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ABSTRACT. This study aimed to propose and compare metrics of accuracy and bias of genomic prediction
of breeding values for traits with censored data. Genotypic and censored-phenotypic information were
simulated for four traits with QTL heritability and polygenic heritability, respectively: C1: 0.07-0.07, C2:
0.07-0.00, C3: 0.27-0.27, and C4: 0.27-0.00. Genomic breeding values were predicted using the Mixed Cox
and Truncated Normal models. The accuracy of the models was estimated based on the Pearson (PC),
maximal (MC), and Pearson correlation for censored data (PCC) while the genomic bias was calculated via
simple linear regression (SLR) and Tobit (TB). MC and PCC were statistically superior to PC for the trait C3
with 10 and 40% censored information, for 70% censorship, PCC yielded better results than MC and PC. For
the other traits, the proposed measures were superior or statistically equal to the PC. The coefficients
associated with the marginal effects (TB) presented estimates close to those obtained for the SLR method,
while the coefficient related to the latent variable showed almost unchanged pattern with the increase in
censorship in most cases. From a statistical point of view, the use of methodologies for censored data should
be prioritized, even for low censoring percentages.
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Introduction

With the availability of high-density genomic marker panels, genomic selection (Meuwissen, Hayes, &
Goddard, 2001) has become a powerful tool in genetic improvement programs, especially for the prediction
of breeding values for complex traits. Many methods have been proposed to enable successful implementation
of genomic selection. In most of these methods, the marker information is incorporated into prediction
models, in which the phenotypes are regressed considering a set of markers as explanatory variables in a
regression model (Campos, Hickey, Pong-Wong, Daetwyler, & Calus, 2013).

Traits that have censored records (e.g., age at first calving and slaughter, longevity) are frequently
evaluated in animal breeding programs (Santos et al., 2015; Costa et al., 2019; Oliveira, Miller, Brito, &
Schenkel, 2021). In the presence of censoring, the value for a given trait is greater or less than a certain
threshold, or belongs to an interval, and it is not possible to observe an exact value for response. Santos et al.
(2015) evaluated the trait time-to-slaughter in pigs, in which the censoring was characterized by the presence
of animals that did not obtain the minimum weight necessary to be slaughtered (censored observations).
Another example of censoring in animal production is the selection of genetically superior individuals for
disease resistance, which would result in a longer survival time for the animals (Alemu et al., 2016;
Palaiokostas, Ferraresso, Franch, Houston, & Bargelloni, 2016; Vallejo et al., 2016). In these studies, a
common approach is to challenge individuals during the test period and the individuals that do not die during
the period of the experiment result in censored data.

Various methods for performing genomic prediction of traits with censored data have been proposed over
the past years. For instance, Karkkdinen and Sillanpda (2013) proposed a hierarchical Bayesian model
(Bayesian threshold model) for analyses of data with binary, ordinal scale, or with censored records. Pérez
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and Campos (2014) proposed a class of models, called Bayesian Generalized Linear Regression (BGLR), which
also allow to model normal, binary, ordinal, or censored responses. Furthermore, Santos et al. (2015) were the
pioneers in using Mixed Cox model for genomic prediction of traits with censored phenotypes. Comparisons
between several models in genomic selection are commonly performed using accuracy and prediction bias
(e.g., Teissier et al., 2020; Araujo et al., 2022; Massender et al., 2022). Genomic accuracy can be defined as the
Pearson correlation (PC) between the true breeding values (TBV) and the genomic enhanced breeding values
(GEBV). Genomic bias can be calculated by adjusting a simple linear regression model between TBV and GEBV.
However, these measures may not be adequate when the phenotypes are partially observed, that is, censored
observations are present. According to Li, Gillespie, Shedden, and Gillespie (2018), when traditional
estimators for complete data are applied to censored data, they reduce the accuracy of the estimates and can
introduce bias. According to the authors, approaches that incorporate incomplete observations are generally
more statistically powerful. Thus, the use of the PC to assess the predictive ability in the framework of
censored data may result in misleading conclusions.

There is a need for evaluating alternative measures to PC and linear regression for the assessment of
genomic accuracy and bias, respectively, in the context of censored data. In this context, the main objectives
of this study were to 1) propose and compare alternative metrics of accuracy and bias in genomic prediction
with censored data; and, 2) compare the Mixed Cox and Truncated Normal models under different scenarios
of censoring and genetic architecture of the traits.

