

Nutrición Hospitalaria

ISSN: 0212-1611 ISSN: 1699-5198

Grupo Arán

Arias Téllez, María José; Soto Sánchez, Johana; Weisstaub, Sergio Gerardo Physical fitness, cardiometabolic risk and heart rate recovery in Chilean children Nutrición Hospitalaria, vol. 35, no. 1, 2018, January-February, pp. 44-49 Grupo Arán

DOI: https://doi.org/10.20960/nh.1323

Available in: https://www.redalyc.org/articulo.oa?id=309258226009

Complete issue

More information about this article

Journal's webpage in redalyc.org

Scientific Information System Redalyc

Network of Scientific Journals from Latin America and the Caribbean, Spain and Portugal

Project academic non-profit, developed under the open access initiative

Nutrición Hospitalaria

Trabajo Original

Pediatría

Physical fitness, cardiometabolic risk and heart rate recovery in Chilean children

Condición física, riesgo cardiometabólico y frecuencia cardiaca de recuperación en escolares chilenos

María José Arias Téllez¹, Johana Soto-Sánchez² and Sergio Gerardo Weisstaub³

¹Department of Nutrition. Faculty of Medicine. University of Chile. Santiago, Chile. ²Disciplinary Department of Physical Education. Faculty of Physical Activity and Sport Sciences. University of Playa Ancha. Valparaíso, Chile. ³Institute of Nutrition and Food Technology. University of Chile. Santiago, Chile

Abstract

Objective: To evaluate the association of physical fitness (PF) and cardiometabolic risk (CMR) with heart rate recovery time (\Delta HRR) in Chilean school aged children.

Methods: Cross-sectional study in 478 6-9 years old children participants. We measured weight, height and abdominal circumference. Fitness was measured using the 6MWT, grip strength and leap forward without impulse tests; PF z-scores were calculated. Heart rate (HR) was monitored and recorded during the 6MWT. ΔHRR was calculated as the difference between HR before and one minute after test; blood glucose, insulin, triglycerides and HDL-cholesterol were measured. Waist circumference, CMR-z and HOMA were calculated.

Results: Absolute \triangle HRR and CMR-z measures in normal weight children were lower than in obese children (p < 0.05 and p < 0.01, respectively). In obese children, \triangle HRR was also associated with grip strength/weight (r = -0.6, p < 0.01) and PF-z (r = -0.6, p = 0.04). Insulin and HOMA were significantly related to \triangle HRR (r = 0.3, p < 0.001), especially in overweight and obese children. \triangle HRR values were not associated with CMR-z.

Conclusions: A significant relationship between ΔHRR with fitness and insulin sensitivity in overweight and obese school children was found. We consider that these results support the need to measure these variables in overweight and obese children, in order to strengthen the need for early prevention.

Key words:

Fitness.
Cardiometabolic risk.
Heart rate recovery
time. School children
obesity.

Resumen

Objetivo: establecer la asociación entre la condición física (CF) y el riesgo cardiometabólico (RCM) con el tiempo de recuperación de la frecuencia cardiaca (ΔFCR) en escolares chilenos.

Métodos: estudio trasversal de 478 escolares de 6 a 9 años de ambos sexos. Se evaluó peso, talla y perímetro abdominal. Se midió CF global mediante T6M, fuerza de agarre y salto hacia adelante sin impulso; se calculó z-CF. Se midió frecuencia cardiaca (FC) con sensor durante el T6M. Calculamos ΔFCRecup como la diferencia entre la FC en reposo y la FC al minuto de finalizado el test, glicemia, insulinemia, trigliceridemia y colesterol-HD. Perímetro de cintura, z-RCM y HOMA fueron calculados.

Resultados: los escolares normopeso tuvieron menor Δ FCRecup y z-RCM que los obesos (p < 0,05 and p < 0,01 respectivamente). En niños obesos, el Δ FCRecup se asoció a fuerza de agarre/peso (r = -0,6, p < 0,01) y z-CF (r = -0,6, p = 0,04). Un menor Δ FCRecup se relacionó con menores niveles de insulinemia y HOMA (r = 0,3, p < 0,001), especialmente en el grupo de escolares con sobrepeso y obesidad. El Δ FCRecup no fue asociado a z-RCM.

