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ABSTRACT. The use of linear mixed models for nested structure longitudinal data is called hierarchical
linear modeling. This modeling takes into account the dependence of existing data within each level and
between hierarchical levels. The process of modeling, estimating and analyzing diagnoses was illustrated
through data on the weights of mice experimentally infected by Trypanosoma cruzi, divided into different
treatment groups, with the purpose of verifying the evolution of their body weight as a result of using
different types of biotherapeutics produced from Gallus gallus domesticus (chicken) serum to treat
Trypanosoma cruzi. Through the model selection criteria AIC and BIC and the likelihood ratio test, a
model was chosen to describe the data correctly. Model diagnoses were then performed by means of
residual analysis for both levels and an analysis of influential observations to verify if any observations
were signaled as influencing the fixed effects, the components of variance and the adjusted values. After
the analysis, it was possible to notice that the observations that were signaled as influential had little
impact on the Model chosen initially, so it was maintained, with no differences being evidenced between
the treatments with the biotherapeutics tested; only the Time variable and the Random intercept were
necessary to describe the weight of the mice.
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Introduction

There has been a significant increase worldwide in the capacity to produce, store and transmit information;
the latter is characterized as data and demands more and more advances from statistics, both as to the
development of methodologies and as to new, ever-complex indicators that require modern equipment,
statistical software and trained technicians (Ignacio, 2010). Mixed Models were widely studied by Fisher in 1918,
with major impacts on quantitative genetics studies, and referred to by the author as components of variance
models (Scheffe, 1999). The development of linear mixed models combined in one single equation is a result of
primordial investigations (Harville, 1976; 1977) that facilitated this achievement; later, their use would be
discussed in (Laird & Ware, 1982) for longitudinal data, which are data characterized by a time sequence of two
or more observations on each individual.

The applications of Hierarchical Linear Models have been growing due to the great extension of problems that
have hierarchically structured data, just as in this study, which analyzed body weight data of individuals infected
by Trypanosoma cruzi, the agent of Chagas disease. The latter is one of the most widely distributed pathologies in
the American continent. Vectors of the disease can be found from the south of the United States to Argentina.
There are more than one hundred species responsible for the natural transmission of the infection by
Trypanosoma cruzi, directly helping it spread in the home environment or participating in the maintenance of
chagasic enzooty. It is estimated that 16 to 18 million individuals are infected, and that approximately 80 million
people are at risk of contamination in Latin America (Schmunis, 1997; WHO, 1991 apud Vinhaes & Dias, 2000).
Hence the importance of the several studies conducted in this field.

Material and methods

The experiment described in this research was carried out by (Ferreira et al., 2018) through blind,
controlled and randomized assays. The objective was to verify the efficiency of using variations of a
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biotherapeutics produced from a serum of Gallus gallus domesticus (chicken), under parasitological, clinical
and immunological parameters, in mice experimentally infected with Trypanosoma cruzi. The expected
efficiency of each biotherapeutics would be observed in the subjects’ body weight.

Also, according to the authors, the experiment used 57 Swiss mice, aged 56 days old, all male and
sourced from the Central Vivarium of the State University of Maringd. The animals were distributed into
treatment groups and housed in cages with a maximum of 5 animals. With polysulfone (ALESCO®), 20 x 32 x
21 cm?® in dimension, controlled temperature (22 + 2°C), a 12-hour light/dark cycle, and water and feed being
supplied ad libitum, the cages were transformed into a microenvironment. All groups were subjected to the
same experimental conditions.

The animals were divided into 5 groups and subdivided into 14 cages: group 1 was composed of 5 animals
allocated in cage 1; groups 2, 3 and 4 were composed of 13 animals and divided into 3 cages each,
respectively in cages 2, 3, 4, 5, 6, 7, 8, 9 and 10; and group 5 was composed of 13 animals as well, but they
were divided into 4 cages — 11, 12, 13 and 14, respectively. The infected animals were inoculated
intraperitoneally with 1,400 blood trypomastigotes (infectious forms) of Trypanosoma cruzi (Y strain)
(Nussenzweig et al., 1953).

