

Revista Educação Especial

ISSN: 1808-270X ISSN: 1984-686X

revista educa ção especial.ufsm@gmail.com

Universidade Federal de Santa Maria

Brasil

Felipe, Natali Angela; Basniak, Maria Ivete; Silva, Sani de Carvalho Rutz da Soroban dos inteiros: material para o ensino de números inteiros a estudantes cegos Revista Educação Especial, vol. 35, 2022, Enero-Diciembre, pp. 1-27 Universidade Federal de Santa Maria Santa Maria, Brasil

DOI: https://doi.org/10.5902/1984686X69450

Disponible en: https://www.redalyc.org/articulo.oa?id=313169978028

Número completo

Más información del artículo

Página de la revista en redalyc.org

Sistema de Información Científica Redalyc

Red de Revistas Científicas de América Latina y el Caribe, España y Portugal Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso

Soroban dos inteiros: material para o ensino de números inteiros a estudantes cegos

Soroban of integers: material for teaching integers numbers to blind students

Soroban dos integers: material para la enseñanza de números enteros a estudiantes ciegos

Natali Angela Felipe

Mestre pela Universidade Tecnológica Federal do Paraná, Ponta Grossa, PR, Brasil E-mail: natthali_felipe@hotmail.com ORCID: https://orcid.org/0000-0001-5335-6017

Maria Ivete Basniak

Professora doutora da Universidade Estadual do Paraná, União da Vitória, PR, Brasil E-mail: basniak2000@yahoo.com.br ORCID: https://orcid.org/0000-0001-5172-981X

Sani de Carvalho Rutz da Silva

Professora doutora da Universidade Tecnológica Federal do Paraná, Ponta Grossa, PR, Brasil E-mail: sani@utfpr.edu.br ORCID: https://orcid.org/0000-0002-1548-5739

Recebido em 03 de março de 2022 Aprovado em 21 de junho de 2022 Publicado em 25 de julho de 2022

RESUMO

Este artigo investigou as características que deve possuir um material concreto que favoreça a compreensão epistemológica de números inteiros por estudantes cegos. A lente teórico-metodológica utilizada pautou-se na Perspectiva Lógico-histórica e nexos conceituais articulada ao uso de materiais concretos para o ensino de matemática a estudantes cegos. Os resultados da pesquisa, revelaram o ábaco dos inteiros como material adequado ao ensino de números inteiros a estudantes videntes, cuja abordagem pedagógica pode ser utilizada com estudantes cegos se, adaptado às características do soroban, utilizado por estudantes cegos para registros e operações com números naturais. Nesse contexto, foi desenvolvido o soroban dos inteiros, o qual, por meio do desenvolvimento de tarefas por uma aluna cega, mostrou-se um material adequado para o ensino de números inteiros a estudantes cegos. Concluiu-se que o soroban dos inteiros pode ser um material de inclusão de estudantes cegos, ao permitir que estudantes cegos e videntes estudem os números inteiros sob a mesma perspectiva epistemológica que favoreça sua compreensão.

Palavras-chave: Números Inteiros; Soroban dos inteiros; Educação especial.

ABSTRACT

This article investigated the characteristics that a concrete material must have that favorstheepistemologicalunderstandingofintegersnumbers by blindstudents. The theoretical-methodological lens used was based on the Logical-Historical Perspective and conceptual

links articulated to the use of concrete materials for teaching mathematics to blind students. The research results revealed the abacus of integers as suitable material for teaching integers to sighted students, whose pedagogical approach could be used with blind students if, adapted to the characteristics of soroban, used by blind students for records and operations with natural numbers. In this context, the integer soroban was built, which, through the development of tasks by a blind student, proved to be an adequate material for teaching integer numbers to blind students. It was concluded that the integer soroban can be a material for the inclusion of blind students, by allowing blind and sighted students to study integers from the same epistemological perspective that favors their understanding. Keywords: Integers Numbers; Soroban of integers; Special education.

RESUMEN

Este artículo investigó las características que debe tener un material concreto que favorezca la comprensión epistemológica de los números enteros por parte de estudiantes invidentes. El lente teórico-metodológico utilizado se basó en la Perspectiva Lógico-Histórica y vínculos conceptuales articulados al uso de materiales concretos para la enseñanza de las matemáticas a estudiantes invidentes. Los resultados de la investigación revelaron que el ábaco de números enteros es un material adecuado para la enseñanza de los números enteros a estudiantes videntes, cuyo enfoque pedagógico podría ser utilizado con estudiantes invidentes si, adaptado a las características del soroban, es utilizado por estudiantes invidentes para registros y operaciones con números naturales. En este contexto, se construyóel soroban entero que, a través del desarrollo de tareas por parte de un estudiante ciego, demostró ser un material adecuado para la enseñanza de números enteros a estudiantes ciegos. Se concluyó que el soroban dos enteros puede ser un material para la inclusión de los estudiantes invidentes, al permitir a los invidentes y videntes estudiar los números enteros bajo una misma perspectiva epistemológica que favorezca su comprensión.

Palabrasclave: Números Enteros; Soroban entero; Educación especial.

Introdução

Segundo a Base Nacional Comum – BNCC (BRASIL, 2018), o ensino de Matemática, deve priorizar abordagens que evidenciam o conhecimento matemático como histórico e em constante construção, a partir de erros e reformulações desenvolvidos sob a influência de momentos históricos, crenças e ideais. Quanto ao uso e a história dos números inteiros, a BNCC (BRASIL, 2018) prevê o desenvolvimento e construção do pensamento e da noção de número por meio da ampliação sucessiva dos campos numéricos, abordado depois dos conteúdos de números naturais e racionais.