Conclusión: existe asociación entre el ΔFCRecup y la condición física y sensibilidad insulínica en escolares con sobrepeso y/u obesidad, lo que refuerza la necesidad de la medición de esta variable en niños con sobrepeso y obesidad para una prevención temprana.

Palabras clave:

Condición física. Riesgo cardiometabólico. Frecuencia cardiaca de recuperación. Obesidad escolar.

Received: 05/06/2017 • Accepted: 22/08/2017

Financiación: Este trabajo pudo realizarse gracias al financiamiento otorgado por el Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT N°1100206) del Gobierno de Chile.

Arias Téllez MJ, Soto Sánchez J, Weisstaub SG. Physical fitness, cardiometabolic risk and heart rate recovery in Chilean children. Nutr Hosp 2018;35:44-49

DOI: http://dx.doi.org/10.20960/nh.1323

Correspondence:

Sergio Gerardo Weisstaub. Institute of Nutrition and Food Technology. University of Chile. El Líbano, 5524. Macul, Santiago de Chile e-mail: gweiss@inta.uchile.cl

INTRODUCTION

The prevalence of sedentary life in adults and children continues to rise globally. At least 60% of the world population does not perform the necessary physical activity to prevent obesity and related noncommunicable diseases (NCDs) (1). And Chile is not an exception. According to a 2012 report of physical fitness in schools, 70% of Chilean students in 8th grade had unsatisfactory aerobic fitness levels and lived predominantly sedentary lives (2), spending > 10 hours in activities of low energy expenditure and excessive time in front of a screen (television or computer) (3,4). Obesity and a sedentary lifestyle during childhood leads to poor physical fitness, increasing the risk for obesity, metabolic syndrome and cardiovascular disease in adulthood. These consequences have not been sufficiently studied in children. Thus we considered of interest to assess the association between physical fitness and cardiometabolic risk (CMR) to strengthen the call for more physical activity in children and adolescents. We further hypothesized that the evidence of prolonged heart rate recovery time in young children might motivate parents to act at an early stage, thus preventing further deterioration (5).

Heart rate recovery (ΔHRR) reflects the functional capacity of autonomic nervous system (6) and perhaps could be considered a measure autonomic dysfunction (7). Additionally, adults with high cardiorespiratory fitness recover faster than adults with lower level physical fitness (8). Metabolic risk factors are inversely associated with Δ HRR in healthy children and adolescents (9). The physiological mechanism underlying heart rate recovery after exercise in children operates faster than in adults; smaller heart size, relative muscle mass, perfusion distance and faster cardiorespiratory circulation time kinetics explain most of the difference (10). Simhaee et al. showed that children with high body mass index (BMI) have a longer heart rate recovery time and that those with faster recovery have more moderate to vigorous physical activity. Other studies show that there is a direct correlation between sedentary behavior and increased heart rate recovery (9). A cross-sectional study of 993 healthy adolescents of 12-19 years of age shows that heart rate recovery time was inversely related to metabolic risk factors (waist circumference, systolic blood pressure, plasma triglycerides, levels of C-reactive protein) and positively related to circulating HDL levels (11). Prolonged heart rate recovery time, which reflects a deteriorating physical condition, might be useful to detect children with elevated CMR. Thus, it is important to further investigate the link between heart rate recovery time and cardiovascular/metabolic risk in children (9). The aim of this cross-sectional study was to explore the association between physical fitness (6-minute walk test and muscle strength) and CMR, with heart rate recovery, in a group of Chilean schoolchildren aged 6-9 years.

MATERIALS AND METHODS

POPULATION

The study sample comprised 478 6-9 years-old children (n = 216 girls) participating in the Growth and Obesity Cohort Study (GOCS) conducted in Santiago, Chile. GOCS is a study of low-mid-

dle income Chilean children born in 2002-2003 (n = 1,196, $\sim 50\%$ girls), of normal gestation 37-42 weeks with birth weight $\geq 2,500$ g (12). The study was approved by the Ethics Committee of the Institute of Nutrition and Food Technology, University of Chile. All parents/legal guardians agreed to the participation of their children by signing the free informed consent form.