Here is a description of the experimental groups (treatments):

1: NIC - (Non-infected control) Non-infected and non-treated animals (n = 5);

2: G13cH - Animals treated with 13cH chicken serum biotherapeutics (n = 13);

3: G6cH - Animals treated with 6¢H chicken serum biotherapeutics (n = 13);

4: ICG - (Infection control) The animals were infected and received no treatment (n = 13);
5: G3cH - Animals treated with 3cH chicken serum biotherapeutics (n = 13).

The medicine was diluted in water (1mL/10mL) and supplied ad libitum in a sterile amber bottle, in
accordance with Aleixo et al. (2013), for 16 consecutive hours (medicine available for the animals from 16:00
to 8:00), on the 4™, 7th and 10" days after infection (totaling 3 doses). The treatment scheme is based on the
action of the drug, which is linked to its immunological effects and to the specific evolution of the Y strain
of Trypanosoma cruzi in Swiss mice (Aleixo et al., 2013; Ferraz et al., 2016). The project from which the
experiments were run was approved by the Ethics Committee on Research Involving Animals of the State
University of Maringd, Parand, CEUA Opinion 2401220716/2016.

Body weight evolution was monitored over 12 weeks using a semi-analytical balance (Balance BEL®). In
this study, the assessment performed at the beginning of the treatment was used to analyze the initial
weight of the mice. Due to a great loss of information as of the 7t study week, the modeling was based on
the longitudinal measures observed up to the 6™ week.

Hierarchical Linear Models

For modeling the weight of the mice (y) as a function of the predictor variables (Z) at the individual level
and/or at a higher level (W), the dataset is assumed to be multilevel; theoretically, the model can be
presented as a hierarchical system of regression equations.

The Hierarchical Linear Model, in its general form, can be formulated through two equations:

Vi=ZiBi+e Y]
Bi=Wyy+b; 2)

in which (1) represents the model equation within the group — level 1 -, and (2) represents the model
between groups - level 2. The explanatory variables at the subject level are represented by index (q),while
the explanatory variables at the group level are represented by index (p), so (q) and (p) represent the
number of variables. Thus:
y; is a result vector.
Zi is a matrix of explanatory variables;
B; is one of the components of the vector of unknown fixed parameters;
e; is the vector of level-1;
W; is a matrix of level-2 explanatory variables;
y is a vector of fixed effects;
b; Is a vector of random effects.
This model can be combined to result in a single Linear Mixed Model, with X; = Z,W; and B = vy.
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Yi=XiB+Zib+e 3

Generally referred to as Hierarchical Model in (Verbeke & Molenberghs, 2000). X;B corresponds to the
fixed part, with B representing the vector of components ;, while Z;b; + e; corresponds to the random part
of the Model.

From the model given in (3), errors will be assumed as independent between groups, and different between
levels, that is, it is assumed that random effects and errors follow a normal distribution, with mean equal to 0,
and have correlated residuals, where ¢ is the covariance between b; and e;, and (D) and (R) are the covariance
matrices, with both matrices being positive and defined by hypothesis, therefore not singular:

V; = Var(Y) = [Z] = [g I‘fi “)
where

Var(b;) = E[b;bT] = D ©)
and

Var(e;) = Ele;e]] = R (6)

with the following assumptions, e; ~ N(0,R;), b; ~ N(0,D), Cov(e;, b;) = 0V i, j; Cov(b;, b;) can be zero for
i #j.

Frequently, it is assumed that R; = 62I,;. Thus, the total variance of the model (3) for response
vector y; is given as:

V(y) = ZDZ[ +R; )
where such considerations mean that:

yi ~ N(X;B, V) ®)

Parameter Estimation

When there is a Hierarchical Linear Model, in the form given in (3), with matrix of variances and covariances
such as those presented in (7), there is usually interest in predicting fixed and random effects and in estimating
the components of variance. Commonly, as a procedure for estimating Hierarchical Linear Models, Maximum
Likelihood Estimation (MLE) is used. The Maximum Likelihood Estimation method consists of maximizing the
likelihood function of observations in relation to the fixed effects and to the components of variance, requiring
data normality assumption. Assuming that the y; vector of the observations has X;3; as mean, and V; as matrix of
variances and covariances, the likelihood function (L) of y; is:

Lw (33 Bq) = T | @0 WD) x exp [~ 2 (i~ X7V O —Xis)]] )

where |V;| represents the determinant of the V; matrix.