Material and methods

Simulated data

The phenotypic and genotypic information used in this study were simulated using the QMSim software
(Sargolzaei & Schenkel, 2009). The parameters used in the simulation process were similar to those used by
Brito, Neto, Sargolzaei, Cobuci, and Schenkel (2011). The historical population was made up of 1,000
generations with an initial size of 2,000 individuals each. Then a genetic bottleneck was created, so that in
the next 1,020 generations, the size of the population gradually decreased from 2,000 to 1,500, in order to
create initial linkage disequilibrium (LD). Subsequently, the population was expanded by random mating
individuals from the last generation of the historical population, generating eight more generations, with five
offspring per female. Finally, a recent population was created, obtained by mating 120 males with 6,000
females, randomly selected from the last generation of the expanded population, generating another ten
generations, with one offspring per female. The proportion of male individuals was kept equal to 0.5 in the
expanded and recent populations.

The genome was simulated with 52,885 single nucleotide polymorphisms (SNPs) and 88 Quantitative Trait
Loci (QTL), distributed over 29 chromosomes, making up a total genome size of 2,740 cM. The SNPs were
equally spaced and randomly distributed across the genome. The QTL effects were sampled from a gamma
distribution with a parameter equal to 0.4 and a scale parameter determined by the QMSim software according
to the simulated genetic variance of the trait. A minor allele frequency (MAF) of 0.10 was assumed for markers
and QTL, with a mutation rate of 1 x 1075, for markers and QTL in the historical population. The genome
parameters were chosen to mimic the cattle (Bos taurus) genome. In the simulation process we sought to
represent the trait age at first calving. To characterize the base population, four phenotypic traits were
simulated. The first two traits, C1 and C2, were simulated considering QTL heritability equal to 0.07 and 0.00,
respectively, and heritability and phenotypic variance, according to the values estimated by Costa et al. (2019)
via linear model - threshold, respectively, equal to 0.07 and 17.64. The other two traits were considered to have
total heritability equal to 0.27 and QTL heritability equal to 0.27 (C3) and 0.00 (C4).

The censored observations were obtained by choosing a phenotypic value (C), as a threshold for censoring
on the right, thus, phenotypic values greater than C, were considered as censored observations. Since Y, is
the vector of phenotypes simulated by QMSim, from Y. and C two other phenotypic variables were created.
First, y. = min(Y,, C), where C was calculated as C = Q (Y., probability = 1 — P%, in which P% is the proportion
of censored observations and Q is the quantile of the normal distribution; and let § be a censoring indicator
variable, which assumes the value 1, if Y.< C or 0, if Y.> C. The censored variable was constructed in order
to obtain phenotypes with 10, 40, and 70% of censored observations. Thus, 12 scenarios were evaluated in
this study, obtained by two heritability values, two QTL heritabilities, and three proportions of censored data.
The entire simulation process was repeated 10 times.
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Statistical methods

Only individuals from generations eight, nine, and 10 of the recent population were used for the genomic
prediction analyses, with each generation comprising 6,000 individuals, totaling 18,000 animals. The
genotypic information of these animals was used to obtain the genomic kinship matrix (G). As the simulated
trait is restricted to females, only their phenotypic information was used to adjust the models. Thus, females
of generations eight and nine were considered as the training population and females of generation 10 as the
validation population.

The Mixed Cox and the Truncated Normal models were used to predict the additive genetic values (a) of
each individual. The Mixed Cox model was described according to Ripatti and Palmgren (2000) and Therneau,
Grambsch, and Pankratz (2003) as follows:

A(t) = Ao (Dexp{XP + Za}, M

where: Ay(t) is the base failure rate function; X and Z are the incidence matrices for fixed and random effects,
respectively; B is a vector of fixed effects and a is a vector of additive genetic effects, in which a normal
distribution with mean zero and covariance matrix Go2, was assumed, with o2, being the additive genetic
variance. The partial likelihood function for the Mixed Cox model can be described as (Giolo & Demétrio,
2011):
L = [ PL(B,a) ——exp [—la’G‘la] da, (2)

Nexd] 2

27|G

where PL is the partial likelihood function of Cox proportional hazards model and the other terms as
previously defined. As the integral of equation (2) does not have a closed form, Ripatti and Palmgren (2000)
suggested the use of the Laplace approximation to obtain the logarithm of the likelihood function, and to
overcome the problems arising from the multidimensional integral calculation. The Mixed Cox model was
adjusted via the “coxme” package (Therneau, 2020) from the R software (R Development Core Team, 2020).

The Truncated Normal model was adjusted via the Reproductive Kernel Hilbert Spaces (RKHS) regression
model of the BGLR package (Pérez & Campos, 2014) of the R software (R Development Core Team, 2020),
considering the Kernel matrix (K), as being equal to the genomic kinship matrix (G). According to Pérez and
Campos (2014), the adjustment of linear models, in the presence of censored phenotypic traits, is done
considering that the phenotypes are sampled from a truncated normal distribution. The following mixed
linear model was fitted: y. = 1n + Za + e, where: y. is the vector of observed phenotypes; n is the intercept
vector; Z is the incidence matrix that relates phenotypes to the random animal effect; a is the vector of
additive genetic values, with distribution N(0,Go2,), with o2, being the additive genetic variance and e the
vector of residues with distribution N(0,Io2.). For the additive genetic variance and for residual variance, scaled
inverse chi-squared distributions were assumed, with scale parameter and degree of freedom, chosen as
indicated by Pérez and Campos (2014).