ASSESSMENT OF PHYSICAL FITNESS (PF)

Muscle strength was evaluated testing upper body strength (arms, handgrip strength) using a (Baseline $12\text{-}0286^\circ$) digital force gauge (13) and lower body strength (legs) was assessed by the standing long jump (14). Aerobic fitness was evaluated with the submaximal six minute walk test (6MWT) (15). Heart rate (HR) was measured and recorded with a heart rate monitor (Polar model FS1C): at rest before the test, then every three minutes, and finally one minute after test completion. Test results were expressed in meters traveled divided by the height of each child. The results of grip strength and jump were expressed in relative values, as the fat-free mass and length of stride of participants significantly modify the absolute values. We created an overall z-score of physical fitness (6MWTz/height + grip strength Z/weight + jump Z/height/3), and categorized "low" physical fitness as < -1 SD; "intermediate", between 1 and -1 SD; and "high", as > 1 SD.

NUTRITIONAL ASSESSMENT

All children were measured in duplicate for weight (light clothing), standing at the center of a Tanita Body Composition Analyser BC-418, with 100 g precision and 220 kg capacity; height (Frankfurt methodology using a portable SECA, 222 stadiometer with upper range 200 cm and divisions of 1 mm) (16); and waist circumference, with an automatic locking tape (SECA) measured above the rim of the iliac crest, through the navel (17). Average height and weight measurements were used to determine BMI.

BODY COMPOSITION

In a sub-sample of 122 boys and 92 girls, fat-free mass was estimated by total body water with bioelectrical impedance using Tanita BC-418MA, eight-electrode, hand-to-foot system, manufactured by Tanita Corporation (Tokyo, Japan) (18). We observed a high correlation between body weight and fat free mass (r = 0.95, p < 0.001).

CMR-z

We evaluated CMR based on glucose, fasting insulin levels and lipid profile. CMR defined $z \ge 1.29~(90^{th}~percentile)$, from the score of the variables included in the equation (waist circumference-Z + glucose-Z + insulin-Z + triglycerides-Z – HDL-Z/5) (19). We used USA cut-offs for waist circumference (17) and plasma lipids (20),

46 M. J. Arias Téllez et al.

and blood glucose and insulin based on Chilean data (21). Insulin and HOMA were classified based on the centile distribution of Chilean children 6-15 years (22). The 75th centile for Tanner 1 (HOMA: 2.1) was used as a cut-off to diagnose insulin resistance.

HEART RATE RECOVERY

We calculated a change in heart rate recovery (Δ HRR) as the difference between heart rate at the end of the 6MWT and after the one minute rest. Later, differences were classified in quartiles. The lowest quartile represented better recovery.

STATISTICAL ANALYSIS

After analyzing the distribution of variables, data were expressed with means \pm SD. Continuous variables were compared by sex and age range. To study the association between heart rate recovery and overall physical fitness (PF-z), insulin and HOMA, either Pearson or Spearman correlation coefficients were used. The associations between physical condition (lower, middle, top) and heart rate recovery (in quartiles) were evaluated with Chi-squared tests. Finally, the Student's t-test was used to compare the Δ HRR, according to presence or absence of insulin resistance, and ANOVA was used to assess whether heart rate recovery varied by nutritional status and CMR. A p value < 0.05 was considered to be statistically significant.

RESULTS

The characteristics of the sample are summarized in table I. A total of 478 students (54.8% boys) of 8.3 ± 0.7 years were included in this study. When analyzing the results by sex, girls had lower resting HR, HR maximum and z-PF (p < 0.001), and the like Δ HRR (beats/minute) than boys. The prevalence of obesity was significantly higher in boys than in girls (15% and 7%, respectively; p < 0.01).

After calculating cut-offs for Δ HRR quartiles (< 41, 41-58, 58-80 and > 80), no differences were found by sex or age range, although we found a higher % of girls in the top two quartiles Δ HRR (60% girls ν s 45% children). The Δ HRR was lower in schoolchildren with normal nutritional status compared with those who were obese (p = 0.03) (Fig. 1); no differences were found in analyzing the results by sex and age range.