Model diagnoses

The Hierarchical Linear Model, just as in Ordinary Linear Regression, has distributive assumptions that
may or may not be valid when used in practice. However, the diagnoses to assess these assumptions and
consequent alternatives, for assumption violation suspicions, have not been fully developed for this model,
mainly because the analysis tool is relatively recent.

The diagnoses were divided into two stages, residual analysis and influential point analysis; for the
residual analysis, the model given in (3) encompasses the uncertainty both at the individual level e; and and
at the group level b;. A residual term should allow assessing the distributional assumptions of the model.
Thus, level-1 (individual) residuals & and level-2 (group) residuals b, are deemed essential; therefore,
regardless of the form of the covariance matrix, these residuals are of interest. All upper-level residuals are
the best linear unbiased predictors (BLUPs) of random effects. Following the convention established in
(Goldstein, 2011) and (Raudenbush & Bryk, 2002) for level specification, the residuals are titled by the level
at which they were introduced in the Model.

Checking if their definitions are interrelated, level-1 and level-2 residuals are fundamental for modeling,
since a deficiency at one level of the model can be perceived in the residual analysis at another level. An
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ascending residual analysis is recommended for verifying the validation of level-1 residuals; this way, having
concluded the appropriate model for this level, move on to level 2. By doing so, the impacts on the residual
analysis, resulting from a possible confusion when modeling, will be minimized (Loy & Hofmann, 2013).

One way of indicating whether the residual variation within the group is constant between groups is to

use the programming protocol presented by (Buja et al., 2009), which employs several sets of simulated data
from which null graphs are built.
In model fitting and parameter estimation, not all observations, or groups, have the same effect. Some
observations or groups stand out from the others, and the fit of the model detects these differences. These
observations or groups are referred to as influential or leverage points. We are especially interested in the
points of influence on fitted values, fixed effects (estimates) and components of variance.

Considering that, in addition to fixed effects, there are random effects influencing the result of a studied
phenomenon, Hierarchical Linear Models can be used to study the best covariance structure. For this case,
we assume that the covariance structure, V;, is fixed, which is a generalization of the linear regression, with
H; = 0¥,/ dy; denoting leveraging at level i.

The multiple statistics that can define ‘leverage points’ for fitted values in a Hierarchical Linear Model
are described by general leverage points (H), leverage points in fixed effects (H,), leverage points in random
effects (H,), and leverage points in non-confounding random effects (H,"). Following the definition provided
by (Demidenko & Stukel, 2005), the leveraging of group i is the sum of the leverages for fixed effects Hy; and
random effects H,;, where

Hy = X, X[V X)X vt (10)
Hy; = Z;DZ{V;*(I — Hy;) (11)

Here is some confusion as to the diagnosis of influential points, which occurs between levels. Because
the leveraging of the random effects (11) results from the leveraging of the fixed effects (10). Optionally,
according to (Nobre & Singer, 2011), the leveraging for the random effects can be defined as

H}, = Z,DZT (12)

which solves such a confusion.

Influential observations in fixed-effect estimations can be made using Cook's distance, or also MDFFITS
statistics, which is a multivariate version of DFFITS statistics (Belsley, Kuh, & Welsch, 2004). Both statistics
determine the distance between fixed-effect estimations deriving from complete data, and those from
reduced data, and are generalized by (Christensen, Pearson, & Johnson, 1992) and (Schabenberger, 2005) for
the Hierarchical Linear Model as follows

ci(B) = (BB var(B) " (B—B)/p (13)
MDFFITS,(B) = (B—B.) var(3) (B - B.)/» 14

These statistics present great values for influential observation and, because V is used, there is no exact
reference distribution for it.