Entretanto, habituados a relacionar quantidades somente positivas, o contato com números negativos ou relativos, pode provocar nos estudantes certo estranhamento e

resistência em compreender a lógica matemática (BRASIL, 1998). Mariano e Matos (2013) evidenciam que uma das primeiras dificuldades dos estudantes quanto aos números inteiros está relacionada a sua aceitação, por não compreenderem a existência de quantidades negativas e não reconhecerem e representarem as *faltas* como quantidades. Para os estudantes cegos, essa dificuldade é agravada pela falta de materiais adequados ao ensino de números inteiros, o que nos suscitou a questão de investigação: Quais características deve possuir um material concreto que favoreça a compreensão epistemológica de números inteiros por estudantes cegos? Esta questão nos levou ao objetivo de pesquisa de investigar as características que deve possuir um material concreto que favoreça a compreensão epistemológica de números inteiros por estudantes cegos e, nos trouxe o desafio de construirmos um instrumento matemático¹ que considere as especificidades de estudantes cegos, explorando a percepção tátil, a verbalização e a representação simbólica de números positivos e negativos.

O processo de inclusão e a diversidade presente na sala de aula pressupõe aperfeiçoamentos e modificações no processo de ensino que contemplem as necessidades de todos os estudantes, consequentemente gerando demanda para adaptações e/ou desenvolvimento de recursos ou materiais didáticos para o ensino. Os materiais didáticos manipuláveis auxiliam no processo de formação e facilitação de aquisição de conhecimentos e atribuição de significados, e, especificamente, no ensino para estudantes cegos, contribuem para a elaboração de conhecimentos matemáticos permitindo e promovendo o desenvolvimento cognitivo por meio de outras habilidades e capacidades do estudante não associadas a visão, mas a exploração tátil e verbal (VYGOTSKY, 1991; REILY, 2004; FERNANDES; HEALY, 2015; ROSA; BARALDI, 2015).

Nesse contexto, compreendemos o desenvolvimento de conceitos matemáticos, sob a perspectiva Lógico-histórica, em que a lógica passa a ser fundamentada por história, a qual evidencia a evolução da humanidade, associada a mudança e ao surgimento e desenvolvimento de objetos e conceitos. O lógico, reflete a história de maneira teórica, e, nessa perspectiva, os conceitos, são captados em seu movimento de criação e depurados das casualidades, o que permite identificar aquilo que é substancial ao conceito (RODRIGUES, 2009; SOUSA, 2004). Kopnin (1978, p. 185) afirma que "[...] a reprodução da essência deste ou daquele fenômeno no pensamento constitui ao mesmo tempo a descoberta da história desse fenômeno, que a teoria de qualquer objeto não pode deixar de ser também a sua história".

Com o autor, compreendemos a possibilidade de utilizar a perspectiva Lógico-histórica, que considere aspectos essenciais de criação e desenvolvimento lógico de conceitos, para dar significado aos números inteiros, buscando na história, diferentes formas de conceituação e relações entre si. Sousa (2004, p. 65) define nexos conceituais como "o elo entre as formas de pensar o conceito, que não coincidem, necessariamente, com as diferentes linguagens do conceito". A autora, aponta ainda, que eles contêm "a lógica, a História, as abstrações, as formalizações do pensar humano, no processo de constituir-se humano, pelo conhecimento" (SOUSA, 2004, p. 65). Ela define, os nexos conceituais, como os nexos internos, fundamentados por Kopnin (1978), que são conexões internas ou a essência dos conceitos.

Ao buscar os nexos conceituais, de determinado conceito, conseguimos identificar no decorrer da história de civilizações, o tratamento e pensamento que o homem tinha sobre este conceito, para que e como foi desenvolvido, quais práticas, abstrações e formalizações compõem sua lógica e por quê. Ainda podemos buscar nos nexos conceituais, distinções e similaridades de pensamentos e conceitos com os conteúdos ensinados em sala de aula.

Dentre os materiais didáticos manipuláveis, com uso previsto em lei (BRASIL, 2015), para o ensino e aprendizagem de matemática a todos e para cegos, está o soroban², que possibilita a manutenção do registro numérico respeitando o sistema posicional. Assim, identificamos na adaptação do ábaco dos inteiros juntamente com o soroban, a possibilidade para o desenvolvimento de um material manipulável com alicerces em nexos conceituais e na perspectiva Lógico-histórica para a significação de números inteiros por cegos. Nessa perspectiva, discutimos neste artigo o Soroban dos Inteiros³, considerando o tratamento dado aos números inteiros pelos chineses e suas manipulações com palitos vermelhos e pretos, um instrumento conceitual adequado para o desenvolvimento deste material manipulável para significação de números inteiros por estudantes cegos, por abarcar os nexos conceituais que consideram a lógica, a história, as abstrações, as formalizações do pensamento humano no processo em que o conhecimento se constituiu, a partir do quadro teórico que discutimos nas seções que seguem.

A Perspectiva Lógico-histórica e os nexos conceituais

Os nexos conceituais representam o processo de constituir um conhecimento lógico e teórico em seu movimento. Segundo Caraça (1984), quando os conhecimentos científicos são apresentados desconexos de sua história, omitem a atividade humana e a contribuição das civilizações na sua elaboração. Nesse sentido, os nexos conceituais, permitem à

identificação da natureza dos conhecimentos científicos que ensinamos atualmente, possibilitando compreender o que poderia vir a ser científico e a sua trajetória de desenvolvimento.