The characteristics of the physical fitness tests are summarized in table II. In the jumping test, adjusted for height, boys jumped significantly more than girls (94 νs 84 cm, p < 0.01), a difference that was not maintained in tests of grip strength/weight and 6MWT/ height. Studying the data by nutritional status, normal weight subjects scored better on tests of muscle strength and aerobic capacity than those who were overweight or obese (p < 0.001). In analyzing the results of physical fitness according to z-FP, 85% of schoolchildren had an intermediate fitness level (+/- 1 SD).

Table III shows the cardiovascular and metabolic profile and CMR score by sex and nutritional status. There were statistically significant differences in blood glucose and HDL-C by sex. Nutritional status, waist circumference, triglycerides, insulin and HOMA were also significantly different.

Thirteen and seventeen percent of schoolchildren had hyperinsulinemia and altered HOMA, respectively; 44% of them had high CMR scores ($\geq z$: 1.29); and no differences by sex or age were found. Children with overweight and obesity had higher CMR-z than normal children (Table III). However, no relationship between Δ HRR and CMR-z were observed, except for z value for insulin and HOMA, in this group. (r = 0.4; p < 0.001). When comparing schoolchildren with and without insulin resistance, we noted that this condition was associated with increased Δ HRR (72.4 vs58.2 l/min; p < 0.001) (Fig. 2).

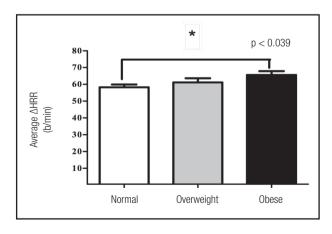
No statistical relationship was found between Δ HRR and -PF z (lower, middle or high). Instead, an association was observed if Δ HRR and strength grip/weight (r = -0.3; p < 0.01) were included, especially in 6-7 years old obese children (r = -0.6; p < 0.01). Finally, in the same group, higher Δ HRR was associated with a lower z-PF (r = -0.6, p = 0.04).

Table I. Basic characteristics of the sample

	Boys (n = 262)		Girls (r		
	6-7 years	8-9 years	6-7 years	8-9 years	р
	(n = 84)	(n = 178)	(n = 78)	(n = 138)	
Age (years)	7 .5 ± 0.3	8.7 ± 04	7.5 ± 0.3	8.5 ± 0.4	b,c
Weight (kg)	26.2 ± 4.7	33.0 ± 7.7	26.7 ± 6.6	31.9 ± 7.5	b,c
Height (m)	1.2 ± 0.07	1.3 ± 0.07	1.2 ± 0.7	1.3 ± 0.8	b,c
BMIz	0 .9 ± 1.1	1.1 ± 1.2	0.7 ± 1.0	0.8 ± 1.1	a
Resting heart rate (I/min)	80.4 ± 8.3	77.7 ± 7.8	81.6 ± 8.5	81.5 ± 9.7	a,b
Max heart rate (I/min)	162.7 ± 18.2	142.6 ± 18.8	166.1 ± 18.1	157.0 ± 20.0	a,b,c
ΔHRR (b/min)	42.4 ± 19.2	71.0 ± 23.6	45.5 ± 16.5	67.1 ± 26.4	b,c
Physical fitness-Z score	0.2 ± 0.7	0.1 ± 07	-0.16 ± 0.6	-0.09 ± 0.6	a
CMR-z score	1.2 ± 0.1	1.1 ± 0.09	1.2 ± 0.1	1.4 ± 0.1	NS

p < 0.01. BMI: body mass index; ΔHRR: change in heart rate recovery; a: differences by sex; b: differences by age range in boys; c: differences by age range in girls.