Components of variance estimation is another attribute that allows analyzing the influence of possible
model observations. Even though components of variance estimations are not of primary interest for
researchers, it is fundamental to investigate this part of the model because components of variance impact
its fixed part (Loy & Hofmann, 2013). For the Variance Components, one can directly compare the relative
change for each variance component, 6,

RVC(6) =3 ~ (15)

Note that the relative variance change (RVC) will be close to zero when the i-th unit does not influence
the component of variance in question.

All decision measures for choosing the best proposed fit, estimating parameters and diagnosing the model
were obtained from software R version 3.4.4 (R Core Team, 2019) with the following packages (ggplot2, HLMdiag,
Ime4, nlme, mlmRev, nullabor, fitdistrplus, dbplyr , plyr).

The model selection was based on the Akaike Information Criterion (AIC), the Bayesian Information
Criterion (BIC) and the likelihood-ratio test.
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Results

Initially, a descriptive analysis was performed to ascertain the behavior of the subjects' weight during the
experiment; this analysis was divided in two parts — subjects’ initial weight (1st week), and subjects’ weight
in the following experiment weeks (2nd to 6th week). The dataset used for both the descriptive analysis and
the fittings is made up of 342 observations, of which 16 were lost (not recorded).

Mice weight descriptive analysis

To study the initial weight of the mice, a statistical summary was produced, observing that the means of the
groups range from 39.24 g for group 4 to 42.19 g for group 2, with standard deviations equal to 3.68 and 4.04 g,
respectively.

Figure 1 shows the scatter of the weight of each subject at the beginning of the experiment and how discrepant
the weights of the mice are. The treatment group to which each subject belongs is identified with different colors.
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Figure 1. Scatter plot of the subjects' initial weight.

Figure 2 shows the weight evolution of each subject as a function of time, evidencing a similar behavior as the
weeks go by. In addition, Figure 3 shows that all groups had an average weight increase as a function of time.
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Figure 2. Graph for each subject's profile over time.
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Figure 3. Mean weight of the groups as a function of time.

The highest mean between groups was found in the 6th week, for group 2, while the lowest one was
found in the 2™ week, for group 3. The largest deviation between groups also occurred in the 6™ week of
group 2, while the lowest one occurred in the 5™ week of group 3.

Figure 4 displays a histogram, a Cumulative Distribution Function (CDF) graph, a QQ-Plot and a PP-Plot,
all as a function of weight observations for all treatments from the 2" to the 6™ week, considering normal
distribution as reference.
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Figure 4. Histogram, fitted density function, cumulative empirical distribution, fitted distribution function, theoretical quantiles,
empirical quantities, theoretical probabilities and empirical probabilities.

The Kolmogorov-Smirnov test presented D = 0.077755 and p-value = 0.077 as statistics, indicating that
the subjects’ weights follow normal distribution.

Model fit

The analysis of the models sought to ascertain the behavior of the subjects infected by Trypanosoma cruzi
by relating the response variable 'weight' to possible influencing factors, cage and time, which belong to the
fixed part of the model. The treatment group and the subjects themselves belong to the random part.

The models were fitted for response variable , in whichi =1, 2,. .., 5 (group number), j =1, 2, ..., n; (number
of subjects, where ifi=1, n;=5,and ifi=1, n;= 13), k=1, ..., m; (cage number, where ifi=1 m;=1; i=2 m; =
2,3,4;i=3 m;=5,6,7;i=4 m;=8,9,10; i=5 m;=11,12,13,14)and t = 2, . . ., 6 (treatment week).

The proposed models are described in Table 1; the first one is given only by the intercept of the fixed
part, while the effect of the subjects is given by means of a random intercept for each one of them. In the
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second, the effect of time is added to the fixed part; in the third model, the effect of the groups is added to the
fixed part; in the fourth model, in addition to time and group, the effect of the cages is added to the fixed part.

Table 1. Proposed models.