Rodrigues (2009) utiliza da perspectiva Lógico-histórica de nexos conceituais e de aspectos simbólicos de números inteiros para identificar as diferentes formas de negatividade desenvolvidas histórica e socialmente por civilizações orientais e ocidentais. A autora considera os nexos externos, de números inteiros, como os aspectos simbólicos (representações) do conceito. "No caso dos números inteiros, tomam-se seus aspectos, relações e expressões exteriores, a representação do -1, por exemplo, ou, ainda, a própria reta numérica em Z" (RODRIGUES, 2009, p. 46). Sousa (2004, p. 61) afirma que "os nexos externos se limitam aos elementos perceptíveis do conceito enquanto os internos ao lógico histórico do conceito. Os nexos externos, ficam por conta da linguagem. São formais". Nesse caso, o ensino baseado em definições e propriedades, que considera somente suas representações estáticas, é um ensino baseado em nexos externos, em que os conteúdos não contemplam às compreensões históricas do conceito. Os nexos conceituais (nexos internos), de um conhecimento, formam o movimento do pensamento humano.

Rodrigues (2009) apresenta como nexos conceituais dos números inteiros os conceitos chineses de fluência e contradição; semelhança, simultaneidade e os critérios de equivalência; o zero como centro de simetria e equilíbrio (do ponto de vista geométrico) e como convergência e anulação de opostos (móvel, do ponto de vista algébrico) e; o cálculo com palitos (números) vermelhos (positivos) e pretos (negativos). Rodrigues (2009) enfatiza que mesmo os chineses não aceitando números negativos, como soluções de uma equação, naturalmente, tinham em sua cultura a compreensão e manipulação da negatividade. A China evidencia-se como a primeira civilização a criar um sistema de numeração posicional e decimal (representado por barras/palitos) e a reconhecer os números negativos. Boyer (1996, p. 137), afirma que "A ideia de números negativos parece não ter causado muitas dificuldades aos chineses, pois estavam acostumados a calcular com duas coleções de barras – vermelha para os coeficientes positivos ou números e uma preta para os negativos". Estas representações se caracterizam como um dos simbolismos históricos de números inteiros.

Para Lizcano (1993, *apud*, RODRIGUES, 2009, p. 91), os palitos que representam numerais pertenciam a um jogo de manipulações algébricas, de uma álgebra simbólica implícita na forma de manipular e operar os palitos no tabuleiro, que diferenciam lugares

representativos, por meio da carga simbólica que assumem. Rodrigues (2009) identifica as representações e manipulações realizada com palitos como um instrumento conceitual e relata que, para facilitar as multiplicações e subtrações realizadas em colunas, a fim de obter zeros por destruições mútuas (princípio de equivalência de quantidades opostas), no método fangcheng para resoluções de equações lineares, os matemáticos da Dinastia Han (206 a.C. a 221 d.C.), desenvolveram as regras zheng/fu (vermelho/preto), para adição e subtração com quantidades negativas, em que:

Para subtração, temos:

- Quando os palitos são da mesma cor, reduzi-los mutuamente.
- Quando os palitos são de cores diferentes, acrescentá-los mutuamente, mediante a regra: preto subtraído de vermelho dá preto [(-2) - (+1) = (-3)] e vermelho subtraído de preto dá vermelho [(+2) - (-1) = (+3)].
- Quando o palito é subtraído de nada (0), inverte-se o nome/qualidade/cor do palito.

Para adição, temos:

- Quando os palitos são da mesma cor, acrescentá-los mutuamente.
- Quando os palitos s\u00e3o de cores diferentes, reduzi-los mutuamente.
- Quando o palito é adicionado a nada (0), mantém-se o nome/qualidade/cor do palito (RODRIGUES, 2009, p. 99).

Consideramos, assim, o *zheng/fu*, como um jogo de simetria e inversos, em que operar com o nada (ou com as diversas representações de zero pelo princípio de equivalência), significa, poder manter ou inverter a posição sobre o que se opera. No conjunto dos números relativos, a operação de adição pode resultar em zero, acréscimos ou decréscimos, pois:

[...] somar um número negativo equivale a subtrair o número positivo com o mesmo módulo; subtrair um número negativo equivale a somar o número positivo com o mesmo módulo. No campo relativo, as duas operações aparecem-nos assim unificadas numa só, que se chama adição algébrica (CARAÇA, 1963, p.101).

Neste caso, o conceito de adição não deve se limitar somente a ideia de acrescentar como no conjunto dos naturais. Já a subtração de números inteiros deve significar o trabalho com operadores negativos, ou seja, números que operam por meio de oposição, em que o subtrair, extrair ou *tirar*, já não faz sentido para operações como 6-7, pois retirase se seis e a sétima unidade não pode ser retirada de zero. Percebemos, então, no instrumento conceitual de palitos utilizado pelos chineses, a possibilidade de naturalmente obter a solução da operação 6-7 utilizando oposição (nexo) entre quantidades positivas e negativas, para identificar um palito preto, logo -1 (negativo um) (MARTINS; FARIAS; REZENDE, 2015).

Salientamos a proximidade desse instrumento conceitual de palitos da Dinastia Han da China Antiga com o ábaco indo-europeu e com o material didático ábaco dos inteiros que apresentamos e discutimos na seção que segue.