The genomic relationship matrix G was used in the Mixed Cox and Truncated Normal models. G was
calculated as (VanRaden, 2008): G = WW'/2 %1, p;q;, where W is a matrix of order n X m, composed of the
elements: w;=0-2p=-2p;, wi=1-2p;=q;-p; and w;=2-2p;=2q;, associated to the genotypes, mm, Mm, and MM,
respectively, with p; being the allele frequency of the SNP M at locus j, and g;=1-p; the allele frequency of m at
locus j. The Gibbs sampler algorithm was used for the analyses, considering 160,000 iterations, the first 20,000
of which were discarded (burn-in), and with a spacing of 10 between the samples. The convergence analysis
was performed using the Geweke criterion implemented in the BOA package (Smith, 2007) of the R software
(R Development Core Team, 2020).

Metrics used to evaluate the models

The Mixed Cox and the Truncated Normal models were adjusted considering the phenotypic information,
by the double (y., §) and genotypic information by the genomic relationship matrix (G). The models were also
adjusted to the complete data Y., considering a scenario where the percentage of censoring was equal to zero.
Accuracy (Ac) and bias (b(ggpy,,) are the two most used measures to compare genomic prediction models. To
estimate Ac and bias considering the GEBVs obtained for the phenotypic variable with complete observations
(Y.), we calculated PC between the enhanced genomic breeding values (GEBVs) and TBV, or that is, Ac =
cor(GEBV, TBV). The bias was obtained by estimating the slope of the linear regression of Y. as a function of
GEBVs, or by the expression: b ¢ggy ay) = cov (GEBV, TBV) /0%y As in practice these measures are also used
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for incomplete phenotypes, in a scenario where TBVs are unknown, the bias and accuracy were also estimated

considering v, that is, Ac = cor(GEBV, y.)/vh? and b cEBV.y,)- The values r cgpyrpy) and b ggpy ray) Were used
as a reference to compare alternative measures of accuracy and bias in the presence of incomplete
observations. In this study, we proposed two alternative measures to estimate accuracy: the maximal
correlation (Gebelein, 1941; Rényi, 1959; Breiman & Friedman, 1985) and the Pearson correlation for censored
data (Li, Gillespie, Shedden, & Gillespie, 2018).

The maximal correlation is based on the determination of transformations, possibly nonlinear for two
variables, subject to the mean zero and variance one, in order to maximize the PC between these two
transformations (Feizi, Makhdoumi, Duffy, Kellis, & Medard, 2017). Thus, since X and Y are two real random
variables, the maximal correlation between them is defined by: p* (X,Y)=max, p(f(X),g(Y)), where: p is the PC
coefficient, and the maximum is taken from the set of measurable functions f,g: R—R, with 0<Var f(X)<« and
0<Var g(Y)<e (Breiman & Friedman, 1985; Blazquez & Mino, 2014). The algorithm proposed by Breiman and
Friedman (1985), implemented in the “acepack” package (Spector et al., 2016) of the R software, was used to
estimate the maximal correlation.

A specific measure was also used for the correlation of censored data. Li et al. (2018) described the
implementation of the profile maximum likelihood method to estimate PC for bivariate data with censoring
or missing values. The authors proposed a general model, for the case of interval censored, which includes,
right censored, left censored, exact observed values, and data with missing observations. The univariate
likelihood function is defined by:

k1 kz k3 n
1) = [ [FoCe™r) x [ | [FaG™) = Fo(doven)] x [ ] [1=Fo(o*en)]x ] foce,
i=1 i=kq,+1 i=k,+1 i=kg+1

The authors considered that each case belongs to the interval (xi°¥®, x“PP]. For right, left, interval
censoring, exact values and missing observations, inequalities are considered, respectively: -oo< x;lower < x;upper
=00, -co= Xilower < x;upper <o, -00< Xilower < x;upper <o, ~00< Xilower =x;= X;'PPeT <oco and -o= Xilower < x;upper =co, where: kl
represents the number of observations left censored with detection limit x;"P?*, i=1,... k;; followed by k,-k;
interval censored observations with limits (x{°"¢, xPPe7], i=k;+1,...,ks; ks-k, right censored values in x;'°",
i=ky+1,...,ks and n-ks exact values xi, i=ks+1,...,n (Li et al., 2018).

For right censored data, the authors mentioned that the univariate likelihood function can be written in
terms of the density function, for exact observed values, and the survival function (Se (x)=P(X>x)) for values
censored on the right. In this case, 0 represents a vector of parameters, which includes the correlation
coefficient. Pearson correlation for censored data (PCC) was obtained using the “clikcorr” package (Li et al.,
2018) of the R software.