Table II. Physical fitness characteristics by sex and age range


	Boys (n = 262)		Girls (r		
	6-7 years (n = 84)	8-9 years (n = 178)	6-7 years (n = 78)	8-9 years (n = 138)	р
Jump (cm)	113.7 ± 16.4	124.3 ± 19.1	110.0 ±14.3	102.3 ± 17.2	a,b,c
Jump/height (cm)	93.0 ± 14.5	94.4 ± 15.1	83.5 ± 12.1	84.1 ± 13.8	a
Grip strength (kg)	11.3 ± 2.3	12.5 ± 2.3	10.6 ± 2.0	12.0 ± 2.6	a,b,c
Grip strength/weight (kg)	0.4 ± 0.1	0.3 ± 0.1	0.4 ± 0.08	0.3 ± 0.09	b, c
6MWT (m)	617.0 ± 50.0	624.3 ± 47.3	604.3 ± 49.7	625.5 ± 45.2	С
6MWT/height (m)	504.0 ± 44.1	474.0 ± 44.5	491.0 ± 47.1	477.0 ± 42.0	b,c *

p < 0.01; *p 0.02. 6MWT: 6 minute walking test; a: differences by sex; b: differences by age range in boys; c: differences by age range in girls.

Table III. Cardiometabolic profile, HOMA and CMR-z score by sex and nutritional status

	Boys (n = 262)			Girls (n = 216)				
	Normal (n = 122)	Overweight (n = 57)	Obese (n = 74)	P	Normal (n = 113)	Overweight (n = 61)	Obese (n = 35)	p
WC (cm)	57.3 ± 3.4	62.8 ± 3.9	73.4 ± 6.5	b,c*	56.9 ± 4.1	65.7 ± 4.6	72.5 ± 5.5	b,c
Triglycerides (mg/dl)	81.3 ± 37.5	88.2 ± 29.4	106.2 ± 52.5	b,c*	86.1 ± 32.6	93.2 ± 45.8	129.9 ± 65.9	b,c
Insulinemia (uUI/mI)	7.0 ± 2.3	7.2 ± 3.2	8.5 ± 3.6	b,c*	6.8 ± 2.4	7.7 ± 2.8	8.7 ± 3.1	b,d**
HDLc (mg/dl)	51.5 ± 13.3	50.0 ± 11.9	48.5 ± 10.7	d**	48.3 ± 12.3	44.5 ± 11.4	44.8 ± 10.6	d**
Glicemia (mg/dl)	90.5 ± 6.3	91.1 ± 6.3	92.3 ± 6.8	d**	86.8 ± 6.7	87.8 ± 6.8	89.9 ± 8.1	d**
HOMA	1.6 ± 0.6	1.6 ± 0.8	2.0 ± 0.9	b,c	1.5 ± 0.5	1.7 ± 0.7	2.0 ± 0.8	b**
CMR-z	0.6 ± 1.0	1.1 ± 0.8	2.1 ± 1.2	a,b,c	0.8 ± 0.8	1.7 ± 1.0	2.8 ± 1.1	a,b,c

p < 0.01; *p = 0.04; **p < 0.001. WC: waist circumference; CMR-z: cardiometabolic risk score; a: differences between normal weight and overweight; b: differences between normal weight and obese; c: differences between overweight and obesity; d: differences by sex.

Figure 1. Mean Δ HRR by nutritional status in schoolchildren aged 6-9 years. Anova, Bonferroni. p value represents trend between groups. Average Δ RHR: normal (58.2 \pm 25.8 l/min), overweight (61.2 \pm 26.8 l/min), obesity (66.0 \pm 23.4).

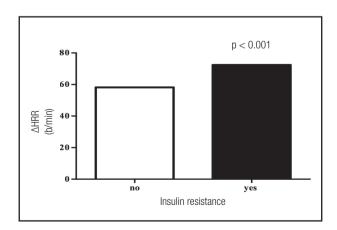


Figure 2. \triangle RHR and insulin resistance in schoolchildren aged 6 to 9 years. Student's t-test. ρ value represents trend between groups.

48 M. J. Arias Téllez et al.

DISCUSSION

Our study showed that overall PF-z, grip strength, HOMA and insulinemia were significantly associated with Δ HRR in overweight and obese children.

