superiority of models considering causal effects among the growth traits
on standard models which ignore them. To our knowledge there are no other reports on genetic evaluation
of growth traits in breeds of sheep considering possible causal relationships among them. Therefore, the
objectives of the present research were to infer possible causal relationships among the growth traits of
Kurdi sheep and possibility of estimating genetic parameters of body weight traits in Kurdi sheep breed
under SMMs and SEMs and to compare these models in terms of predictive ability.

Material and methods

Breed characteristics and flock management

This breed is mainly well known for its disease resistance, tolerance to unfavorable climatic conditions
and suitable feed efficiency as well as adaptability to mountainous pastures. Coat color of Kurdi lambs is
dark brown and black at birth, but gradually changed to gray at adulthood time (Saghi et al., 2018). Average
mature live weights for Kurdi ewes and rams were 55 kg and 95 kg, respectively.

Maiden ewes were mated to rams for first time at about 18 months of age. In general, each one ram was
mated to 25 randomly selected ewes, in a separate paddock for about 45 days from early October until mid-
November. Consequently, lambing was started from mid-February and continued to late March. Newborn
lambs identified by an ear tag, birth date, sex, birth weight, birth type and pedigree information were
individually recorded within 24 h of birth. Lambs were weaned an average age of 90 days. Rams and ewes
were typically maintained in flock for 2-3 and 7 years, respectively.

Data and the studied traits

In the present study pedigree information and data on body weight traits including birth weight (BW),
weaning weight (WW), six-month weight (6MW), nine-month weight (9MW) and yearling weight (YW) that
collected from 1991 to 2015 in Hossein Abad Kurdi Sheep Breeding Station, located in Shirvan city, North
Khorasan province, North-eastern area of Iran, were used. Animals with body weights outside of the range
mean *2.5xS.D. have been removed from the data set. The structure of the data set used is presented in Table 1.
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Statistical analyses

Significance testing of fixed effects and least square analyses were carried out using the general linear
model (GLM) procedure of the Statistical Analysis System (SAS, 2004). Common fixed effects included in the
models for the studied traits were sex of lambs in two classes (male and female), dam age at lambing in six
classes (2-7 years old), birth year in 24 classes (1991-2015) and birth type in two classes (single and twin).
Interactions among fixed effects were also fitted. Age of lambs at weaning, six-month and nine-month body
weight weighing (in days) was considered as a linear covariate for WW, 6MW, 9MW and YW, respectively.
The interactions between considered fixed effects were not significant and therefore dropped out.

Table 1. Descriptive statistics for the studied traits.

Traits (kg)?

Item BW WW 6MW IMW YW
Mean 4.44 24.28 33.39 35.76 42.99
S.D. 0.69 4.92 5.95 7.02 8.62
Min. 2.10 10.50 16.80 13.70 20.20
Max. 7.20 41.00 53.00 63.00 69.00
C.V. (%) 15.54 20.26 17.82 19.63 20.05
No. of records 2550 2550 2550 2550 2550
No. of sires 149 149 149 149 149
No. of dams 1505 1505 1505 1505 1505

2BW: birth weight; WW: weaning weight; 6MW: Six-month weight; 9MW: Nine-month weight; YW: Yearling weight.

A restricted maximum likelihood (REML) procedure under a derivative free algorithm, applying Wombat
program of Meyer (2007), was used and six models including different combinations of direct additive
effects and maternal ones, including maternal additive genetic and maternal permanent environmental,
were tested. The considered models (in matrix notation) are as below:

Model 2 y= Xy, + Z,a+ Zspe+e
Model 3 Cov (a,m)=0 y=Xp+ Z;a+Z,m+e
Model 4 Cov (a,m) = Aoam y=Xp+ Z;a+Z,m+e
Model 5 Cov (a,m)=0 y= Xp+Zia+Z,m+Zzpe+e
Model 6 Cov (a,m) = Aoam y=Xp,+Za+Z,m+ Zspe+e

where, y is a vector of records for the studied traits; b, a, m, pe and e are vectors of fixed, direct genetic,
maternal genetic, maternal permanent environmental and the residual effects, respectively. The matrices of
X, Za, Zm and Z,. are design ones associating corresponding effects to vector of y. Also, A is the numerator
relationship matrix and o.m denotes covariance between additive and maternal effects.