The expected accuracy (Ace) was estimated based on G and the additive matrix associated with the pedigree
relationship matrix (A), according to the equation proposed by Wientjes, Veerkamp, and Calus (2013):

Ace =

where: N, is the number of individuals in the training population, genotyped and phenotyped, h? is the
heritability of the trait and M. is the effective number of loci, obtained by: M=1/Var(D), where D = G-A.

The bias was estimated by the slope of the simple linear regression and the Tobit regression considering
the latent variable and the marginal effects associated with censored and uncensored observations, by the
regression of phenotypes in GEBVs. The Tobit regression model or censored regression was defined as:

b

,_ {y;* =x;B+,5ey] <t
Yi= te,sey; =t
with: i=1,2,...,N, N is the number of individuals and £i~N(0,0?%), y*i is an unobserved latent variable, vyi is the
observed dependent variable, xi a vector of regressor variables, B is a vector of unknown parameters and tc is
the censoring time. To obtain the marginal effect on the expected value for y, associated with censored and
non-censored observations, the slope § was multiplied by the probability that the response variable is greater
than or equal to the censoring time, that is, dE(y|x)/ dx; = B; X ®(t. — X'B/0), where: @ is the cumulative
distribution function of the standard normal (Tobin, 1958; Long, 1997). As a measure to evaluate the deviation
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between the estimated values of accuracy, based on phenotypes and GEBVs and based on TBVs and GEBVs,
the measure of relative difference, was calculated as: A= 100 x |AC(GT£—§V‘YC) — Ac(GﬁV‘TBV)| / |AC(GTB‘V,TBv) .

Results and discussion

The estimated values for the accuracy of the models, based on PC, MC, and PCC in different scenarios are
shown in Table 1. Positive and negative values were observed, respectively, for the accuracy of the Truncated
Normal and Mixed Cox models, when estimated via PC. According to Hou et al. (2009), the sign of these values
was due to the fact that, in the Mixed Cox model, the risk of occurrence of the event is modeled, whereas in the
Truncated Normal model, the time until the occurrence of the event is directly modeled. Thus, the GEBVs
predicted by the Mixed Cox model and the Truncated Normal model, were inversely proportional, and presented
different scales, since the GEBVs estimated by the Mixed Cox model were related to the risk of occurrence of the
event of interest (Hou et al., 2009; Santos et al., 2015). As the MC can only assume values in the range from zero
to one, positive values of similar magnitude were perceived for both models in most of the evaluated scenarios.

Table 1. Estimated mean values for the accuracy (Ac) of the Mixed Cox and Truncated Normal models, considering the incomplete
phenotypes (y.), for 10, 40, and 70% of censoring, using Pearson correlation (PC), maximal correlation (MC), and Pearson correlation for
censored data (PCC), as measures of correlation between phenotypes and genomic enhanced breeding values (GEBVs) and for Pearson
and maximal correlation between true breeding values (TBVs) and GEBVs, with 0% censoring.

Ac = cor(GEBV, yc)/\/ﬁ

o C1 C2
P% Mixed Cox model Truncated Normal model Mixed Cox model Truncated Normal model
PC MC PCC PC MC PCC PC MC PCC PC MC PCC
10% -0.30 0.32 -0.30 0.30 0.34 0.31 -0.13 0.19 -0.13 0.12 0.16 0.12
Aa Aa Aa Aa Ba Aa Aa Aa Aa Aa Aa Aa
40% -0.27 0.29 -0.29 0.27 0.31 0.30 -0.10 0.16 -0.11 0.10 0.16 0.11
Aa Bba Ba Aa Bba Ba Aa Aa Aa Aa Aa Aa
70% -0.20 0.26 -0.27 0.21 0.25 0.27 -0.09 0.16 -0.12 0.07 0.15 0.10
Ab Ba Ba Ab Bb Ba Aa Aa Aa Aa Ba ABa
C3 C4
10%  -0.44° 0.44° -0.45° 0.46° 0.46° 0.46° -0.19 0.20 -0.19 0.20 0.21 0.20
Aa Aba Ba Aa Aba Aa Aa Aa Aa Aa Ba Aa
40%  -0.40° 0.41° -0.43° 0.41° 0.43° 0.44° -0.18 0.20 -0.20 0.19 0.20 0.21
Ab ABDb Bb Ab Bb Bb Aa Aa Aa Aa Aa Aa
70%  -0.312 0.33° -0.39° 0.32° 0.34° 0.41° -0.16 0.17 -0.20 0.16 0.18 0.20
Ac Bc Cb Ac Bc Cb Aa ABa Ba Ab Ab Ba
Ac = cor(GEBV,TBYV)
C1 C2
0% -0.38 0.38 -0.38 0.41 0.41 0.41 -0.14 0.15 -0.14 0.13 0.14 0.13
C3 C4
0% -0.54 0.54 -0.54 0.56 0.57 0.56 -0.19 0.20 -0.19 0.21 0.21 0.21

P%: Percentage of censoring; C1 — h? = 0.07 and h? of QTL = 0.07; C2 — h* = 0.07 and h? of QTL = 0; C3 - h? = 0.27 and h? of QTL = 0.27 and C4 - h*=0.27

and h? of QTL = 0. Means followed by the same letter, uppercase in the lines and lowercase in the columns, do not differ statistically by the paired t test at

5% probability with Bonferroni correction. The significant differences between the Mixed Cox and Truncated Normal models are indicated by the presence
of the superscript letters a and b.

