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ABSTRACT: 
In this study, an efficient methodology is proposed for robust design
					optimization by using preference function and fuzzy logic concepts. In this
					method, the experience of experts is used as an important source of information
					during the design optimization process. The case study in this research is wing
					design optimization of Boeing 747. Optimization problem has two objective
					functions (wing weight and wing drag) so that they are transformed into new
					forms of objective functions based on fuzzy preference functions. Design
					constraints include transformation of fuel tank volume and lift coefficient into
					new constraints based on fuzzy preference function. The considered uncertainties
					are cruise velocity and altitude, which Monte Carlo simulation method is used
					for modeling them. The non-dominated sorting genetic algorithm is used as the
					optimization algorithm that can generate set of solutions as Pareto frontier.
					Ultimate distance concept is used for selecting the best solution among Pareto
					frontier. The results of the probabilistic analysis show that the obtained
					configuration is less sensitive to uncertainties.
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			INTRODUCTION

			Engineering design cycle is a process of the subsystems formulation to meet human
				needs. To increase design performance, it is necessary to use the design
				optimization methodologies in the systems design (Hao
						et al. 2015). Complex systems usually have multiple
				conflicting disciplines, which difficult its compromise. Moreover, sequential or
				single objective optimization will result in low-efficiency solutions or even
				non-optimal solutions (Huang et al.
					2008). Multi-objective optimization is a method that optimizes a group of
				objective functions simultaneously (Huang et
						al. 2006).

			In today's world, systems should also be robust in the face of uncertainties. In
				other words, the performance of the optimal solutions must have fewer changes
				because of the variations of design variables and operational conditions. So a
				measure of robustness should be introduced during optimization and design (Gaspar-Cunha and Covas 2008). Taguchi introduces
				robust design at first to enhance product quality so that the quality is not
				sensitive to variations (Wan et al.
					2011). The purpose of this method is to minimize the deviation of system
				response due to uncertainties. In classical design methods for considering
				uncertainty in a system design, the designers apply drastic tolerances and large
				safety factors (Jun et al.
					2011). Assigning the values of these parameters is based on past
				experience of designer and has these drawbacks: a) specifying the values of safety
				factor for new systems and materials without any experience is difficult; b) in the
				design process, it is not easy to measure robustness and reliability, so the
				designer cannot compare the system from standpoint of resistant and optimality; c)
				using this method in the optimization problem limits design space and therefore the
				new design is very conservative. So with attention to these drawbacks, it is
				necessary to use robust design optimization for considering uncertainty in system
				design (Roshanian et al.
					2012).

			Fuzzy logic is a methodology based on the experience of human and has been developed
				to deal with vague and uncertain systems. Fuzzy theory is a systematic process to
				convert the experience of human into nonlinear mapping and it is an important aspect
				of this methodology. This technique is used as a modeling method for complex
				systems. The main core of a fuzzy system is a set of "If-then" rules obtained from
				the experience of experts. Some of the advantages that make this theory as an
				efficient technique in engineering applications are proper simplicity and speed, no
				need for any complex calculations, finding acceptable answers in a short period of
				time, and using the experience of experts (Wang
					1997).

			
				Jaeger et al. (2013)
				proposed a new method for considering uncertainties in the aircraft conceptual
				design phase. This method is based on the uncertainties distribution so that their
				standard deviations are variable. Uncertainties have been considered in design and
				model variables as probabilistic setting and the uncertainties update from the
				historical database at each step of the optimization process.

			
				Shah et al. (2015) presented
				a robust optimization algorithm for airfoil design under mixed uncertainties
				(inherent and epistemic) using by the multi-fidelity approach. This method uses
				stochastic expansions to generate surrogate models. To reduce the computational
				cost, the high-fidelity CFD model is used. Probabilistic modeling and interval
				analysis methods are combined to uncertainty modeling. Dashilewicz et al. (2011) studied the
				disciplinary uncertainty effects in multi-objective optimization for aircraft
				conceptual design. By analyzing the Pareto frontier, the decision makers can judge
				between the expected performance and resistance so they can determine regions of
				design space that are proper or dangerous.

			
				Zhang et al. (2012) studied
				an effective computational approach for aerodynamic robust optimization under
				aleatory and epistemic uncertainties using by stochastic expansions that are based
				on non-intrusive polynomial method. The stochastic surfaces are used as surrogates
				in the optimization process. The stochastic surface is a function of the design
				variables and uncertain variables. In this paper, two stochastic optimization
				formulations have been investigated: a) optimization under pure aleatory
				uncertainty; and b) optimization under mixed uncertainty. Mach number is the
				aleatory uncertain variable, and a k factor multiplied by the turbulent eddy
				viscosity coefficient is the epistemic uncertain variable.