Model

Vi =PBo+bojte

Wjie = Bo + Time A, + by; + e,

Wije = Bo + TimeA, + Group;a; + by; + e;j;

4 Wije = Bo + Time A, + Group;a; + Cagey ) + by + €;jy;

NN =

ai represents the effects of the i-th group, 0« represents the effects of the k-th cage, A represents the effects of the t-th time, b; and e; represent the
effect and random error, respectively, of the j-th subject.

All proposed models presented violation in the residual normality assumption. The graphs in Figure
5 show how observation 16 stands out in 3 of the 4 fittings, so it is an observation worth investigating.

Model 1 Model 2 Model 3 Model 4

160 160

res1
res2
res3
res4

171
T T T T T T T
-3 -2 -1 0 1 2 3

norm quantiles norm quantiles norm quantiles norm quantiles
Figure 5. QQ-Plot for the fittings in the proposed models.

Observation 16 corresponds to the body weight of subject 4 in the second week; said subject belongs to group
G1, which is the control with non-infected animals. Table 2 specifically shows this subject's data; it is possible to
see that, in the second week, its weight had a sharp rise in relation to its initial weight, which was 41.00 g, then a
drop in the 3“week, presenting small variations until the 6™ week.

Table 2. Observations for Subject 4.

Obs Group Subject Cage Cage Time
16 Gl 4 1 47.80 2
17 Gl 4 1 45.00 3
18 G1 4 1 45.40 4
19 G1 4 1 44.60 5
20 Gl 4 1 46.30 6

This way, there is evidence that this observation has gone through a collection error, so the fittings were
redone without observation 16.

Through the Shapiro-Wilk residual normality test, Model 2, Model 3 and Model 4 obtained, as p-value,
0.267, 0.266 and 0.265, respectively, thus presenting residual normality.

The values of all ANOVA decision measures for each selected model are displayed in Table 3.

Table 3. ANOVA decision measures.

Model Df AIC BIC logLik GD Chisq Chi.Df. Pr(>Chisq)
2 4 826.29 840.65 -409.14 818.29 167.43 1 <0.000
3 8 828.42 857.15 -409.21 812.42 5.87 4 0.21
4 9 830.24 862.56 -406.12 812.24 0.18 1 0.67

Acta Scientiarum. Health Sciences, v. 42, e49916, 2020
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Models 2, 3 and 4 are statistically equivalent but, considering the model selection criteria, AIC and BIC,
and the likelihood ratio test, Model 2 was chosen as the one the best explains the data. Another factor that
led it to be chosen is that Model 2 is more parsimonious than the other equivalent ones.

Table 4 presents estimations of fixed-effect parameters for Model 2 with their respective confidence
intervals.

Table 4. Estimations of fixed-effect parameters.

Variable Estimation Standard Error t Value Pr(>|t]) 95% CI
Intercept 41.232 0.49 84.43 <0.000 40.26 ;42.20
Time 0.462 0.03 15.96 <0.000 0.405 ; 0.519

The validity of Model 2 can be confirmed by verifying its assumptions, which were assessed through
diagnosis analysis.

Residual analysis

The level-1 and level-2 residuals of Model 2 were analyzed in an ascending manner. This analysis mode
is necessary because the residuals are inter-related, therefore confounding, and can make the model
diagnosis difficult if not analyzed correctly.

Residuals resulting from level 1 of least squares (LS) are not confounded with the residuals at level 2. By fitting
the LS regression models separately, random effects are treated as fixed. Figure 6 presents a graph for the level-1
residuals of the LS, Time. It is suggested that time may not be linearly related to weight. In order to address the
assumption of level-1 homoscedastic residuals, we used semi-standardized residuals, just as shown in (Snijders &
Berkhof, 2008). Figure 7 display this graph, which indicates no linearity violation by said assumption.

LS level-1 residuals

4
Time

Figure 6. Graph for level-1 LS residuals by time.

o s fosme o

Semi-standardized residuals

= em e s e o mm— ree
® some smes smemsnsss o mme se

Tir:ne
Figure 7. Graph for semi-standardized residuals by time.
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Figure 8 shows the normal quantile graph of the level-1 semi-standardized residuals; visually, the semi-
standardized residuals seem normal, thus showing no evidence against their normality assumption. The
normality assumption of the residuals was assessed by the normal quantile graph presented in Figure 9.