The reliability of the expected genomic prediction for heritabilities of 0.07 and 0.27, according to the
theoretical formula of accuracy, was 0.41+0.05 and 0.65+0.06. Thus, the correlation measures that showed
values closer to what was expected, were considered the best measures. In scenarios in which the QTL
heritability was equal to the total heritability of the trait (C1 and C3), it was observed that in most cases, the
MC and PCC measures presented statistically equal estimates, which are different from those obtained for PC,
or only PCC differed significantly from PC. The only exceptions occurred for C3 with 70% censoring, in which
PCC was statistically superior to PC and MC. The MC, estimated based on the values predicted by the
Truncated Normal model, for C1 with 10% censoring was shown to be statistically superior to the other
measures. With the QTL heritability equal to zero, few significant differences were observed between the
accuracy measures. For the trait C2, the only significant difference found was between MC and PC, for the
Truncated Normal model with 70% censoring. For the trait C4 with 70% censoring, considering the GEBVs
obtained by the Truncated Normal and Mixed Cox models, it was noted that the PCC measure differed
statistically from the PC measure, with the estimates obtained by the MC and PC measures being statistically
equal. With 10% censoring, MC was statistically superior to the other metrics, only for the Truncated Normal
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model. In general, the estimates obtained by PC were lower than those estimated for MC and PCC, and these
in turn, presented similar values in most scenarios.

Several correlation measures have been proposed over the years with the aim of quantifying the
dependency between two variables, in a more general context, in which the dependency can be linear or non-
linear, considering different distributions and types of dependency relationship. Reshef et al. (2011) presented
a measure of dependence between two continuous variables, called the maximal information coefficient
(MIC), which, with sufficient sample size, is capable of capturing functional and non-functional associations.
When comparing the MIC with the maximal (Rényi, 1959; Breiman, & Friedman, 1985), Pearson (Galton, 1888;
Pearson, 1920) and Spearman (Spearman, 1904) correlation measures, the authors noted that for the
dependency relationship with linear noise, these measures showed similar performance, with determination
coefficients equal to 1. For non-linear noise, such as cubic, exponential, categorical, and parabolic, the MIC and the
maximal correlation showed similar results. When sinusoidal noises were considered, the MIC was more appropriate
than all the other measures compared, including mutual information via KDE - kernel density estimators (Moon,
Rajagopalan, & Lall, 1995) and via Kraskov estimator (Kraskov, Stogbauer, & Grassberger, 2004).

Santos, Takahashi, Nakata, and Fujita (2014) carried out a study to compare statistical methods used to
identify the type of dependency relationship between random variables. In this study, the following measures
were evaluated, including correlation [Pearson, Spearman, Kendall (Kendall, 1938)], distance correlation
(Szekely, Rizzo, & Bakirov, 2007), mutual information via KDE, and MIC (Reshef et al., 2011). Simulated and
real data were used, and comparisons between methods were performed using the ROC curve (Receiver
Operating Characteristic). The authors showed that Pearson, Spearman, and Kendall correlations can detect only
linear or monotonic nonlinear relationships, strictly increasing or decreasing, and that these three measures have
a similar performance. The other methods, on the other hand, were able to identify linear relationships, as well as
non-monotonic and non-functional relationships. According to the authors, if the hypotheses of linearity or
monotonicity are satisfied, the application of the Spearman and Kendall correlations should be preferred, since
they are able to identify linear and monotonic relations with high power.

Deebani and Kachouie (2020) evaluated the performance of Pearson, Spearman correlation measures,
distance, and maximal correlations and MIC, considering simulated data similar to those used by Reshef et al.
(2011), these being extended with the addition of different noise levels: none, low (5%), medium (20%), and
high (40%). For the linear relationship between the variables, with no or low noise, the five methods had scores
close to or equal to one. With increasing noise, all measures of correlation decreased. The maximum
correlation was superior to the MIC and slightly superior to the Pearson, Spearman, and distance
measurements correlations. For the exponential, monotonic and strictly increasing relationship, without
noise, scores equal to one were obtained by the maximum correlation, Spearman correlation and by the MIC.
With the increase in noise, the maximal correlation showed consistently higher scores than the other
measures. Spearman correlation yielded higher scores than Pearson correlation only in cases with no or low
noise. In the other two scenarios these measures were similar.