The Akaike’s Information Criterion (AIC) was applied for the determination of the most appropriate
model among tested models (Akaike, 1974):

AICl = —Zlong + 2Pl

where log Li is the maximized log likelihood and p; is the number of parameters fitted for model i. In each
case, the model with the lowest AIC is considered as the best model.

Statistical inference

After selection of the most suitable model for the studied traits Bayesian Markov Chain Monte Carlo
(MCMC) implementation was carried out applying the GIBBS2F90 program of Misztal et al. (2018), which
implements Gibbs sampling to evaluate the posterior density of the parameter estimates. The length of the
chain and the burn-in period were examined by visual inspection of the trace plots of posterior samples of
the parameters in several preliminary analyses. For each model, 100,000 iterations were run and posterior
samples from each chain were thinned considering thinning intervals of 10 iterations after discarding the
first 10,000 iterations as burn-in. Hence, 9,000 samples were considered for computing features of the
posterior distribution. Posterior analyses for calculating posterior means and posterior standard deviations

were carried out applying the POSTGIBBSF90 program of Misztal et al. (2018).
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It was assumed that the direct additive and maternal additive genetic effects followed a multivariate
normal distributions, a priori, with a null mean vector and a (co)variance matrix GQA, where G and A are
the genetic (co)variance matrix and numerator relationship matrix among animals, respectively.
Furthermore, it was assumed that the vector of residual effects followed a multivariate normal distribution
with a null mean vector and (co)variance matrix R ®I,, where I, is an identity matrix and R is the residual
(co)variance matrix; @ shows the Kronecker product. Multivariate normal distribution was also assumed for
maternal permanent environmental effects, so that their fully conditional distributions were also
multivariate normal. The prior distribution of the genetic (G) and maternal permanent environmental (Pe)
(co)variance matrices were assumed to be inverted Wishart distribution, so that their fully conditional
posterior distributions were also inverted Wishart (Sorensen & Gianola, 2002). The SEM models are not
identifiable at the likelihood level due to the presence of extra parameters including structural coefficients.
For achieving identification, it was assumed that residual correlations in system were uncorrelated. In the
other words in SEMs, R was assumed to be a diagonal matrix for the identification purposes.

The Inductive Causation (IC) algorithm and structural equation modeling

The Inductive Causation was used to the residual (co)variances resulted in SMM, which ignored causal
relationships among the traits, analysis. Valente et al. (2010) pointed out that the residual (co)covariances
were investigated information from the joint distribution of the phenotypic traits conditional on genetic
effects, such that they adjust the confounding issues caused by genetic effects when the traits are
genetically correlated. The IC algorithm performs a series of statistical decisions based on partial
correlations between traits, more information on IC algorithm presented in literature (Pearl, 2000; Inoue et
al., 2016). Searching causal structure among the studied growth traits of Kurdi sheep was carried out
applying the program written in R (R Development Core Team, 2009) by Valente and Rosa (2013).

Maturana, Legarra, Varona, and Ugarte (2007) pointed out that the method described by Gianola and
Sorensen (2004) for incorporating causal effects in quantitative genetics is not straightforward enough to
perform in a general manner and showed that recursive models could be handled by fitting parent trait as a
covariate for other trait(s) while genetic correlations between traits are considered in multivariate analyses.
In this case, parent trait denotes trait which causally influences on other trait(s). Therefore, this
methodology was applied in the present study. Detailed information and the theoretical background about
the methodology used in the present study for fitting recursive models are given by Maturana et al. (2007).

In the present study, two types of models based on structural equation molding were considered. The
first model was based on graph revealed by inductive causation (IC) algorithm (Pearl, 2000). The IC
algorithm allows searching for how variables are causally related. Applying simulated data, Valente et al.
(2010) adapted the IC algorithm to a mixed models context and showed that applying this method to the
posterior distribution of the residual (co)variance matrix of a standard multiple trait model (MTM)
recovered the expected network. The IC-based model (ICM) is shown in Figure 1.