			
				Messac and Ismail-Yahaya (2002) developed a
				physical programming-based robust design optimization (PP-RDO) method. This
				technique is based on physical programming and robust design optimization methods
				that allow the designer to express robustness wishes in physical meaningful terms.
					Du and Wang (2016) discussed a method with
				dynamic surrogates models based on fuzzy clustering analysis to improve the
				efficiency of uncertainty analysis and reduce the effect of error propagation on
				uncertainty models. Fuzzy clustering analysis applied to the sample points before
				the generation of surrogate models. The results show that the amount of uncertainty
				analysis can be decreased effectively, while the optimized performance can satisfy
				the reliability and robustness.

			
				Bashiri and Hosseininezhad (2009) proposed a
				methodology for optimizing multi-response surface in robust design that optimizes
				mean and variance by applying fuzzy set theory. A fuzzy programming method is
				expressed to solve the problem by applying the degree of satisfaction from each
				objective. Park et al.
					(2011) proposed the reliability-based design optimization (RBDO) and
				possibility-based design optimization (PBDO) methods to handle uncertainties in
				multidisciplinary design optimization when low fidelity analysis tools are used. The
				RBDO method uses probability density function and PBDO method uses fuzzy input for
				uncertain parameters.

			
				Zhao and Xue (2010) studied a new parametric
				design approach with non-deterministic neural network and fuzzy relationships for
				considering uncertainties. In this paper, probabilistic uncertainties are presented
				by neural network relationships and possibility uncertainties are presented by fuzzy
				relationships. This new parametric design method has been used in the design of a
				solid oxide fuel cell system.

			In this study, a robust design optimization methodology based on the concepts of
				fuzzy logic and preference function is proposed. Preference function is a function
				that shows the satisfactory of system response. In this paper, the preference
				functions of objective functions and constraints are formed using fuzzy logic. Using
				the experience and knowledge of experts (designers) with preference functions
				definition during design optimization is one of the great advantages of this method,
				used for wing robust optimization of Boeing 747. The optimization algorithm is the
				non-dominated sorting genetic algorithm (NSGA). Objective functions are wing weight
				and wing drag force, and lift coefficient and the volume of fuel tank are
				constraints of the optimization problem. Cruise altitude and velocity are
				uncertainties modeled by Monte Carlo Simulation (MCS) method. Finally, a comparison
				is done between optimum, robust, and baseline configurations from the optimally and
				robustness viewpoint.

		

		
			PROPOSED METHODOLOGY FOR ROBUST DESIGN OPTIMIZATION

			The proposed method is presented in Fig. 1. This
				method consists of six blocks that include: definition of objective functions,
				constraints and parameters (block 1); uncertainty simulation (block 2); modeling of
				objective functions and constraints and calculation of the mean and standard
				deviation (block 3); fuzzy performance function (block 4); optimization (block 5);
				and final solution selection (block 6).
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Figure 1



Flowchart of the proposed methodology.













			

			
				PARAMETER DEFINITION

				For any optimization objective functions, design variables, design parameters,
					and the constraints of optimization problem must be determined at first. Design
					variables are parameters that describe the obtained design from optimization
					algorithm. Design parameters are parameters which are dependent on design
					variables and these parameters must be calculated to compute the objective
					functions and constraints. The objective functions and constraints are criteria
					dependent on design variables and/or design parameters.

			

			
				UNCERTAINTY SIMULATION AND MODELING OF OBJECTIVE FUNCTIONS AND
					CONSTRAINTS

				There are many approaches to modeling uncertainty, from which one of the most
					famous is MCS. This method was developed in 1940 by Stan Ulam and John Von
					Neumann and is a computational algorithm that performs repetitive sampling and
					simulation. Unlike the many probability methods, this technique needs to a
					little information about the statistic and probability. If the sufficient number
					of sample points to be used, the results of MCS are completely accurate. So this
					method is a standard reference for evaluating other methods (Yao et al. 2011). The
					flowchart of MCS is shown in Fig. 2.
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Figure 2



Monte Carlo Simulation.













				

				To do simulations for different sample points, the modeling of objective
					functions and constraints should be performed at first. After simulation, the
					mean and standard deviation of objective functions and constraints are produced.
					These values are inputs to the fuzzy system to form preference functions (see
						Fig. 1).