Pearson correlation is a measure used to quantify the linear dependence between two variables. This
measure is often used in genomic selection to estimate the accuracy of predictive models, and its application
is appropriate when the variables have a linear relationship and are normally distributed. The Spearman and
Kendall correlations are measures that go beyond quantifying the linear dependence between two variables,
they measure the monotonic association between the variables. These measures do not have the assumption
of linearity, and they can also be used for variables on an ordinal scale, which make them more appropriate,
when the phenotype is survival time. MC does not show preference for linear or monotonic relationships, and
does not require any assumptions regarding the distribution of the data. MC can completely characterize the
independence between two variables, since a correlation equal to zero implies the independence of the variables.
Finally, for the identification of non-linear or non-functional dependency relationships, methods based on ranking
or information theory proved to be more appropriate (Santos, Takahashi, Nakata, & Fujita, 2014).

The highest mean values in absolute value for accuracy were observed for the percentage of censoring of
10%. With the increase in the percentage of censoring, there was a loss of predictive ability, which can be
explained by the reduction of phenotypic information used for the prediction of GEBVs. Only for trait C3, this
reduction in accuracy was significant, in the other scenarios, no significant differences were observed, or the
difference was significant only between the classes with 10% and 40% and the class of 70%. This fact was
observed for the three measures, the reduction in accuracy being more evident for PC. These results are in
agreement with those obtained by Kirkkdinen and Sillanpéda (2013), who, when considering the censoring
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percentages of 20, 50, and 80%, observed that the accuracy of the Bayesian threshold model, calculated by
PC, gradually decreases with increasing the percentage of censoring.

Pearson correlation was most affected by the increase in the percentage of censoring, due to the fact that
it did not use the information present in the censored observations for estimation. When using PC and MC
for continuous response, the phenotypes of the censored observations were considered to be exact, which
implied a reduction in the information used. Although MC does not make use of censored observations, it is
more flexible than PC, which makes it possible to model more complex relationships. According to Li et al.
(2018), partially observed bivariate data appear in different forms. If one of the variables presents completely
missing observations, although these observations do not provide direct information about the correlation
coefficient, they are informative as to the marginal distributions. In the presence of censored observations,
and considering that none of the variables are completely missing, the observations contribute information
about the correlation, and the marginal distributions.

Several correlation measures have been proposed to estimate the correlation in the presence of
variables with censored observations on the left, right, or interval. Newton and Rudel (2007) proposed a
correlation measure based on maximum likelihood (ML) estimators for data analysis with different points
of censoring on the left. This measure was compared with Kendall's tau-b correlation coefficient (Oakes,
1982) for censored data, and with PC, Spearman and Kendall's tau correlation, considering censored
observations equal to half the detection limit or as missing observations. The authors showed via a
simulation study that for sample sizes greater than or equal to 100, the correlation measure based on ML
whose standard deviations were estimated separately, presented the best results, which can be used for
censoring proportions ranging from 60 to 90%. This performance was dependent on the parametric value
of the correlation. Most of the measures evaluated were highly biased towards the proportion of
censoring ranging from 0 to 90%.

Pearson correlation for censored data estimated via profiled likelihood proposed by Li et al. (2018) is a
general correlation measure that can be applied to data with left, right, interval, and missing data censoring,
assuming a normal or Student’s t distribution for the data. The authors evaluated the performance of this
correlation measure in a simulation study considering different sample sizes, percentages of censoring and
underlying distributions. For data generated from the normal bivariate distribution, it was shown that the
probability of covering the confidence interval provides satisfactory values for censoring on the right with
fixed or random points, and that the proposed estimator is not biased for random censoring on the right. If
the underlying marginal distributions have tails that are heavier than that of the normal distribution, and the
correlations are high, the use of the bivariate Student t distribution provides better coverage probabilities
than those obtained with the bivariate normal distribution.

In traits C1 and C3, all genetic variance was explained by the QTL, whereas traits C2 and C4 were polygenic
in nature. The three measures were equally useful regarding the discernment between the models, that is, the
average efficiency of the Truncated Normal model relative to the Mixed Cox model, presented close values
for the three measures of accuracy. For traits C1 and C3, these values were on average 3 and 4%, respectively.
Only for C2, the Mixed Cox model was better than the Truncated Normal model. In this case, the relative
efficiency of the Truncated Normal method was on average 6% lower than that of the Mixed Cox model. For
trait C4, also polygenic, the previous result was not repeated, the Truncated Normal model was 6% more
efficient than the Mixed Cox model.