JREIE

Figure 1. Undirected graph detected among the studied growth traits in Kurdi sheep by the IC algorithm with 90%, 95% and 99% of
highest posterior density intervals (a). Directed causal structure by considering biological prior knowledge about relationship among
the traits (b).

The second model was fully recursive model (FRM) in which assumed that any time temporal former
traits causally influenced on all other traits after wards. In which, causal effects were assumed from BW on
WW, 6MW, OMW and YW, from WW on 6MW, 9MW and YW, from 6MW on 9MW and YW and finally from
9MW on YW (Figure 2).

Acta Scientiarum. Animal Sciences, v. 42, 48823, 2020
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The SMM, FRM and ICM were compared using deviance information criterion (DIC), the DIC takes the
trade-off between model goodness-of-fit and corresponding complexity of model into account (Bouwman et
al., 2014). Model with smaller DIC values are better supported by the data.

Figure 2. Fully recursive model considered among the studied body weight traits in Kurdi sheep.

Model comparisons

For assessing predictive ability of the tested models (SMM, FRM and ICM), the dataset was randomly
partitioned five times into two sets including training set (50% of data set) and testing set (retained 50% data set).
Then, solutions for all fixed and random effects of the training set were estimated and used to predict observations
in the testing set. Predictive ability of the models was assessed by PREDICTF90 program of Mizstal et al. (2002) and
compared applying two measures; first measure was mean square error (MSE) as follow:

MSE = YL (i — 92

n
where, y;and §; denote i observed and predicted record for each trait in testing data set and n is the
number of records in testing data set. Second measure was the Pearson correlation between observed and
predicted values (r(y,y)) in the testing set. The MSE and r(y,¥) values calculated five times and were
averaged finally. The lower MSE and higher r(y,y) value the higher superiority of the model superiority.

System parameters

The interpretation of parameters obtained under SEMs, the so-called system parameters in SEMs
literature, is different from that of the analogous ones obtained under SMMs (Gianola & Sorensen, 2004).
Therefore, further transformation is required to be able to compare (co)dispersion of random effects among
two models fitted. Transformations for the estimated (co)variance matrices to the standard multivariate
model scale were carried out as:

G = AIGN
Pe* = A" 1PeA !
R* = A71RA?

and P* = A™1PA'T.

The matricesG*, Pe*,R*andP*have (co)variance components for direct additive and maternal additive
genetic effects, maternal permanent environmental, residual and phenotypic effects, respectively, which
first obtained under SEMs and then were transformed to their equivalents under SMMs. R*is a matrixwith
non-zero off-diagonal elements. The matrix of structural coefficients (A) is a square one; off-diagonal elements
were determined according to causal structures between the considered traits (Valente et al., 2010).

Acta Scientiarum. Animal Sciences, v. 42, 48823, 2020
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Results and discussion

The importance of maternal effects on the studied traits

The AIC values under the considered animal models are given in Table 2. Direct additive genetic and
maternal additive genetic effects, without considering covariance between them, and maternal permanent
environmental effects (Model 5) were random sources of variation for BW. While for WW only direct
additive and maternal genetic effects, without considering covariance between them, (Model 3) were
influencing random effects. Model 2, in which direct additive genetic effects and maternal permanent
environmental effects were significant random effects, determined as the best one for 6MW and IMW traits.
Maternal effects had no influencing effects on YW. The maternal effects did not disappeared until 9 months
of age, due to a carry-over effect after weaning. The importance of considering the maternal effects for
genetic evaluation of the body weights of several sheep breeds have been well documented in the literature
(Abegaz, Van Wyk, & Olivier, 2005; Rashidi et al., 2008).

Table 2. AIC values from univariate analysis for the studied traits with the best model in bold face.