			

			
				FUZZY PREFERENCE FUNCTION

				
					Brief Description of Fuzzy Logic

					Fuzzy systems are knowledge-based systems. The core of a fuzzy system is a
						knowledge base that has been consisted of fuzzy If-Then rules. A fuzzy
						If-Then rule is an If-Then statement in which some words are characterized
						by continuous membership functions. For example, the following statement is
						a fuzzy If-Then rule:

					
						
							If the speed of a car is high, Then apply less force to the
								accelerator

						
					

					where the words "high" and "less" are characterized by the membership
						functions (Wang 1997). The general
						configuration of a fuzzy system is shown in Fig. 3.
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Figure 3



Basic configuration of a fuzzy system.













					

					It is composed of four main parts: fuzzifier, fuzzy rule base set, fuzzy
						inference engine, and defuzzifier. Fuzzy sets consist of a number of
						so-called membership functions to describe the fuzziness of variables. The
						fuzzifier component converts crisp input values into fuzzy sets. Fuzzy sets
						enter the inference engine as inputs. The decisions are made upon the fuzzy
						If-Then linguistic rule base set. The inference engine as a mathematical
						mechanism is applied to manipulate fuzzy sets and aggregate the rules to
						make the decisions. The outputs of the inference engine are fuzzy, but the
						system output must be crisp. Therefore, the defuzzifier part maps the fuzzy
						sets to crisp outputs (Oroumieh et
								al. 2013).

				

				
					Preference Function Creation

					In this block, the mean value (µ) and standard
						deviation (σ) of objective functions and constraints
						are transformed into the new objective functions and new constraints as
						preference functions. The reason for using this function is that experience
						of the designer (or experts) can be used during design optimization (by
						expressing his or her preferences relative to objective functions and
						constraints) and increases the ability to achieve more practical solutions.
						To create the preference function, the designer defines satisfaction degrees
						for any objective function (and constraint) in the horizontal axis. In other
						words, the designer classifies horizontal axis to different regions in terms
						of satisfaction of objective function (and constraint) (see Fig. 4). Then the vertical axis, which
						indicates the preference function, is divided into several regions same as
						the horizontal axis. It is worth noting that the preference function value
						is between zero and one, and maximization of preference function (the
						greatest satisfaction degree) is the purpose of optimization. In this study,
						the relationship between horizontal and vertical axis is created using fuzzy
						logic. On the other hand, the preference functions are generated using fuzzy
						logic. Fuzzy logic is used because we can also benefit from the experience
						of experts in the creation of fuzzy rules (in addition to determining the
						satisfaction degrees for any objective function and constraint). In other
						words, we can use designer experiences in design optimization using the
						fuzzy preference function definition by two methods:

					
						
	
								Expressing the satisfaction degrees for objective functions and
									constraints.

							

	
								Creating of fuzzy rules.
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Figure 4



An example of preference function for minimization
									problem













					

				

			

			
				OPTIMIZATION ALGORITHM AND THE FINAL SELECTION METHOD

				Genetic algorithms are stochastic optimization algorithms suitable for
					optimization of complex problems with unknown search space. These algorithms are
					programming techniques that use genetic evolution as a pattern of problems
					solution. This is a global optimization algorithm based on the principle of
					survival of fittest, natural selection mechanism, and reproduction. Because of
					the genetic algorithm's ability in solving complex problems, it is selected as
					the optimization algorithm. Since we are dealing with more than one objective
					function, an improved version of GA called non-dominated sorting genetic
					algorithm is used in this study. This algorithm finds set of optimal solutions
					(Pareto frontiers) by adding an essential operator to general single objective
					GA. Figure 5 shows the flowchart of this
					algorithm (Babaei et al.
						2015).

				
					
[image: 2175-9146-jatm-10-e3618-gf05.jpg]


Figure 5



The flowchart of NSGA algorithm.













				

				Since the solutions in the Pareto frontier don't have the preference to each
					other completely, the concept of utopian distance is used in this study to
					select the final solution. This distance defines as follows (Eq. 1):
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				where: dut
 is utopian distance; i is
					the number of objective function; and fut
 is the
					utopian value obtained from a single objective optimization for each objective
					function. Among the Pareto frontier, the solution that has the lower value of
							dut
 is the best solution because the
					standpoint of objective functions is closest to the utopian values.

			

			
				APPLICATION OF THE PROPOSED METHOD FOR WING ROBUST DESIGN
					OPTIMIZATION

				
					Definition of Objective Functions and Design Variables

					In this study, two design optimizations have been done for wing optimization,
						which includes: deterministic optimization (DO), and robust optimization
						(RO). In the first case, the problem can be formulated as follows (Eq. 2):
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					where: WW
 is wing weihgt,
							Drcr
 is wing cruise drag, V
						is fuel tank volume, and CL
 is lift
						coefficient.