An important point to consider when interpreting the results of this study is the large variability in HR by age. This variability is due to a progressive maturation of the autonomic nervous system between three and six years old children. During this period, there is a tendency to increase sympathicotonia (23-25). Over-activation of the sympathetic nervous system in obesity, hypertension and hyperinsulinism (26,27) could be explained by an increase in free radicals, a decrease in nitric oxide, and an increase in both tubular sodium reabsorption and arterial vasoconstriction (28). Our results showed fluctuations in heart rate at rest and after the 6MWT by sex and age range, and an association between insulin levels, HOMA and waist circumference with Δ HRR in children with overweight/obesity. Wilks et al. reported that lifestyle changes for four to six weeks in children and adolescents with overweight/ obesity would produce a significant improvement in heart rate recovery, although this recovery would not be associated with an improvement in cardiometabolic risk factors (29).

We find that higher ΔHRR was associated with a lower overall physical fitness (z-PF) in obese children aged six to seven years, a difference that was not observed in other children. This could be possibly explained by the fact that this group is more susceptible to develop sympathicotonia due to the lower age range. Furthermore, the nutritional state of these children is associated with greater cardiovascular and metabolic risk (9). The association is not expressed in the same way when analyzing separately the ratio of heart rate recovery with different fitness tests. In our study, ΔHRR was associated only with better grip strength/weight. This result is consistent with the fact that a better physical fitness in children is usually associated with greater muscle strength. Artero et al. found, in a sample of 709 adolescents, that muscle strength was associated with better physical condition and lower cardiometabolic risk (30). In this regard, this finding and our work complement previous studies in which the results showed that heart rate recovery was a marker of aerobic fitness, not related with muscle strength (31). On the other hand, the lack of association with the 6MWT could be because the latter would have a low correlation with maximum oxygen consumption (VO₂max), assessing functional capacity and not fitness aerobic. Morinder et al. found a low correlation between the traveled distance by the 6MWT and VO₂max in 8-16 years obese children (32). Other authors obtained similar results in obese children and adolescents by comparing the correlation of 6MWT and Cooper tests with VO₂max (33).

In analyzing our results related to ΔHRR, nutritional status and cardiometabolic risk, it is important to consider that 23% of subjects were obese, similar to that reported by the Board of School Aid and Scholarships Chile (34). Nearly half (48%) of our sample had CMR, close to the prevalence of insulin resistance (53%) described in Chilean children and adolescents between four and 16 years (35). In our study, children with insulin resistance had sig-

nificantly higher Δ HRR, results similar to those of KuoHsu-Ko et al. in a sample of adolescents and adults with insulin resistance (36).

The differences found in Δ HRR by nutritional status were similar to those described in American obese schoolchildren (9). Another study in healthy adolescents and adults between 12 and 49 years showed that those who had slower heart rate recovery had higher BMI (36).

A lack of association was found between Δ HRR and CMR, which is consistent with other studies. In a sample of US adolescents (NHANES III), Liny et al. found, after a test of aerobic submaximal fitness, that heart rate recovery per minute was not associated with overall CMR, even if it was associated with some components of the metabolic syndrome (11). This result could be explained because the low demand of the submaximal test does not generate an increase of maximum heart rate or a change in Δ HRR, so it cannot detect individuals with higher CMR. In a sample of 1,395 children of both sexes, aged 9-12 years old, evaluated with a maximal test of short duration (three minutes), Laguna M. et al. found a significant association between blood pressure and Δ HRR in younger subjects and no association with global CMR (37).

One limitation of this study was the choice of the 6MWT. Future research should consider using the Navette test, an instrument with strong evidence to determine aerobic capacity in children and adolescents (38). Further, the lack of previous data related to the physical fitness of Chilean children could have influenced the overall classification and analysis of PF-z, and thus the absence of an association with heart rate recovery. In addition, not having measured blood pressure could partly explain the lack of association between CMR and Δ HRR, which however was associated with levels of insulin and HOMA. These findings support the need to improve efforts to reduce the high prevalence of overweight and obesity in schoolchildren aged 6-7 years. We can conclude that in overweight and obese children, Δ HRR could be a sensitive method for evaluating physical fitness and metabolic risk.

ACKNOWLEDGMENTS

Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile.