O ábaco dos inteiros

O ábaco dos inteiros é um material composto de duas hastes (ou colunas), onde as quantidades positivas são representadas em uma das hastes por argolas ou peças com uma cor, e as quantidades negativas são representadas em outra haste por argolas ou peças de outra cor. Ele funciona com o princípio de simetria ou equivalência, ou seja, o número negativo (-1) é simétrico do positivo (+1), pois (+1) + (-1) = 0. Assim, quando temos uma argola positiva ao lado de uma negativa, cada uma em uma haste (ou coluna) temos a representação equivalente a zero, visto que as argolas se *anularão*. Isto acontecerá com todos os números positivos e negativos que forem simétricos. A partir do princípio de simetria, podemos representar os números inteiros no ábaco de várias maneiras, além de desenvolver operações de mesmo caráter algébrico e que se utilizam perceptivelmente da mesma lógica operatória dos chineses no movimento com palitos, ou seja, representa-se no ábaco dos inteiros nexos conceituais da civilização chinesa de relativos.

As experiências de Silva e Conti (2016), Pommer (2010) e Coelho (2005) evidenciam o potencial didático do material ábaco dos inteiros para a compreensão de operações e para justificar a regra de sinais por regularidades, suprimindo a prevalência de mecanização desses resultados e o uso de noções intuitivas como saldos, temperaturas e dívidas para justificar operações. Lins e Gimenez (1997, p. 13) questionam a abordagem comercial de relativos porque "quando usamos como recursos as dívidas, e queremos produzir significado para (–3) × (–5), não é verdade que o primeiro fator quer dizer 'perder 3 vezes' e não 'uma dívida de três'? Você acha que faz sentido multiplicar duas dívidas?". A abordagem comercial, de dívidas, saldos, débitos e créditos, aplicada a operação de multiplicação de relativos deixa de justificar a natureza das quantidades resultantes da operação. Além do que, em um sentido mais amplo, essa abordagem estabelece somente significados informais sobre números inteiros e suas operações, o que pode restringir a compreensão de relativos a ideias de contexto comercial.

No conjunto dos números inteiros, a multiplicação não pode ser compreendida somente como a adição de parcelas iguais, mas, sim, como a repetição de fatores negativos

ou positivos que resultarão em números pertencentes ou não a mesma região (negativa e positiva) do conjunto a que pertenciam, como enfatiza Teixeira (1993, p. 65):

Um operador multiplicativo no caso dos inteiros, indica o número de vezes que um conjunto se repete, ao mesmo tempo em que produz transformações de aumento ou diminuição no resultado, dependendo dos sinais em jogo [...]. Na multiplicação, portanto, é preciso compreender que há uma duplicidade de operações: as que multiplicam os conjuntos equivalentes, ao mesmo tempo em que há operações de transformação que se aplicam aos números, fazendo-os manter ou inverter sua posição na região a que pertenciam.

As transformações da natureza das quantidades envolvidas nas operações, conforme as inversões em lugares representativos e simbólicos, são possíveis de serem desenvolvidas e compreendidas a partir das manipulações de argolas ou peças no ábaco dos inteiros. Identificamos neste processo os nexos conceituais da civilização chinesa, quanto à manipulação da negatividade, em que as argolas e peças assumem o lugar e a representatividade dos palitos vermelhos e pretos e as operações intrinsecamente seguem a regra lógica *zheng/fu* de destruições mútuas (princípio de simetria ou equivalência, mencionado anteriormente).

Entretanto, consideramos este material em seu formato original (conforme a Figura 1), inadequado ao manuseio por cegos, devido suas peças serem diferenciadas somente por cores e precisarem ser encaixadas em hastes verticais não fixas a movimentos leves. Dessa forma, o cego não conseguiria distinguir nem comparar peças negativas e positivas, podendo ter dificuldade em encaixá-las nas hastes, perdê-las ou derrubá-las.

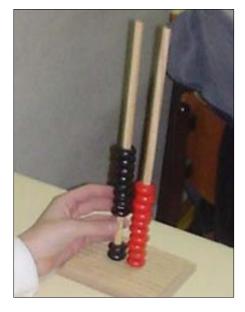


Figura 1 – Ábaco dos inteiros

Fonte: Coelho (2005, p. 58).

Porém, considerando a relevância de seu uso no ensino como apontado por Silva e Conti (2016), Pommer (2010) e Coelho (2005), pesquisamos sobre materiais didáticos manipuláveis para uso pelo cego, que discutimos na seção que segue.

Materiais didáticos manipuláveis para cegos

Para Lorenzato (2012, p. 61), "o material concreto exerce papel importante na aprendizagem. Facilita a observação e a análise, desenvolve o raciocínio lógico, crítico e científico, é fundamental para o ensino experimental e é excelente para auxiliar o aluno na construção de seus conhecimentos". Sua utilização pode ter a finalidade de motivar o estudante, introduzir um conteúdo, auxiliar e facilitar a compreensão e a (re)descoberta de informações e conhecimentos. Uma das principais adaptações para o ensino de matemática para cegos é a transformação das representações visuais da matemática em representações táteis, ou seja, em materiais e recursos didáticos manipuláveis. Eles devem, naturalmente, promover à ação do estudante para o desenvolvimento do conhecimento, pois "Como as crianças deficientes visuais geralmente adquirem seu conhecimento por meio de experiências que não incluem o uso da visão, [...]" (BRASIL, 2006, p. 46) faz-se necessário o desenvolvimento sensorial.