					In the second case, the problem can be formulated as follows (Eq. 3): 
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					where: FWw
, FDrcr
,
						and FCL
 are the preference functions of wing
						weight, wing cruise drag, fuel tank volume, and lift coefficient,
						respectively.

					Because the main purpose of this paper is to present a new method for robust
						design and for simpler presentation of the application of the proposed
						method, only three variables are considered. Wing root chord
								(Cr
), wingspan (b), and
						sweepback angle (Λ0.5) are considered as design variables
						for both optimizations. Numerical ranges of these variables have been shown
						in Table 1.

					

Table 1


Limits for design parameters.
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				UNCERTAINTY SIMULATION

				Aircraft design usually is accomplished based on a certain mission. Often every
					aerial vehicle is designed for a specific mission with certain cruise altitude
					and speed. It is very economical that one aircraft can be optimum or
					near-optimum for other missions. In other words, it is suitable that one
					aircraft is designed for a range of cruise altitude or speed. This topic could
					also be the case for transport jet. Therefore, cruise altitude and flight speed
					are considered as uncertainties in this research. A normal distribution is used
					to generate sampling points (X = Xm +
						(Δx/3) randn
					(1,N)). In this study, the values of
						hm
, Vm
,
							Δhm
 and ΔV
					are considered 25000 ft, 762 ft/s, 10000 ft and 182 ft/s, respectively. The
					values of hm
 and Vm
 are
					selected based on cruise condition of Boeing 747, and the values of
						Δh and ΔV are selected based
					on designer experiences.

			

			
				MODELING OF OBJECTIVE FUNCTIONS AND CONSTRAINT

				As already noted, wing weight and drag force of Boeing 747 are considered as
					objective functions while fuel tank volume and lift coefficient are as
					constraints. The considered condition for wing design optimization is cruise
					phase. It is necessary to extract equations of wing weight, drag force, fuel
					tank volume and lift coefficient. Like all modeling, modeling of this research
					has been done with consideration of assumptions. It is worth noting that some
					parameters are considered constant (such as taper ratio, Mach number, dynamic
					pressure, wing incidence angle, cruise angle of attack, fuselage diameter, etc.)
					are related to Boeing 747. In robust optimization, the parameters like Mach
					number and dynamic pressure are considered variable in modeling process (unlike
					the deterministic optimization).

				
					Modeling of Wing Weight

					The wing weight of an aircraft can be calculated from Eq. 4 (Sadraey 2012):
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					where: SW
 is wing area, MAC is
						mean aerodynamic chord, (t/c)max is the
						maximum of thickness to chord ratio, ρmat

						is density of construction material, K
ρ
						is density factor, AR is aspect ratio,
								nult
 is ultimate load factor, λ
						is taper ratio and g is gravity constant.

					If root chord, taper ratio, and span are known, then wing area is calculated
						as follows (Eq. 5):
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					Taper ratio for Boeing 747 is 0.28, therefore the wing area is obtained with
						placement of this value in Eq.
							5, obtaining (Eq.
						6):
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					The mean chord of the wing is calculated as follows (Eq. 7):
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					It is assumed that the airfoil of the wing is NACA2412, so (Eq. 8):
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					The density of construction material and wing density factor for the
						aerospace aluminum alloy are (Eq.
							9):
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					 It is assumed that the maximum load factor of Boeing 747 is 3 and therefore
						the value of ultimate load factor is considered (Eq. 10) (Roskam 1997):
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					Note that 1.5 is a safety factor and it is considered based on structural
						requirements. The equation of aspect ratio according to the Eq. 6 is expressed as follows
							(Eq. 11):
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					Finally, the main equation of wing weight is obtained with placement above
						equations in Eq. 4, obtaining
							(Eq. 12):
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					Modeling of Wing Drag

					The main equation of the drag is expressed as follows (Eq. 13):

					
						
[image: art36_ec13.jpg](13)

					

					where: q - is dynamic pressure, and
								CD
 is drag coefficient that it is
						obtained from Eq. 14:
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					In Eq. 14,
								CD

0 is zero-lift coefficient
						that can be calculated as (Eq.
							15) (Roskam 1997):
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					where: f is equivalent parasite area. This parameter is
						obtained as follows (Eq.
						16):
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					where: a and b are constant, and
								Swet
 is the wetted area.

					Since the purpose of this research is wing optimization, therefore it is
						evident that wetted area changes in addition to wing area in the
						optimization process and finally equivalent parasite area and zero-lift drag
						coefficient will change. So, to calculate zero-lift drag coefficient, an
						equation for the wetted area must be determined at first and then according
						to Eqs. 15 and 16, zero-lift drag coefficient
						can be calculated. The wetted area is shown in Fig. 6.
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Figure 6



Definition of wing wetted area.