Model Traits ®
ode BW WW 6MW IMW YW
Model 1 27.588 8695.094 9537.932 10026.25 11132.97
Model 2 -82.63 8696.358 9534.112 10009.4 11134.92
Model 3 -49.076 8691.916 9538.138 10014.78 11134.97
Model 4 -55.718 8697.084 9538.23 10012.85 11136.46
Model 5 -85.754 8698.362 9536.114 10011.4 11136.92
Model 6 -79.59 8692.72 9535.616 10011.8 11138.29

IBW: birth weight; WW: weaning weight; 6MW: Six-month weight; 9MW: Nine-month weight; YW: Yearling weight. The best model is shown in bold face.

The Inductive Causation algorithm

Applying different (90, 95 and 99%) HPD intervals for the IC algorithm resulted in an undirected graph
on causal structure among the studied growth curve traits in Kurdi sheep (Figure 1a). Considering biological
prior knowledge on the temporal relationship among the traits over undirected graph (Figure 1a) revealed
by IC algorithm resulted in a directed causal structure (Figure 1b). The latest graph is called IC-based model
(ICM) throughout the manuscript. IC-algorithm revealed a time-temporal causal structure in such a way
that each body weight trait only influence causally on body weight trait measured just next it but not on all
other subsequent traits. In other words, each trait directly influences on trait just measured after it and
indirectly influences on all other next traits.

Valente et al. (2011) applied the IC algorithm for searching phenotypic causal structures among some
productive and reproductive traits of European quail and concluded that coupling prior knowledge with the
output provided by the IC algorithm allowed further learning regarding phenotypic causal structures among
the studied traits. Bouwman et al. (2014) explored causal structures involving bovine milk fatty acids
applying the IC algorithm and concluded that the causal structure can provide more insight into underlying
mechanisms involved among the traits and the structural equation model can predict conditional changes
arising from such interventions. Inoue et al. (2016) inferred phenotypic causal networks among meat quality traits
in Japanese Black cattle applying the IC algorithm coupling with biological prior knowledge. They concluded that by
fitting a structural equation model, considering the causal structure based on the output of the IC algorithm,
inferences about direct genetic effects and the magnitude of the causal effects among the traits would be possible.

Statistical comparisons between SMM, FRM and ICM

The values of DIC obtained under SMM, FRM and ICM were 36744.107, 36709.141 and 36678.551,
respectively. Fitting two SEM-based models including FRM and ICM resulted in lower DIC than the
corresponding SMM; generally implied the more plausibility of considering causal effects than ignoring these
corresponding causal effects. DIC value obtained under ICM was lower than that of obtained under FRM.

The SMM, FRM and ICM were also compared in terms of the predictive ability of models based on
average mean square of error (MSE) and average Pearson's correlation coefficient between observed and
predicted records (r(y,§)) of traits under these models (Table 3). For all the studied traits, the lowest MSE
and the highest r(y,y)values were obtained under ICM. The reductions of MSE and increase of r(y,§) values
under ICM relative to SMM were more apparent for 6MW, 9IMW and YW than BW and WW. Considering the

Acta Scientiarum. Animal Sciences, v. 42, 48823, 2020
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comparative measures, FRM was performed better than SMM but not than ICM. Therefore, ICM was considered
for inferring causal relationships among the traits and the corresponding genetic evaluation of the traits.

Table 3. Predictive ability for the studied traits under the different multivariate studied models.

Model ¥
SMM FRM ICM

Traits ? > MSE r(y,9) " MSE 1(y,9) > MSE 1(y,9)
BW 0.404 0.426 0.402 0.428 0.399 0.433
wWw 14.702 0.648 12.840 0.695 12.190 0.697
6MW 18.078 0.705 9.980 0.850 9.867 0.851
IMW 22.142 0.746 8.641 0.909 8.497 0.910
YW 34.113 0.740 13.003 0.909 12.862 0.910

IBW: birth weight; WW: weaning weight; 6MW: Six-month weight; 9MW: Nine-month weight; YW: Yearling weight. ® MSE: mean square error, r(y,9)=
Pearson correlation between observed and predicted values. ¥ SMM: Standard multivariate model, FRM: Fully recursive multivariate model, ICM: IC-
algorithm based multivariate mode.