REFERENCES

- Second National Health Survey in Chile 2009-2010. 2011. Cited August 2017. Available from: http://web.minsal.cl/portal/url/item/bcb03d7bc28b64dfe040010165012d23.pdf
- Physical Education Results Report 8th basic 2012. System for Measuring the Quality of Education 2012. Cited August 2017. Available from: http:// archivos.agenciaeducacion.cl/biblioteca_digital_historica/resultados/2013/ result8b_edfisica_2013.pdf.
- Kain J OS, Castillo M, Vio F. Validation and application of instruments to evaluate educational interventions in obesity of schoolchildren. Rev Chil Pediatr 2001;72(4):308-18.
- Burrows AR, Diaz BE, Sciaraffia MV, Gattas ZV, Montoya CA, Lera ML. Dietary intake and physical activity in school age children. Rev Med Chil 2008;136(1):53-63.

- Biro FM, Wien M. Childhood obesity and adult morbidities. Am J Clin Nutr 2010;91(5):1499s-505s.
- Fernando RJ, Ravichandran K, Vaz M. Aerobic fitness, heart rate recovery and heart rate recovery time in Indian school children. Indian J Physiol Pharmacol 2015;59(4):407-13.
- Prado DM, Silva AG, Trombetta IC, Ribeiro MM, Guazzelli IC, Matos LN, et al. Exercise training associated with diet improves heart rate recovery and cardiac autonomic nervous system activity in obese children. Int J Sports Med 2010;31(12):860-5.
- Mahon AD, Anderson CS, Hipp MJ, Hunt KA. Heart rate recovery from submaximal exercise in boys and girls. Med Sci Sports Exerc 2003;35(12):2093-7.
- Simhaee D, Corriveau N, Gurm R, Geiger Z, Kline-Rogers E, Goldberg C, et al. Recovery heart rate: An indicator of cardiovascular risk among middle school children. Pediatr Cardiol 2013;34(6):1431-7.
- Falk B, Dotan R. Child-adult differences in the recovery from high-intensity exercise. Exerc Sport Sci Rev 2006;34(3):107-12.
- Lin LY, Kuo HK, Lai LP, Lin JL, Tseng CD, Hwang JJ. Inverse correlation between heart rate recovery and metabolic risks in healthy children and adolescents: Insight from the National Health and Nutrition Examination Survey 1999-2002. Diabetes Care 2008;31(5):1015-20.
- Corvalan C, Uauy R, Stein AD, Kain J, Martorell R. Effect of growth on cardiometabolic status at 4 y of age. Am J Clin Nutr 2009;90(3):547-55.
- Milliken LA, Faigenbaum AD, Loud RL, Westcott WL. Correlates of upper and lower body muscular strength in children. J Strength Cond Res 2008;22(4):1339-46.
- Castro-Pinero J, Ortega FB, Artero EG, Girela-Rejón MJ, Mora J, Sjostrom M, et al. Assessing muscular strength in youth: Usefulness of standing long jump as a general index of muscular fitness. J Strength Cond Res 2010;24(7):1810-7.
- ATS statement: Guidelines for the six-minute walk test. Am J Respir Crit Care Med 2002;166(1):111-7.
- Lundstrom A, Lundstrom F. The Frankfort horizontal as a basis for cephalometric analysis. Am J Orthod Dentofacial Orthop 1995;107(5):537-40.
- Fernández JR, Redden DT, Pietrobelli A, Allison DB. Waist circumference percentiles in nationally representative samples of African-American, European-American, and Mexican-American children and adolescents. J Pediatr 2004;145(4):439-44.
- Aguirre CA, Salazar GD, López de Romana DV, Kain JA, Corvalan CL, Uauy RE. Evaluation of simple body composition methods: Assessment of validity in prepubertal Chilean children. Eur J Clin Nutr 2015;69(2):269-73.
- Brage S, Wedderkopp N, Ekelund U, Franks PW, Wareham NJ, Andersen LB, et al. Objectively measured physical activity correlates with indices of insulin resistance in Danish children. The European Youth Heart Study (EYHS). Int J Obes Relat Metab Disord 2004;28(11):1503-8.
- Daniels SR, Greer FR. Lipid screening and cardiovascular health in childhood. Pediatrics 2008;122(1):198-208
- Barja S, Arnaiz P, Domínguez A, Villarroel L, Cassis B, Castillo O, et al. Normal plasma insulin and HOMA values among Chilean children and adolescents. Rev Med Chil 2011;139(11):1435-43.
- 22. Burrows AR, Leiva BL, Burgueno AM, Maggi MA, Giadrosic RV, Díaz BE, et al. Insulin sensitivity in children aged 6 to 16 years: Associa-