					

					To find the equation for the wetted area in terms of design variables, it is
						necessary to find an equation to express chord distribution along the
						wingspan. This equation is obtained using a simple geometric relationship as
						follows (Eq. 17):
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					where: y is chord distribution, and x is
						along the wing span. To find the wetted area, the chord in
							x = df
/2 is the only
						unknown parameter that is obtained from Eq. 17. Fuselage diameter is 6.5 meter for Boeing 747.
						Finally, the main equation is obtained for the wetted area (Eq. 18):
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					where: Ct
 is wing tip chord, and
								df
 is fuselage diameter.

					The equivalent parasite area (Eq.
							19) and zero-lift drag coefficient (Eq. 20) can be calculated using Eqs. 6, 15, 16 and 18.
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					To calculate the drag coefficient according to Eq. 14, an equation for lift coefficient must be
						achieved. The lift coefficient is assumed as
							CL

0 +
								CLα
, where
							CL

0 is lift coefficient at zero
						angles of attack, CLα
 is lift curve slope
						and α is the angle of attack. The lift curve slope is calculated as
						follows (Eq. 21) (Roskam 1997).
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					In Eq. 21, k
						and β are obtained from the Eqs. 22 and 23.
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					where: M is Mach number and
							Cl

α is airfoil lift curve
						slope.

					The Mach number of Boeing 747 in cruise condition is 0.85, therefore,
								Cl

α|
atM

						is calculated as follows (Eq.
							24). The value of
							Cl

α|
atM
								=

0 is assumed to be equal to the value of
						the NACA 2412.
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					With placement of Eqs. 22,
							23, 24, and aspect ratio in Eq. 21, the final equation
							(Eq. 25) is obtained for
						lift curve slope. 
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					The lift coefficient for zero angles of attack is not constant, similar to
						zero-lift drag coefficient and changes during the optimization process. This
						parameter is calculated as follows (Eq. 26):
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					where:
							CL

0

wf

						is lift coefficient at zero angles of attack for combination of wing body,
						is horizontal tail lift curve slope, η
h

						is horizontal tail efficiency, Sh
 is horizontal
						tail area, ih
 is horizontal tail incidence
						angle, ε0

h
 is downwash angle
						at the horizontal tail, is canard lift curve slope,
								η
c
 is canard efficiency,
								Sc
 is canard area,
							ic
 is canard incidence angle, and
							ε0

c
 is up-wash angle at
						the canard.

					The last term in the Eq. 26 is
						related to the canard that has been neglected in this study. The second term
						is related to horizontal tail, which is negligible compared to the first
						term. Therefore lift coefficient for zero angles of attack is calculated
						from Eq. 27:
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					where: iw
 is wing incidence angle,
							α0

LW
 is wing angle of
						attack for zero lift and is wing body lift curve slope.

					The incidence angle is 2° for Boeing 747 and
								α0

LW
 is calculated
						using Eq. 28:
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					where: α0

l
 is airfoil zero lift
						angle, Δα0/εt is the variation of
						wing zero lift angle of attack to wing twist angle, and εt
						is wing twist angle.

					With the placement of relevant parameters in Eq. 28, the value of this parameter is obtained -1.92.
						Wing body lift curve slope is obtained as follows (Eq. 29):
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					where: kwf
 is wing-body interference factor,
						which is calculated from Eq.
							30:
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					The final equation for lift curve slope is (Eq. 31):
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					Finally, according to Eqs. 27
						and 29, lift coefficient for
						zero angles of attack is calculated as follows (Eq. 32):
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					Now using Eqs. 13 and 14, final equation is obtained
						for drag force (Eq. 33):
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					Dynamic pressure and angle of attack for the cruise condition of Boeing 747
						are 8706.72 kg/ms2 and 2.5°, respectively. The main drag equation
							(Eq. 34) is obtained by
						substituting Eqs. 20, 25 and 30 in Eq. 33:
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					Modeling of the Fuel Tank Volume

					One of the wing tasks is to provide an enclosure for the fuel tank in
						addition to producing the lift force. Since the design variables change in
						the optimization process the fuel tank volume will also change, and because
						the aircraft mission depends on the volume of fuel so this volume should not
						change relative to the initial volume.

					The cross-section fuel tank and its parameters are shown in Fig. 7. It is assumed that the fuel tank
						is between wing spars in this study.
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Figure 7



Wing cross-section and fuel tank parameters.













					

					In the actual condition, the wing is the taper and the maximum of airfoil
						thickness changes from root to tip, so fuel tank is modeled as taper with
						variable thickness. Fig. 8 shows the
						considered fuel tank.
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Figure 8



Fuel tank model.