Sample Quantiles

s 2 - i 3 B

0
Theoretical Quantiles

Figure 8. Normal quantile graph for level-1 semi-standardized residuals.

Sample Quantiles

o
Theoretical Quantiles

Figure 9. Normal quantile graph for level-2 Bayes EB empirical residuals for the intercept.

The programming protocol proposed by (Buja et al., 2009) was also used to corroborate with the
verification of the assumption of level-1 homoscedastic residuals. It is displayed in Figure 10. It is not
possible to distinguish the real-data graph from the simulated graph. Therefore, the analysis can move on
without need for corrective measures.

The random effects, commonly referred to as level-2 effects, are defined by Zb, or b only. As previously
said, an ascending residual analysis is performed, so residuals EB at level 2 are used. This choice was made
because least square residuals are more variable than EB residuals, and EB estimates of b were obtained
directly.

Analysis of influential observations

This sub-section will present the use of diagnoses to assess changes in the components of variance
estimation using RVC, the fixed-effect estimation using Cook's distance, and fitted values using leveraging.
These quantities are used to assess influences in level-1 and level-2 units.

For fixed effects, we have two statistics commonly used to measure whether there has been any changes,
namely Cook's distance and MDFFITS, already mentioned. Figure 11 shows that no subject was identified by
both statistics (which present the same values) as influential in the fixed effects, considering an internal scale.
Figure 11 displays graphs for the abovementioned statistics in the form of dot plot and modified dot plot.
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Figure 10. Panel with the twenty graphs that present semi-standardized residuals from a hierarchical model in relation to the 'time
predictor variable. The plotting of the real data was randomly incorporated into nineteen simulated graphs.
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Figure 11. On the left, a dot plot for Cook's distance and MDFFITS; on the right, a modified dot plot for Cook's distance and MDFFITS,
both for level 2 (subject).
Acta Scientiarum. Health Sciences, v. 42, €49916, 2020




Statistical model for Trypanosoma cruzi Page 11 of 14

For the components of variance, we used the RVC, which was presented in equation 15; it measures
changes in the estimations of the A-th component of variance, 64, with and without unit i.

Table 5 illustrates the RVC, which presents as output a matrix where each column represents a
component of variance, 2, which is the residual variance, and D11, which is the variance associated with
the random intercept of the subjects. Note that the value farthest from zero in D11 for n=95, characterizing
this unit as influential in the component of variance.

Table 5. Fragment of the relative variance change matrix.

o? a2 D11 D11
10.014131707930-0.0160375532 580.0357492791870.0108306308
90.0048782209380.0116638987 660.035999932295-0.0780134695

280.014185000957-0.0113729758 850.03653966641140.0210282370
29-0.0054484352 860.0365806731

Figure 12 shows the modified dot plot of the level-2 RVC for the random intercept of the subjects. By
using the internal scale, n=95 was identified as influential unit, just as shown in Table 8, and is worth
attention.

Subject n=95 corresponds to the weight of subject 38 at the beginning of the treatment; as shown in
Table 6, said subject is the heaviest among the animals. This justifies the fact that it was identified as
influential in the graph of Figure 12.

within cutoff-

95- &

~0.05 0.00 0.05 0.10
RVC

Figure 12. Modified dot plot of the level-2 RVC for the subject intercept.

In the fitted values, in addition to checking how the observations of one same subject directly impact the
parameters of the adopted model, it was interesting to explore whether these observations are atypical in
relation to the fitted values and to the explanatory variables of such model. This exploration was done
through multiple statistics.

These statistics are displayed in Table 7, which reveals that subjects 9, 27, 44 and 56 have high leveraging in the
fixed effects of the fitted values. Likewise, these subjects are identified as having high leveraging in the random
effects, which is natural, since H2 depends on H1. Considering H2, all subjects present the same metrics, so all of
them have the same influence under the random effects of the fitted values of Model 2.
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Table 6. Subjects’ weight in the second week.