Enquanto a visão permite uma observação mais ampla, global, do ambiente ou objeto examinado, o tato o faz parte a parte, sequencialmente, de forma mais paulatina que a visão, necessitando do sujeito que integrem na memória as informações que dedo ou dedos capturam (LIMA, 2001, p. 173).

Reily (2004, p. 39) afirma que "É preciso realizar uma conversão semiótica, de tal forma que o signo visual seja apreendido por via tátil-verbal". Segundo Fernandes, Healy e Serino (2014), o material didático pedagógico escolhido deve considerar três estímulos: percepção tátil - interações discursivas - formação de sistemas simbólicos (representações).

Consideramos, assim, que fazer uso dos sete princípios fundamentais do Desenho Universal⁴ (DU), na produção de produtos educacionais para o ensino, torna esses materiais acessíveis a uma maior quantidade de estudantes. Atrelar as recomendações de Kaleff⁵ (2016), ao conceito de DU, na confecção de materiais didáticos manipuláveis para o ensino de matemática, pode garantir o acesso de conhecimentos matemáticos, para a diversidade de estudantes. O conceito de DU, inspirou na área de ensino, a abordagem curricular do Desenho Universal de Aprendizagem (DUA). O DUA é constituído pela elaboração de estratégias para a acessibilidade, consiste no desenvolvimento de currículos, baseados na equidade no processo de ensinar e aprender, são metas, métodos,

materiais e avaliações que amparam o planejamento das aulas e atendem as necessidades de todos os estudantes (NEVES; PEIXOTO, 2020).

Sganzerla e Geller (2019), investigando o uso de Tecnologia Assistiva⁶ (TA), durante o Atendimento Educacional Especializado (AEE), elencam algumas (TA), que contribuem para o ensino da matemática para deficientes visuais. Primeiramente, apresentam os leitores de telas de computadores DosVox, Virtual Vision, Jaws, NVDA, Orca e de celulares Talkdroid e VoiceOver, para acessibilidade por comunicação de voz. Os autores ainda apresentam o soroban, o multiplano, a calculadora ampliada e sonora e o material dourado, como Tecnologia Assistiva (TA), específicas para o ensino de matemática para cegos.

Dentre os materiais didáticos manipuláveis, que podem ser utilizados como recurso didático, para o ensino e aprendizagem de matemática a todos, com maior especificidade para cegos, está o soroban (Figura 2). Um instrumento matemático manual de uso previsto, na Lei Brasileira de Inclusão da Pessoa com Deficiência de 2015 (art. 3, inciso III, considerado uma TA) e distribuído pela Secretaria de Educação Especial do Ministério da Educação- SEESP/MEC (BRASIL, 2015). O soroban⁷ é composto de duas partes separadas por uma régua horizontal chamada de *régua de numeração* que possui indicações de classes, transpassada por eixos (hastes metálicas), na vertical, que vão da borda superior a inferior, onde são fixadas as contas (bolinhas que valem uma unidade ou no caso da superior, cinco unidades) (BRASIL, 2012).

PONTOS DE REFERÊNCIA
(para localizar as
ordens de cada classe)

PARTE SUPERIOR

PARTE INFERIOR

CONTAS SUPERIORES
(cada conta tem valor numérico 5)

CONTAS INFERIORES
(cada conta tem valor numérico 1)

Figura 2 – Soroban original e adaptado para cegos

Fonte: Adaptado de Simbologia Braille (BOCK, 2013).

Revista Educação Especial | v. 35 | 2022 – Santa Maria Disponível em: https://periodicos.ufsm.br/educacaoespecial

São vinte e uma hastes e em cada haste vertical, as contas representam um valor posicional diferente: unidade, dezena, centena e assim por diante, da direita para a esquerda. Neste caso, dependendo em qual haste as contas estão, podem valer, por exemplo, uma unidade ou uma dezena, estando na parte inferior. O mesmo, acontece quando as contas, estão nas hastes na parte superior, estas podem valer cinco unidades, porém, também cinco centenas, se estiverem na terceira haste, por exemplo.

O soroban funciona como uma tábua de cálculos, onde são realizados registros numéricos (respeitando o sistema posicional), apresentados como regras ou passo a passo para a organização e desenvolvimento de operações. O documento Soroban Manual de Técnicas Operatórias para Pessoas com Deficiência Visual, disponibilizado pela SEESP/MEC, traz orientações sobre o uso do material na educação, enfatizando que:

O uso do soroban contribui para o desenvolvimento do raciocínio e estimula a criação de habilidades mentais. Permite o registro das operações, que só serão realizadas, com sucesso, caso o operador tenha o domínio e a compreensão do conceito de número e das bases lógicas do sistema de numeração decimal (BRASIL, 2012, p. 11).

O soroban tem potencial para associação e contagem um a um, materializando as equivalências e trocas no sistema posicional. O processo operatório das quatro operações básicas, a ideia é a mesma do ensino habitual, o que muda é a representação dos números, isto porque operações no soroban são registradas de maneira diferente que em tinta, os números são registrados em lugares específicos, nas classes numa disposição linear e não vertical e bidimensional como geralmente armamos as adições, subtrações e multiplicações em tinta ou em chaves como na divisão. Portanto, as operações dependem do registro numérico, do movimento que concretiza a operação no material e da leitura da operação e seu resultado. Tanto o registro como a leitura de números no soroban dependem da compreensão da estrutura do material hastes, classes, valores de contas, compreensão do sistema posicional decimal, e isso inclui equivalências e transformações entre unidades, dezenas, centenas e assim por diante. O ato de operar, utilizando o material, se configura quando a operação é convertida em movimento (ação) das contas que representam os números. Estes movimentos traduzem o significado das operações, no caso da adição, juntar, acrescentar e restaurar; da subtração, retirar, completar e comparar; da multiplicação, soma de parcelas iguais; da divisão, dividir em partes iguais ou ainda utilizar o inverso multiplicativo para a resolução (PEREIRA; PEREIRA, 2013).