The accuracy calculated based on the GEBVs and TBVs, were lower than the expected accuracy, and, in
most cases, greater than the estimated accuracy based on the incomplete phenotypes. In studies involving
censored real data, the only information available about the trait is the phenotype and the censoring status. In
these cases, to assess the accuracy of the models, PC between the phenotypic values and the GEBVs is generally
estimated. When analyzing simulated data, TBVs are available, and when correlating TBVs with GEBVs, we can
compare the predicted with the simulated values. In this study, by correlating the GEBVs with TBVs and incomplete
phenotypes, it was possible to measure how much the estimated correlations with incomplete phenotypes differed
from those estimated with TBVs, by calculating the measure of relative difference (a).

Table 2 shows the values obtained for the relative difference in each of the scenarios. Most of the time, for
the Mixed Cox and Truncated Normal models, the results showed that PCC had a smaller relative difference
when compared with PC and MC. In all scenarios, the relative difference in the PCC and MC measures were
smaller than those obtained for PC. The calculated average relative differences were 12.45, 13.95 and 12.68%,
respectively, for PCC, MC, and PC, with 10% censored. With the increase in censored, the average difference
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associated with PC increased to 22.78 and 37.88%, respectively, to 40 and 70% of censored, while for PCC the
average relative difference increased to 16.80 and 20.63%. The MC presented values of average relative
distance similar to those obtained for PCC, with a larger difference found for 10% of censored. The Mixed Cox
and Truncated Normal models are models known to perform better for polygenic traits, then for traits that
are influenced by genes with moderate to large effects. This fact probably justifies a smaller relative difference
for the traits C2 and C4. In general, the accuracy values estimated based on the PCC measure, were closer to
the values estimated based on the TBVs, than those estimated with PC and MC.

Table 2. Estimated mean values for the relative difference (A) in percentage, considering the estimated accuracy based on incomplete
phenotypes (yc) and true breeding values (TBV), based on Pearson (PC), maximal (MC), and Pearson correlation for censored data (PCC)
correlations, considering the genomic breeding values estimated by the Mixed Cox and Truncated Normal models, for phenotypic traits

with 10, 40, and 70% censored.

A
P% C1 C2
Mixed Cox model Truncated Normal model Mixed Cox model Truncated Normal model
PC MC PCC PC MC PCC PC MC PCC PC MC PCC

10% 21.05 15.79 21.05 24.39 17.07 24.39 7.14 26.67 7.14 7.69 14.29 7.69
40% 28.95 23.68 23.68 34.15 24.39 26.83 28.57 6.67 21.43 23.08 14.29 15.38
70% 47.37 31.58 28.95 48.78 39.02 34.15 35.71 6.67 14.29 46.15 7.14 23.08

C3 C4
10% 18.52 18.52 16.67 17.86 19.30 17.86 0 0 0 4.76 0 4.76
40% 25.93 24.07 20.37 26.79 24.56 21.43 5.26 0 5.26 9.52 4.76 0
70% 42.59 38.89 27.78 42.86 40.35 26.79 15.79 15 5.26 23.81 14.29 4.76

P%: Percentage of censoring; C1 — h% = 0.07 and h? of QTL = 0.07; C2 - h? = 0.07 and h? of QTL = 0; C3 - h? = 0.27 and h? of QTL = 0.27 and C4 - h?=0.27
and h? of QTL = 0.

Table 3 presents the estimated average values for the slope of the simple linear regression model, the
marginal effect on censored and uncensored observations and the slope for the latent variable for the Tobit
regression (TB), considering all the scenarios evaluated, for the GBVs estimated by mixed Cox and Truncated
Normal models. The coefficients estimated for the Mixed Cox and Truncated Normal models differed
markedly in terms of the magnitude and sign of the estimates. This fact was due to the inverse relationship,
and the difference in scale between the GBVs estimated by the two models. It was also observed that the slope
coefficients estimated by the regression of the TBVs in the GEBVs based on the complete data were greater
than or equal to the values estimated in the presence of censored observations in all scenarios.

Table 3. Mean values estimated for the slope coefficients obtained by regression of the incomplete phenotypes (y,), in the genomic
enhanced breeding values (GEBV) using Mixed Cox and Truncated Normal models, by simple linear (SLR) and Tobit (TB) regressions,
considering different values of total heritability and QTL heritability. For the Tobit regression, the first number represents the marginal
effect associated with censored and uncensored observations, and the second number the effect associated with the latent variable.