					

					In Fig. 8, 2w is the
						length of the fuel tank, 2d is the width of the fuel tank
						and h is the fuel tank shell thickness.

					The fuel tank volume is obtained from the following equation (Eq. 35):
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					It is clear from Fig. 6 that, to
						calculate the fuel tank volume, the values of 2d,
							2w and h must be determined in the
						root, mean and tip chords at first. Another important point is the position
						of spars along the wing because 2w and 2d
						are dependent on this position. The position of the front and rear spars are
						assumed as follows (Eq. 36)
							(Roskam 1997):
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					From Eq. 36, the distance of
						two spars is 0.55 C, so the value of 2w is
						0.55 C in different parts of the wing. The values of
							2d and h for Boeing 747 are assumed
							(Eq. 37) (Setayandeh 2011):
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					Finally, the values of 2w and 2d are listed
						in Table 2.

					


Table 2


Final values of fuel tank.
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					Therefore, the final equation for the fuel tank volume is calculated as
						follows (Eqs. 38, 39, 40, and 41):

					The fuel tank volume is 148.8 m3 for baseline design using Eq. 41. This value is
						considered as the first constraint in the optimization design
							(ΔV = -148.8 = 0).
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					Modeling of Lift Coefficient

					Using the described equations for the lift coefficient, the lift coefficient
						was calculated 0.28 for baseline design, so this value is considered as the
						second constraint. This constraint makes the obtained lift coefficient from
						optimization algorithm (as an important parameter in cruise phase) not to
						change, compared to the baseline design
							(ΔCL
 = CL

						-0.28 = 0).

				

			

			
				MAKING PREFERENCE FUNCTION USING FUZZY LOGIC

				It has been mentioned that an important advantage of this method is using the
					experience of experts in the design optimization in defining preference
					function. It was also stated that preference functions are created using fuzzy
					logic. For this purpose, fuzzy rules are defined by the designers (experts) and
					based on their experiences. In addition, simplicity and reducing the
					computational time due to the use of fuzzy logic are other advantages of this
					function. To use these advantages, preference functions are formed for all
					objective functions and constraints.

				The fuzzy preference function is achieved using product inference engine,
					singleton fuzzifier, and center average defuzzifier, as follows (Eq. 42):

				
					
[image: art36_ec42.jpg](42)

				

				In Eq. 42,
							y - is the center of the fuzzy
					set, l is the number of fuzzy rules and i is
					the number of inputs. To form preference functions of drag and lift coefficient,
					because both of them change with uncertainties, two inputs (µ,
						σ) must be considered. Mean values and standard deviation
					are divided into four and three sections, respectively (the membership functions
					of them are shown in Fig. 9), so 12 fuzzy
					rules must be created to form preference function. To form preference functions
					of weight and fuel tank volume only one input (µ) must
					be considered (these parameters don't change with uncertainties). The mean
					values of them are divided into four sections so four fuzzy rules must be
					created to form preference function. The preference function (as the output of
					fuzzy logic) is divided into four sections. The membership function of
					preference function is shown in Fig. 9.
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Figure 9



Membership function of preference functions.













				

				
					Preference Function of Drag

					Since the uncertainties affect the drag, standard deviation and the mean
						value of drag are as inputs of the fuzzy system for making preference
						function of drag. This process is shown in Fig. 10.
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Figure 10



Fuzzy preference function of drag.













					

					The membership functions of the mean and standard deviation values are shown
						in Figs. 11 and 12, respectively.
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Figure 11



Membership functions of the mean value of normalized
									drag.
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Figure 12



Membership function of the standard deviation of normalized
									drag.













					

					The fuzzy rule set for drag is: 

					
						
	1.
						If µ
D is very high and
										σ
D is high then drag
									preference function is very low (0).

	2.
						If µ
D is very high and
										σ
D is medium then drag
									preference function is very Low (0).

	3.
						If µ
D is very high and
										σ
D is low then drag
									preference function is low (0.35).

	4.
						If µ
D is high and
										σ
D is high then drag
									preference function is very low (0).

	5.
						If µ
D is high and
										σ
D is medium then drag
									preference function is low (0.35).

	6.
						If µ
D is high and
										σ
D is low then drag
									preference function is medium (0.7).

	7.
						If µ
D is medium and
										σ
D is high then drag
									preference function is Low (0.35).

	8.
						If µ
D is medium and
										σ
D is medium then drag
									preference function is medium (0.7).

	9.
						If µ
D is medium and
										σ
D is low then drag
									preference function is high (1).

	10.
						If µ
D is low and
										σ
D is high then drag
									preference function is low (0.35).

	11.
						If µ
D is low and
										σ
D is medium then drag
									preference function is high (1).

	12.
						If µ
D is low and
										σ
D is low then drag
									preference function is high (1).



					

				

				
					Preference Function of Wing Weight

					Unlike the drag, uncertainties don't affect the wing weight, so there is no
						need to calculate mean and standard deviation in this case. The values of
						normalized wing weight are as input to the fuzzy system (Fig. 13).
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Figure 13



Fuzzy preference function of weight force.