AmouPosht-e Masari et al. (2018) compared three multivariate models including standard multivariate,
temporal recursive multivariate and fully recursive multivariate for genetic evaluation of growth traits in Lori-
Bakhtiari sheep breed, temporal recursive multivariate model favored over other models in terms of lower DIC.
Mokhtari et al. (2018) compared recursive and standard multivariate models for genetic evaluation of early
growth traits in Raeini Cashmere goat including birth weight, weaning weight and six-month weight in terms of
DIC, MSE and r(y,§) and found lower DIC, lower MSE (for weaning weight and six-month weight) and higher
r(y,y) (for weaning weight and six-month weight) under recursive multivariate model than standard one. They
concluded that considering causal relationships among the studied growth traits in Raeini goat may provide a
better explanation to biological relationships among the studied traits. In a previous study, Maturana et al. (2010)
considered causal relationships among calving traits including gestation length (as parent trait), calving difficulty
and stillbirth in first-parity US Holsteins under three recursive multivariate models and compared them with
standard multivariate model, which ignored causal relationships, in terms of mean square error and Pearson's
correlation coefficient between predicted and observed records. They generally concluded that models included
causal relationships performed better than standard multivariate model with lower mean square error and higher
Pearson correlation coefficient between predicted and observed records.

Recursive effects

Applying ICM features of posterior means and posterior standard deviations (PSD) for structural
coefficients among studied body weight traits of Kurdi sheep with 99% highest posterior density (HPD)
intervals are presented in Table 4. All the estimated structural coefficients were positive and highly
significant, 99% HPD intervals did not include zero.

The estimates for direct causal effects of BW on WW, of WW on 6MW, of 6MW on 9MW and of 9MW on
YW were increases of 1.478, 0.737, 0.776 and 0.929 kg per increase of one kg in BW, WW, 6MW and 9MW of
Kurdi lambs, respectively. Furthermore, indirect causal effects from BW on 6MW (mediated via WW), on
IMW (mediated via WW and 6MW) and on YW (mediated via WW, 6MW and 9MW) were also detected as
1.089, 0.845 and 0.785kg, respectively. Mokhtari et al. (2018) studied causal relationships among early
growth traits including BW, WW and 6MW in Raeini Cashmere goat by fitting a fully recursive multivariate
models. The estimates of direct causal recursive effects from BW on WW, BW on 6MW and WW on 6MW
were obtained as 1.94, 2.48 and 1.03 kg per increase in parent trait in each case.

Table 4. Posterior means * posterior standard deviation (PSD) for the structural coefficients under ICM.

Causal effect ? Mean * PSD ® 99% HPD interval®
BW-WW 1.478+0.249 0.838-2.117
WW-6MW 0.737+0.040 0.634-0.840
6MW-9MW 0.776*0.028 0.694-0.840
IMW-YW 0.929+0.032 0.847-1.011

IBW: birth weight; WW: weaning weight; 6MW: Six-month weight; 9MW: Nine-month weight; YW: Yearling weight. ®99% HPD intervals did not include zero.

Genetic parameter estimates

Features of the posterior means and PSD for direct heritability of all the studied traits, maternal
heritability (for BW and WW) andpe? (for BW and WW) under ICM are shown in Table 5. These estimates
Acta Scientiarum. Animal Sciences, v. 42, e48823, 2020
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were statistically significant (99% HPD intervals did not include zero). It should be pointed out that
parameters estimated are pertaining to standard equivalent and are comparable with those of obtained
under standard model in the literature.

Table 5. Posterior means # posterior standard deviation (PSD) for direct and maternal heritability and ratio of maternal permanent
environmental variance to phenotypic variance estimates for the studied traits.

Traits ® bh2PSD bhZ +PSD bpe?+PSD
BW 0.21#0.05 0.13£0.03 0.13+0.03
wWwW 0.38+0.05 0.090.02 -
6MW 0.24+0.05 - 0.04+0.01
MW 0.23+0.05 - 0.08+0.02
YW 0.31%0.08 - -

“BW: birth weight; WW: weaning weight; 6MW: Six-month weight; 9MW: Nine-month weight; YW: Yearling weight. *h3: direct heritability; h%: maternal
heritability,pe? : ratio of maternal permanent environmental effects to phenotypic variance.