As operações no soroban, geralmente, são ensinadas como técnicas já que possuem regras de registros. Se as ideias operacionais e seus significados já são de conhecimento do estudante, ele pode realizar registros de maneira natural e automática, suprimindo detalhes como a contagem um a um, os empréstimos e as reservas.

Entretanto, o soroban é um material potencial para a exploração do sistema posicional decimal e operações, quando seu uso no ensino é pensado para além das técnicas, regras e reprodução de algoritmos, quando é explorada sua potencialidade ao construir os conceitos relacionados à representação de números e aos cálculos. Buscando explorar esse potencial, associando o ábaco dos inteiros e o soroban, construímos o Soroban dos Inteiros, orientadas metodologicamente na Teoria Fundamentada nos Dados, como explicamos na seção que segue.

Percursos teórico-metodológico

Para a elaboração e construção do material didático manipulável Soroban dos Inteiros, para o ensino de números inteiros a partir da compreensão de seus nexos conceituais oriundos da civilização chinesa, pautamo-nos na Teoria fundamentada nos Dados (STRAUSS; CORBIN, 1998) que compreende três etapas: codificação aberta, codificação axial e codificação seletiva.

Para Strauss e Corbin (1998), essas etapas são interdependentes e cíclicas. A primeira, a codificação aberta, trata da descrição do processo analítico que origina códigos preliminares e conceituais, tal que conceitos são identificados e desenvolvidos entre as relações de suas propriedades e dimensões. Nosso estudo compreendeu o estudo de textos (artigos, dissertações, teses e manuais) entrelaçando os temas de inclusão escolar, deficiência visual, ensino de Matemática para estudantes cegos, o ensino de números inteiros, a teoria de nexos conceituais e a utilização do soroban no ensino de Matemática e no ensino de números inteiros, que evidenciaram a necessidade e possibilidade da criação de um material didático manipulável para o ensino de números inteiros para estudantes cegos, conforme descrevemos nas seções anteriores.

Mediante a etapa de codificação axial, realizamos conexões entre os nexos conceituais da civilização chinesa mediante os instrumentos conceituais com a manipulação de palitos pretos e vermelhos e do ábaco dos inteiros, com as caraterísticas estruturais e de registro do soroban tradicional criando o Soroban dos Inteiros e as

possibilidades de registros numéricos, comparações e manipulações das operações de adição, subtração, multiplicação e divisão de números inteiros para cegos e videntes.

Optamos por manter na estrutura e *design* do Soroban dos Inteiros o potencial de registro de quantidades por meio da manipulação de contas (bolinhas) em hastes verticais do soroban tradicional, o qual considera o sistema decimal posicional. Dada a importância da significação tátil para os estudantes cegos, para diferenciar as representações de quantidades negativas e positivas, estruturamos o material em duas partes conectadas, cada uma de uma cor, mas de diferente textura das contas (bolinhas) que compõem as hastes. Nesse caso, priorizamos uma estrutura para o fácil manuseio e uso com autonomia pelo cego, garantindo a organização espacial e que pudesse facilitar o aluno centrar a atenção na abstração de conceitos de números inteiros traduz as operações e sinais (estados) positivos e negativos em movimentos usando a representação tátil.

A escolha de material para a confecção do Soroban dos Inteiros considerou as recomendações e características para materiais didáticos para o ensino apontadas por Kaleff (2016), Fernandes, Healy e Serino (2014) e Sá (2007). Dessa forma, desenvolvemos o projeto do material para ser impresso em impressora 3D, devido: ao custo baixo; fácil impressão por ser composto de peças retangulares, o que otimiza tempo de impressão; alta durabilidade e a possibilidade de reutilização. Para as intervenções, foram impressos dois materiais, sendo um o protótipo, usado pela pesquisadora para acompanhar os cálculos e raciocínios da estudante cega. O Soroban dos Inteiros foi impresso na impressora 3D do colegiado de Matemática da Universidade Estadual do Paraná, no campus de União da Vitória-PR e testado e validado pela estudante cega participante da pesquisa.

A codificação seletiva ou redação da teoria, para Strauss e Corbin (1998), é a etapa em que buscamos convergências para amparar a teorização do processo a ser investigado, para nós, a contribuição do Soroban dos Inteiros para o ensino de números inteiros para uma aluna cega. Dessa forma, nessa etapa, buscamos validar o potencial do material didático manipulável Soroban dos Inteiros para o ensino de números inteiros e compreensão dos nexos conceituais por meio da análise qualitativa dos trechos da intervenção utilizando o material subsidiado pelas tarefas descritas no quadro 1.