					

					The membership function of normalized wing weight is shown in Fig. 14. The weight preference function
						is similar to Eq. 42 with a
						difference in the number of fuzzy rules.
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Figure 14



Membership function of normalized wing weight.













					

					The fuzzy rule set for wing weight is:

					
						
	1.
						If µ
W is very high then wing
									weight preference function is very Low (0).

	2.
						If µ
W is high then wing weight
									preference function is low (0.35).

	3.
						If µ
W is medium then wing
									weight preference function is medium (0.7).

	4.
						If µ
W is low then wing weight
									preference function is high (1).



					

				

				
					Preference Function of Lift Coefficient

					Similar to drag force, uncertainties also affect the lift coefficient.
						Standard deviation and the mean value of
							ΔCL
 are inputs to the fuzzy system.
						Membership functions of the mean and standard deviation, and the rule set
						are shown in Figs. 15 and 16, respectively. The lift coefficient
						preference function is similar to Eq. 42.
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Figure 15



Membership function of the mean value of normalized lift
									coefficient.
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Figure 16



Membership function of the standard deviation of normalized
									lift coefficient.













					

					The lift coefficient preference function is similar to Eq. 42 and the fuzzy rule set
						for lift coefficient is: 

					
						
	1.
						If µΔCl
 is very high
									and σΔCl
 is high then
									lift coefficient preference function is very low (0).

	2.
						If µΔCl
 is very high
									and σΔCl
 is medium
									then lift coefficient preference function is very low (0).

	3.
						If µΔCl
 is very high
									and σΔCl
 is low then
									lift coefficient preference function is low (0.35).

	4.
						If µΔCl
 is high and
											σΔCl
 is high
									then lift coefficient preference function is very low (0).

	5.
						If µΔCl
 is high and
											σΔClv
 is
									medium then lift coefficient preference function is very low
									(0).

	6.
						If µΔCl
 is high and is
									low then lift coefficient preference function is low (0.35).

	7.
						If µΔCl
 is medium and
									is high then lift coefficient preference function is low
									(0.35).

	8.
						If µΔCl
 is medium and
											σΔCl
 is medium
									then lift coefficient preference function is medium (0.7).

	9.
						If µΔCl
 is medium and
											σΔCl
 is low
									then lift coefficient preference function is medium (0.7).

	10.
						If µΔCl
 is low and
											σΔCl
 is high
									then lift coefficient preference function is high (1).

	11.
						If µΔCl
 is low and
											σΔCl
 is medium
									then lift coefficient preference function is high (1).

	12.
						If µΔCl
 is low and
											σΔCl
 is low
									then lift coefficient preference function is high (1).



					

				

				
					Preference Function of Fuel Tank Volume

					Like the wing weight, uncertainties don't affect the fuel tank volume. The
						process of making preference function for this constraint is similar to
							Fig. 13 and normalized
							ΔV is the only input to the fuzzy system. The
						membership function of normalized fuel tank volume is shown in Fig. 17.
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Figure 17



Membership function of normalized fuel tank volume.













					

					The fuzzy rule set for fuel tank volume is:

					
						
	1.
						If µΔ

V is
									very high then fuel tank volume preference function is very low
									(0).

	2.
						If µΔ

V is
									high then fuel tank volume preference function is low
									(0.35).

	3.
						If µΔ

V is
									medium then fuel tank volume preference function is medium
									(0.7).

	4.
						If µΔ

V is
									low then fuel tank volume preference function is high (1)



					

				

			

			
				OPTIMIZATION ALGORITHM

				As mentioned before, the NSGA algorithm is considered as the optimizer. Since the
					optimization problem is a constrained problem, penalty function method is used
					for implementation. The specifications of NSGA for optimization in this study
					are in Table 3.

				


Table 3


Specifications of NSGA.
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			DESIGN OPTIMIZATION RESULTS

			As already mentioned, two design optimizations have been done in this paper that
				includes: deterministic optimization, and robust optimization. It was also stated
				that the utopian distance concept is used for final solution selection so the
				utopian values of wing drag and weight must be calculated at first. From a single
				objective optimization, utopian values of drag and weight and their specifications
				were obtained as follows (Tables 4 and 5):

			


Table 4


Utopian values for drag.
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Table 5


Utopian values for weight.