Mokhtari, Rashidi, & Mohammadi (2008) estimated direct heritability values of 0.32, 0.03 and 0.15 for 6MW,
9MW and YW of Kermani lambs. In another study, Mohammadi, Rashidi, Mokhtari, & Esmailizadeh (2010)
studied genetic parameters for growth traits in Sanjabi sheep and estimated values of 0.09, 0.15, 0.09, 0.19 and
0.11 for direct heritability of BW, WW, 6MW, 9MW and YW, respectively which were generally lower than the
corresponding estimated values in the present study. Jafaroghli, Rashidi, Mokhtari, and Mirzamohammadi (2013)
reported direct heritablity estimates of 0.34, 0.09, 0.06, 0.12 and 0.06 for for BW, WW, 6MW, 9MW and YW of
Baluchi sheep which were generally lower than estimates obtained in the present study, except for BW. Jafari,
Hashemi, Darvishzadeh, and Manafiazar (2014) estimated direct heritablity values of 0.27, 0.23, 0.41, 0.40 and
0.31 for BW, WW, 6MW, 9IMW and YW of Makuie sheep breed, respectively. AmouPosht-e Masari et al. (2018)
fitted fully recursive multivariate model on growth traits in Lori-Bakhtiari sheep and estimated direct heritability
values of 0.29, 0.18 and 0.16 for BW, WW and 6MW, respectively.

The role of maternal additive genetic effects was only decisive on BW and WW, disappeared at later ages until
body weight at yearling. Maternal heritability estimated values for BW (0.13) and WW (0.09) in the present were
lower than those of direct heritability. Abegaz et al. (2005) obtained maternal heritability estimates of 0.10 and 0.15
for BW and WW in Horro sheep which were in general agreement with estimates obtained in the present study.

Mohammadi et al. (2010) reported maternal heritability estimates of 0.14 and 0.24 for BW and WW in
Sanjabi sheep. Rashidi et al. (2008) reported value of 0.24 for maternal heritability of BW in Kermani sheep
which was higher than the corresponding estimated value in the present study. AmouPosht-e Masari et al.
(2018) estimated maternal heritability values of 0.06 and 0.11 for BW and WW, respectively in Lori-Bakhtiari
sheep breed under a temporal recursive multivariate model which were in general agreement with
corresponding estimated values in the present study.

Features of the posterior means and PSD for the ratio of permanent maternal environmental variance to
phenotypic variance estimates for BW (0.13), 6MW (0.04) and 9MW (0.08) were statistically significant (99%
HPD intervals did not include zero). AmouPosht-e Masari et al. (2018) reported pe? estimates of 0.10, 0.14 and
0.06 for BW, WW and 6MW, respectively in Lori-Bakhtiari sheep breed under a temporal recursive multivariate
model which were in general agreement with corresponding estimated values in the present study.

Features of the posterior means and PSD for direct genetic, phenotypic, maternal genetic (between BW
and WW), maternal permanent environmental (for BW-6MW, BW-9MW and 6MW-9MW) and residual
correlations are shown in Table 6.

The Estimates on direct genetic and phenotypic correlations among the studied body weight traits were
positive and statistically significant (95% HPD interval did not include zero) with direct genetic correlations
higher than those of the corresponding phenotypic ones. Such trend was also reported by Abegaz et al.
(2005) in Horro sheep. The existence of such positive and direct genetic correlations among the body weight
traits indicate that improving any of the traits considered would bring positive direct genetic and
phenotypic gains for others. Direct genetic and phenotypic correlations of BW with other studied body
weight traits of Kurdi sheep were lower than those of estimated among WW, 6MW, 9MW and YW. Direct
genetic correlation estimates range from 0.35 (BW-9MW) to 0.93 (6MW-9MW) and phenotypic ones from
0.16 BW-YW) to 0.77 (6MW-9MW). Direct genetic and phenotypic correlation estimates for BW-WW, BW-
6MW and WW-6MW in Lori Bakhtiari sheep breed were (0.47 and 0.30), (0.49 and 0.40) and (0.97 and 0.97),
respectively under a temporal recursive model (AmouPosht-e Masari et al., 2018) which were in general
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agreement with the corresponding values in the present study. Estimated direct genetic and phenotypic
correlations among the body weight traits were in general agreement with the corresponding estimates reported
by Abegaz et al. (2005) and Mohammadi et al. (2010) in Horro and Sanjabi sheep breeds, respectively. Legarra and
Robert-Granie (2006) pointed out that by ignoring causal relationship between the traits, while that relationship
is hold biologically, genetic correlation would be overestimated and by including causal relationship between
traits, while that relationship does not hold biologically, genetic correlation would be underestimated.