- tion with nutritional status and pubertal development. Rev Med Chil 2006;134(11):1417-26.
- Finley JP, Nugent ST. Heart rate variability in infants, children and young adults. J Auton Nerv Syst 1995;51(2):103-8.
- Yeragani VK, Sobolewski E, Kay J, Jampala VC, Igel G. Effect of age on longterm heart rate variability. Cardiovasc Res 1997;35(1):35-42.
- Goto M, Nagashima M, Baba R, Nagano Y, Yokota M, Nishibata K, et al. Analysis of heart rate variability demonstrates effects of development on vagal modulation of heart rate in healthy children. J Pediatr 1997;130(5):725-9.
- Tentolouris N, Liatis S, Katsilambros N. Sympathetic system activity in obesity and metabolic syndrome. Ann NY Acad Sci 2006;1083:129-52.
- Emdin M, Gastaldelli A, Muscelli E, Macerata A, Natali A, Camastra S, et al. Hyperinsulinemia and autonomic nervous system dysfunction in obesity: Effects of weight loss. Circulation 2003;103:513-9.
- Moreira MC, Pinto IS, Mourao AA, Fajemiroye JO, Colombari E, Reis AA, et al. Does the sympathetic nervous system contribute to the pathophysiology of metabolic syndrome? Front Physiol 2015;6:234.
- Wilks DC, Rank M, Christle J, Langhof H, Siegrist M, Halle M. An inpatient lifestyle-change programme improves heart rate recovery in overweight and obese children and adolescents (LOGIC Trial). Eur J Prev Cardiol 2014;21(7):876-83.
- Artero EG, Ruiz JR, Ortega FB, España-Romero V, Vicente-Rodríguez G, Molnar D, et al. Muscular and cardiorespiratory fitness are independently associated with metabolic risk in adolescents: The HELENA study. Pediatr diabetes 2011;12(8):704-12.
- 31. Corte de Araujo AC, Roschel H, Picanco AR, Do Prado DM, Villares SM, De Sa Pinto AL, et al. Similar health benefits of endurance and high-intensity interval training in obese children. PloS One 2012;7(8):e42747.
- Morinder G, Mattsson E, Sollander C, Marcus C, Larsson UE. Six-minute walk test in obese children and adolescents: Reproducibility and validity. Physiother Res Int 2009;14(2):91-104.
- Calders P, Deforche B, Verschelde S, Bouckaert J, Chevalier F, Bassle E, et al. Predictors of 6-minute walk test and 12-minute walk/run test in obese children and adolescents. Eur J Pediatr 2008;167(5):563-8.
- Chile SABaSo. Prevalence of obesity in Elementary School students. Nutrition Map 2013. Cited August 2017. Available from: www.junaeb.cl/wp-content/ uploads/2013/03/Informe-Mapa-Nutricional-2013.pdf.
- Burrows AR, Leiva BL, Weistaub G, Ceballos SX, Gattas ZV, Lera ML, et al. Prevalence of metabolic syndrome in a sample of Chilean children consulting in an obesity clinic. Rev Med Chil 2007;135(2):174-81.
- Kuo HK, Gore JM. Relation of heart rate recovery after exercise to insulin resistance and chronic inflammation in otherwise healthy adolescents and adults: Results from the National Health and Nutrition Examination Survey (NHANES) 1999-2004. Clin Res Cardiol 2015;104(9):764-72.
- Laguna M, Aznar S, Lara MT, Lucia A, Ruiz JR. Heart rate recovery is associated with obesity traits and related cardiometabolic risk factors in children and adolescents. Nutr Metab Cardiovasc Dis 2013;23(10):995-1001.
- Castro-Pinero J, Artero EG, España-Romero V, Ortega FB, Sjostrom M, Suni J, et al. Criterion-related validity of field-based fitness tests in youth: A systematic review. Br J Sports Med 2010;44(13):934-43.