[image: 309456744036_t5_tabla.png]












		

			Four optimal solutions (Pareto frontier) were achieved for deterministic
				optimization, presented in Table 6. It is
				worth noting that the details of deterministic optimization are available in Babaei et al. (2015).

			


Table 6


Results of deterministic optimization.




[image: 309456744036_t6_tabla.png]












		

			As already noted, each point that has lower distance is the best solution among
				Pareto frontier. So for deterministic optimization, number four has lower distance
				and is the final solution. The full specifications of this point are given in Table 7.

			


Table 7


The full specification of final solution.




[image: 309456744036_t7_tabla.png]












		

			To perform robust optimization (with the proposed method), the considered
				uncertainties were simulated, and then the mean and standard deviation of the
				objective functions and constraints were calculated. Finally, preference functions
				were formed as new objective functions and new constraints. The goal of this
				optimization is maximizing the considered preference function. The results of robust
				optimization are presented in Table 8.

			


Table 8


Results of robust optimization.
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			The best solution for robust optimization is number 1. The full specification of this
				point is in Table 9.

			


Table 9


Full specification of final solution.
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			The properties of optimal and robust designs are listed in Table 10 for a better comparison.

			


Table 10


Comparison of deterministic and robust configuration.
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			From the results of Table 10, it is clear
				that Optimal Design (OD) and Robust Design (RD) configurations are completely
				different, and that robust design has failed to provide good results in terms of
				objective functions. But this plan is more resistant in the face of uncertainties.
				On the other hand, the cost that must be paid to achieve a robust design is
				increasing the values of objective functions. The performance of robust design will
				be optimized for a wider range of flight altitude and velocity while the optimum
				plan is optimized only at a certain flight altitude and velocity.

			In terms of dimensions, the optimum plan suggests a chubby configuration, whereas
				robust plan suggests a slender configuration. From the standpoint of the root chord
				and the wingspan, there are significant differences between optimum plan and robust
				plan configurations. The robust plan has smaller root chord and larger wing span
				than optimum plan. The root chord and wing span of robust plan configuration lead to
				wing area and aspect ratio of this design have a larger value than optimum plan
				configuration. For better comparison, the geometry of three designs is shown in
					Fig. 18.
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Figure 18



Wing configurations of robust (RD), optimum (OD), and baseline
							designs (BD).













			

			To analyze the robustness of different designs, the probabilistic analysis is done
				for three configurations. For this purpose, 2000 points are considered as the
				sampling point for flight velocity and altitude as uncertainties and MCS method is
				used for simulation. Probability distribution function (PDF) of three configurations
				is shown in Fig. 19.
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Figure 19



Probability distribution function of normalized drag force for robust
							design (RD), optimum design (OD) and baseline design.













			

			
				Figure 19 shows that robust design has more
				robustness than the other two configurations. The results in Table 11 show that the variance of RD is improved 51.1% and
				20.2% compared to OD and baseline configurations, respectively. The results show
				that RD configuration is less sensitive to uncertainties and increases the
				reliability of wing performance. Therefore, it can be argued that the proposed
				method is a simple and efficient method for robust design optimization, which can be
				used from the experience of experts as a valuable source of information during the
				optimization.

			


Table 11


Variance comparison of deterministic, robust and baseline
						configuration.




[image: 309456744036_t11_tabla.png]












		

			The importance of design cycle should be noted. In aircraft design, different
				disciplines and the communications between them are considered. The final design
				will be obtained from the compromise between these disciplines. The main purpose of
				this paper is to present an efficient method for robust design optimization in which
				wing design optimization is considered for implementation. In this paper, the wing
				performance is optimized alone, and more precise considerations with more analysis
				must be considered to replace these designs (optimal and robust) with the base
				design.

		

		
			CONCLUSION

			In this study, a robust optimization methodology was proposed and was applied for the
				wing of Boeing 747. As already mentioned, the main advantage of this method is the
				preference function definition using fuzzy logic. The designer can help optimization
				algorithm to find more practical design using the preparation of fuzzy rules and
				also determining desirable and undesirable ranges of objective functions and
				constraints. The preference function definition has advantages such as using of
				designer experience, good accuracy, and simplicity. Cruise altitude and velocity
				were considered as uncertainties, and MCS method was used for uncertainty modeling.
				Deterministic optimization and robust optimization were done in this study and their
				results were compared to each other. The results show significant differences
				between RD and OD configurations and a probabilistic analysis showed that robust
				design has more robustness than optimal and baseline designs.
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