Group Subject Cage Group Subject Cage Group  Subject Cage
Gl 1 40.60 G3 20 39.80 G4 39 35.80
Gl 2 45;30 G3 21 39.30 G4 40 44.60
Gl 3 47.80 G3 22 40.30 G4 41 40.80
Gl 4 47.80 G3 23 38.90 G4 42 40.40
Gl 5 40.80 G3 24 40.60 G4 43 37.80
G2 6 39.90 G3 25 40.40 G4 44 43.90
G2 7 46.90 G3 26 41.30 G5 45 36.20
G2 8 50.40 G3 27 36.50 G5 46 39.10
G2 9 41.80 G3 28 42.30 G5 47 43.00
G2 10 41.20 G3 29 42.80 G5 48 44.10
G2 11 41.80 G3 30 47.10 G5 49 46.80
G2 12 43.70 G3 31 40.80 G5 50 38.10
G2 13 38.40 G4 32 40.10 G5 51 42.80
G2 14 49.00 G4 33 43.40 G5 52 47.90
G2 15 44.50 G4 34 38.10 G5 53 38.20
G2 16 38.60 G4 35 40.10 G5 54 37.80
G2 17 46.40 G4 36 43.20 G5 55 40.20
G2 18 39.00 G4 37 39.80 G5 56 44.40
G3 19 45.20 G4 38 50.80 G5 57 38.90

Table 7. Leverage points for the subjects' fixed effects, random effects and non-confounding random effects.

H H; H: H' H H; H: Hy'
10.2025 0.0073 0.1951 28.9860 30 0.2025 0.0073 0.1951 28.9860
20.2025 0.0073 0.1951 28.9860 31 0.2025 0.0073 0.1951 28.9860
90.9672 0.0173 0.9499 28.9860 38 0.2025 0.0073 0.1951 28.9860

100.2025 0.0073 0.1951 28.9860 39 0.2025 0.0073 0.1951 28.9860
150.2025 0.0073 0.1951 28.9860 44 0.9672 0.0173 0.9499 28.9860
160.2025 0.0073 0.1951 28.9860 45 0.2025 0.0073 0.1951 28.9860
270.9672 0.0173 0.9499 28.9860 56 0.9672 0.0173 0.9499 28.9860
280.2025 0.0073 0.1951 28.9860 57 0.2025 0.0073 0.1951 28.9860
290.2025 0.0073 0.1951 28.9860

Because the intercept of subject # 38 was identified as being influential in the components of variance,
and the observations for subjects # 9, 27, 44 and 56 proved to be influential in the fitted values, both were
removed, and the fitting of the chosen model was repeated in order to indicate whether there was any
significant change in the estimations of the parameters.

The estimations of the parameters without influential observations are displayed in Table 8.

Table 8. Estimations of the parameters without influential observations.

Variable Estimation Standard Error t Value Pr(>|t]) 95% CI
Intercept 41.275 0.510 80.82 <2e-16 40.25 ;42.29
Time 0.461 0.029 15.81 <2e-16 0.403;0.518

Note that, in comparison with Table 4, the parameters went through small changes. Therefore, since the
influential observations have little impact on the selected model, we chose to keep them in order to
preserve the data. Thus, we consider the initial estimations for Model 2.

Conclusion

The proposed Linear Mixed Model proved to be satisfactory for the dataset with hierarchical structure,
besides managing to describe the behavior of the subjects' weight during the experiment weeks. The Group
and Cage variables showed no significance for the Model; only the Time variable and the intercept (initial
weight) were capable of describing the weight of the individuals in the Model. Such an importance of the
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intercept in the Model is due to it being considered as random, since each subject presented a different
initial weight. Thus, the Model with only intercept and time was capable of describing the subjects' weight,
with acceptable estimations.

Taking the analysis results into account, we suggest, as recommendation, that researchers should start
their experiments with the subjects' initial weight as similar as possible and divide the subjects equally into
groups. It is also advisable to test new biotherapeutics for the treatment, as the ones analyzed in the present
study (G13cH, G6cH and G3cH) did not prove to be efficient.
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