Quadro 1 – As tarefas utilizadas na intervenção com o Soroban dos Inteiros

Tarefa	Objetivos
Diagnóstico inicial	Representar sentenças matemáticas utilizando corretamente símbolos operatórios e predicativos; Comparar e ordenar quantidades positivas e negativas; Operar com quantidades positivas e negativas, aplicando a lógica ou equivalência operatória. Utilizar a regra de sinais na multiplicação e divisão de inteiros; Resolver situações interpretativas de significados concretos como aumentar, diminuir, sobrar e faltar.
Números e operações matemáticas	Conhecer o material, reconhecendo seus elementos, seu funcionamento e as possibilidades de registro numérico; Efetuar por meio de orientações: registros e operações com números positivos; Empregar diferentes estratégias para realizar operações usando o <i>Soroban dos Inteiros</i> , explicitando seu entendimento sobre a ação operatória com os números;
Que números são esses?	Atribuir o significado de falta às quantidades negativas ao explorar e representar os resultados dos movimentos de subtrações; Atribuir significado a quantidades negativas expressas pelo sinal predicativo de -; Diferenciar e empregar corretamente os dois usos dos símbolos + e
Qual é maior, qual é menor?	Comparar números positivos e negativos analisando quantidades e estados; Comparar números positivos e negativos em relação a seu posicionamento de zero; Associar a distância de um número a zero com os conceitos de números simétricos e módulo.
O zero no material	Representar distintos zeros a partir da ideia do cancelamento; Compreender o papel do zero como origem dos números positivos e negativos; Representar diferentes quantidades, tanto positivas quanto negativas, a partir de zeros ou uma quantidade estabelecida.
Adição com números inteiros	Efetuar adições no material mediante a <i>ação de acrescentar</i> quantidades, sejam elas positivas ou negativas; Realizar reduções mútuas entre positivos e negativos para obter resultados; Compreender que adicionar um número negativo equivale a subtrair o número positivo com o mesmo valor absoluto; Compreender que adicionar um número positivo equivale a adicionar o número positivo com o mesmo valor absoluto.
Subtração com números inteiros	Efetuar subtrações no material mediante a ação de retirar quantidades sejam estas positivas ou negativas; Realizar reduções mútuas entre positivos e negativos para obter resultados; Compreender que subtrair um número negativo equivale a adicionar o número positivo com o mesmo valor absoluto; Compreender que subtrair um número positivo equivale a subtrair o número positivo com o mesmo valor absoluto.
Multiplicação com números inteiros	Empregar o conceito de multiplicação como repetição de parcelas adicionando ou retirando parcelas de números positivos ou negativos; Associar as ações de adicionar e retirar às transformações de sentidos e a regra de sinais; Identificar a relação entre a ação de retirar parcelas ao fato de ter que ter determinada quantidade; Compreender que para retirar é necessário acrescentar quantidades mediante zeros; Buscar regularidades (regra de sinais) analisando as transformações de sentido entre a multiplicação e seu resultado.
Dividindo números inteiros	Compreender a divisão como operação inversa da multiplicação; Utilizar as regularidades ao efetuar operações inversas.

Fonte: Dados da pesquisa (2020).

Estas tarefas foram desenvolvidas com uma aluna cega, matriculada regularmente no oitavo ano do Ensino Fundamental, no contraturno e no espaço de Atendimento Educacional Especializado-AEE⁸, Sala de Recurso Multifuncional - SRM. As intervenções com o material Soroban dos Inteiros foram conduzidas pela primeira autora desse artigo sem interferências da professora regente da SRM e com duração aproximada de quatorze horas divididas em sete dias.

A partir da codificação seletiva, associando os quadros teóricos sobre o ensino de Matemática para estudantes cegos, o ensino de números inteiros, os nexos conceituais da civilização chinesa e a manipulação do Soroban dos Inteiros, discutimos na próxima seção o material e seu potencial para compreensão dos nexos conceituais de números inteiros por uma aluna cega.

O Soroban dos Inteiros

O material didático manipulável para auxiliar no ensino de números inteiros para estudantes cegos e videntes foi construído a partir das características do ábaco dos inteiros e do soroban. Isso porque o ábaco dos inteiros é um material concreto, já utilizado para generalizações das regras de sinais, além do seu funcionamento ter similaridade com as manipulações e representações feitas pela civilização chinesa, com números negativos, representados por palitos pretos e vermelhos.

Partindo desse pressuposto, as manipulações e representações de números inteiros e suas operações por meio de palitos possuem uma lógica particular construída historicamente na China, ou seja, caracterizam um nexo conceitual de números inteiros. Dessa forma, entendemos que tanto o ábaco dos inteiros como o *Soroban dos Inteiros*, se utilizados com este nexo chinês, são instrumentos conceituais que podem significar os números inteiros.

Como o ábaco dos inteiros é composto por duas hastes, onde são representados por meio de argolas ou peças pretas e vermelhas os números negativos e positivos, isto restringe às manipulações realizadas no material a nove unidades. Ou excedendo-as os registros acabam não considerando o sistema posicional, pois não se realiza associações como: 12 unidades positivas, são equivalentes a 1 dezena positiva, mais duas unidades positivas, perde-se a relação algarismo com quantidade representacional.

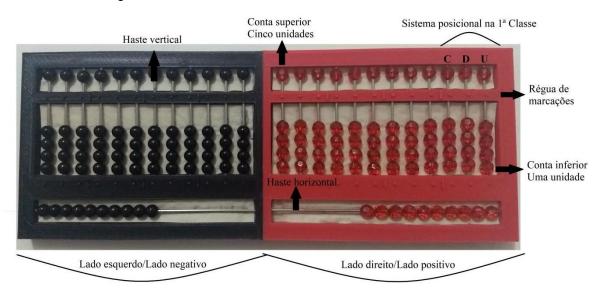
Pensando em superar essa problemática, consideramos importante a manutenção de registros e operações de inteiros, considerando o sistema posicional, o que justifica a

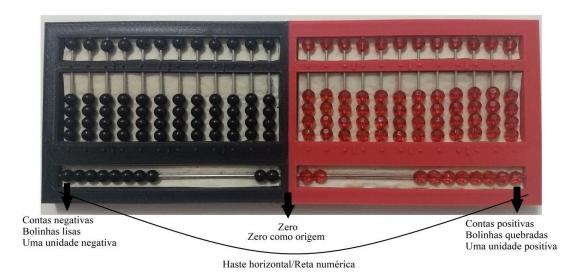
inspiração do material a ser adaptado, também tomando como referência o soroban, que possui essa característica e é utilizado por cegos para registro e cálculos.