by crav) = reg(y.~GEBV)

o C1 C2
P% Mixed Cox Model Truncated Normal model Mixed Cox Model Truncated Normal model
SLR TB SLR TB SLR TB SLR TB
10% -4.08 -4.09;-4.48 0.63 0.63;0.69 -2.26 -2.25;-2.46 0.26 0.26;0.29
40% -1.96 -1.95;-3.09 0.44 0.45;0.71 -1.20 -1.23;-1.94 0.18 0.19;0.30
70% -0.81 -0.83;-2.51 0.23 0.23; 0.69 -0.95 -0.82;-2.50 0.09 0.09; 0.29
C3 C4
10% -2.99 -3.03; -3.22 0.87 0.88;0.94 -2.41 -2.41;-2.56 0.60 0.60; 0.64
40% -1.95 -1.94;-2.85 0.64 0.64; 0.94 -1.53 -1.51;-2.20 0.46 0.45; 0.66
70% -0.87 -0.87;-2.35 0.35 0.34;0.93 -0.73 -0.71;-1.88 0.27 0.27;0.70
brgv,aav) = reg(TBV~GEBV)
C1 Cc2
0% -5.23 -5.23 0.71 0.71 -2.80 -2.80 0.30 0.30
C3 C4
0% -3.27 -3.27 0.92 0.92 -2.61 -2.61 0.61 0.61

P%: Percentage of censoring; C1: h% = 0.07 and h? of QTL = 0.07; C2: h? = 0.07 and h? of QTL = 0; C3:

h? of QTL = 0.

h?=0.27 and h% of QTL = 0.27 and C4: h% = 0.27 and

The slope coefficient and the coefficient associated with the marginal effect estimated, respectively, by

the simple linear regression and by the Tobit regression, presented similar values in all the evaluated
scenarios. These coefficients were inversely related to the proportion of censorship for the Truncated Normal
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model, and directly related to the proportion of censorship for the Mixed Cox model, that is, in the Truncated
Normal model, as the censorship increases, the coefficient decreases, in Mixed Cox model, there was an
increase in the value of the coefficient, with an increase in censoring. The slope coefficient estimated based
on the latent variable, showed a markedly increasing pattern, with the increase of censorship, only for the
Mixed Cox model in scenarios C1, C3, and C4. In general, the coefficients estimated for the Truncated Normal
model based on the latent variable suffered less variation with the increase in censoring, while those
estimated by linear regression and based on marginal effects were drastically influenced by censoring, mainly
with the change of 40 to 70% censoring. These last two coefficients were more suitable for the assessment of
bias in the presence of censored observations. This is because with the reduction of phenotypic information
used to estimate GBVs, it is expected that the bias of the prediction varies considerably, since the censoring
can reach up to 70% of the observations. According to Long (1997), the Tobit regression model makes use of
all available information, which includes censored observations. Thus, the model is able to provide consistent
estimates, while the linear regression model, when treating all phenotypic values as observed, provides
inconsistent estimates for the parameters.

The parameter estimates in the simple linear regression model are obtained via ordinal least squares, with
the assumption of linearity in the data, normality, and homogeneity of the residues. The Tobit regression
model, on the other hand, is based on maximum likelihood estimators, and has the same assumptions as
simple linear regression. Assuming that the assumption of normality is met, Amemiya (1973) presented
results regarding the consistency and asymptotic normality of ML estimators. Lumley, Diehr, Emerson, &
Chen (2002) showed by means of a simulation study, that for a sufficiently large sample, simple linear
regression can present a reasonable performance even for non-normal data. According to Amore and Murtinu
(2019), the Tobit regression model is more sensitive to breaking the assumptions of normality and
homogeneity of the residuals than the simple linear regression model.

Through a graphic inspection, it was found that in the present study, the residues were not normally
distributed, and that the assumption of homogeneity of the residues was not accepted for all repetitions and
censorship percentages. Lewis and McDonald (2014) found that for data simulated with normal residues, with
a thousand observations, and with 25% censoring, the Tobit regression model was the most efficient among
all models, which is less biased than the simple linear regression, and with root mean square error (RMSE)
approximately four times smaller than the one obtained for the simple linear regression. For residues with
mixed normal and log-normal distributions, the two models showed to be highly biased, whereas for mixed
normal the models presented similar values of bias and RMSE and for log-normal, simple linear regression
showed lower values of bias and RMSE.

Due to the difference in scale existing between the GEBVs obtained by the Mixed Cox and Truncated
Normal models, the bias is not a good measure to directly compare these models, which does not affect the
objective of the study that the evaluation of an alternative measure to estimate the bias in the context of
censored data. Santos et al. (2015) used Spearman correlation as a measure of accuracy for data with censored
observations, and the Kappa coefficient as a measure for assessing the agreement of the ranking of individuals
according to the GBVs estimated by the Mixed Cox model and by the linear mixed model with complete or
imputed data.

Conclusion

From a statistical point of view, the proposed methodologies are preferred because they deal adequately
with the presence of incomplete observations in the data. The results showed that the proposed measures of
correlation presented estimates significantly higher than those presented by PC, mainly for the trait with QTL
heritability equal to 0.27. The coefficient associated with the marginal effect of the TB presents values close
to those obtained by SLR. The coefficient associated with the latent variable in the TB, in most cases, had
little variation with changes in censoring proportions, while SLR is extremely affected by the presence of
censored observations.
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