Table 6. Posterior means * posterior standard deviation (PSD) for direct genetic, maternal genetic, maternal permanent environment,
phenotypic and residual correlation estimates between the studied traits.

Pair traits * bry % PSD br, = PSD br + PSD br,e £ PSD br.+ PSD
BW-WW 0.39%0.13 0.30%0.04 0.46%0.15 0.26%0.01
BW-6MW 0.49%0.12 0.26%0.03 - 0.93%0.10 0.15%0.01
BW-9MW 0.35%0.15 0.20%0.03 - 0.63+018 0.11%0.01
BW-YW 0.49%0.13 0.16%0.03 - - 0.08+0.01
WW-6MW 0.83+0.05 0.59+0.03 - - 0.56+0.01
WW-9MW 0.80+0.06 0.48+0.03 - - 0.40+0.01
WW-YW 0.77+0.07 0.42%0.03 - - 0.29%0.04
6MW-9MW 0.93+0.03 0.77%0.01 - 0.78+0.11 0.72+0.01
6MW-YW 0.81%0.05 0.58+0.01 - 0.53+0.01
IMW-YW 0.89+0.07 0.74%0.02 - 0.73+0.01

IBW: birth weight; WW: weaning weight; 6MW: Six-month weight; 9MW: Nine-month weight; YW: Yearling weight. °rq = direct genetic correlation, r,=
phenotypic correlation, rn = maternal genetic correlation, r,.= ratio of maternal permanent environmental variance to phenotypic variance correlation.

Maternal genetic correlation estimated between BW and WW (0.46) were in accordance with that of
reported by Mohammadi et al. (2010) in Sanjabi sheep breed (0.53) and lower that the corresponding
estimated value in Horro sheep (0.77) by Abegaz et al. (2005). Estimated value for maternal permanent
environmental correlations among BW, 6MW and 9IMW were medium to high. Similar to us, AmouPosht-e
Masari et al. (2018) reported maternal permanent environmental correlations of 0.54 (BW-WW and BW-
6MW) and 0.99 (WW-6MW) in Lori Bakhtiari sheep under a temporal recursive model.

In the present study, residual correlations between BW and other body weight traits were positive and
low, ranged from 0.08 (BW-YW) to 0.26 (BW-WW). Residual correlations among other traits were medium to
high and ranged from 0.29 for WW-YW to 0.73 for 9MW-YW. Similar trend was also observed by
Mohammadi et al. (2010) for estimated residual correlations among body weight traits of Sanjabi sheep.

Conclusion

Inferring relationships among the studied growth traits in Kurdi sheep could help to identify
development of the growth process from birth to yearling age. Applying IC algorithm, a model with
temporal recursive causal relationships detected among the studied growth traits in Kurdi sheep which
favored on fully recursive and standard multivariate models in terms of lower DIC. Furthermore, IC-based
multivariate model showed more superiority on other two tested models in terms of lower MSE and higher
Pearson's correlation coefficient between observed and predicted records of the studied growth traits.
Significant direct causal effects detected from BW on WW, WW on 6MW, 6MW on 9MW and 9MW on YW.
The plausibility of considering causal effects for genetic evaluation of growth traits in Kurdi sheep was
evident in the present study. But such effects are not generally considered for developing the sheep
breeding systems which may be due to this fact that SEMs are relatively new models in animal breeding
context and their application in the breeding systems may require more investigation.
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