A estrutura do *Soroban dos Inteiros* é similar à do soroban para deficientes visuais ou do ábaco simples. Entretanto, no *Soroban dos Inteiros*, foi inserida uma marcação para separar o lado direito (onde se representará os números positivos), do lado esquerdo (onde se representará os números negativos), para representar e diferenciar números positivos de negativos. Cada lado do material é cortado por uma mesma régua de marcações que evidencia onde se localizam cada classe de registro numérico e de resultados.

Em cada lado do material há quatro classes positivas do lado direito e quatro classes negativas do lado esquerdo. Cada classe possui três hastes verticais, nas quais são registradas as unidades, dezenas e centenas na ordem da direita para a esquerda, respectivamente, como no sistema posicional (CDU).

A régua com as marcações de classes divide as hastes verticais, de forma que em cada haste há 5 contas (bolinhas/peças). Cada conta da parte superior da régua equivale a 5 unidades e cada uma das quatro contas da parte inferior equivale a 1 unidade, o que possibilita registrar em cada haste até nove unidades, nove dezenas e nove centenas, respectivamente, ou o equivalente a 999 unidades em cada classe, segundo o sistema posicional (CDU), tanto do lado vermelho, equivalente aos valores positivos, quanto do lado preto equivalente aos valores negativos. Podemos observar estas características estruturais na Figura 3.




Figura 3 – Características estruturais do Soroban dos Inteiros

Fonte: Dados da pesquisa (2020).

Quanto à utilização dos materiais didáticos, Moysés recomenda que "[...] deve ser seguida de processos que levem a abstrações e amplas generalizações. Isso implica se passar das formas figuro-concretas do pensamento, para o pensamento lógico-conceitual" (MOYSÉS, 2012, p. 45). Acreditamos que a abstração, pode ser mediada pelo material didático manipulável e pelo professor em ofertar a possibilidade do estudante, compreender os conceitos matemáticos pelo concreto, quando este tem potencial para isso. É com o uso gradativo do material, que o estudante cego, pode investigar padrões e chegar mais próximo dos conceitos abstratos. Nesse caso, não evidenciamos o uso de materiais didático manipuláveis com prazos de validade no ensino de determinado conteúdo, tendo que o estudante, após usá-lo, obrigatoriamente chegar a abstrações e posteriormente abandoná-lo. Destacamos, assim, o uso de materiais didáticos manipuláveis, não só como mediação para o ensino e aprendizagem de conteúdos, mas como suporte auxiliar no desenvolvimento de atividades posteriores.

A maneira como o estudante é orientado a utilizar os materiais manipuláveis interfere diretamente na percepção tátil e no processo mental que constrói com seu uso, ou seja, a utilização adequada do material evita a criação de obstáculos na aprendizagem, tornando o material um meio de promoção e apropriação de conhecimento. Para que o aluno cego possa diferenciar os números positivos dos negativos, as classes e hastes do lado direito do material, referente aos números positivos, têm contas (bolinhas/peças) com textura. A diferença de textura foi validada pela aluna cega. Ela as nomeou, segundo uma característica, que as diferencia reconhecendo e identificando as contas como *bolinhas quebradas* e *bolinhas lisas*. Tanto do lado esquerdo quanto direito do material, abaixo do local de registros das classes numéricas, há uma haste horizontal, dividida ao meio por uma marcação, que simboliza o zero, o que remete a reta numérica em que é possível comparar quantidades unitárias. Em cada lado dessa haste horizontal, há dez contas (bolinhas/esferas), quebradas e lisas, cada uma equivalente a uma unidade positiva e negativa, respectivamente (Figura 4).

Figura 4 - Haste horizontal e a reta numérica

Fonte: Dados da pesquisa (2020).

O Soroban dos Inteiros, foi construído a partir de quatro peças de plástico impressas em impressora 3D, hastes feitas de material de aço e miçangas com duas texturas e cores diferentes. Para que não se perca nenhum registro numérico feito nas classes movimentando as contas, abaixo das hastes há uma placa de espuma e outra de couro que garante que as contas não se movimentem livremente. A montagem do material foi feita manualmente e o design e estrutura foram desenvolvidos pela primeira autora deste trabalho.

Como os movimentos no material são importantes para a identificação da mudança de natureza ou não dos números nas operações, para que o aluno perceba e tenha a possibilidade de leitura da operação e seu resultado nas trocas dos sentidos positivos e negativos, foi necessário padronizar a realização de registros numéricos no material, conforme o Quadro 2.

Quadro 2 - Registros numéricos no material em classes

Classe	Registros segundo a operação
1 ^a Classe	Adição: Primeira parcela da adição ou registro para obter o resultado positivo ou negativo. Subtração: Minuendo ou registro para obter o resultado positivo ou negativo Multiplicação: Registro para obter o resultado positivo ou negativo.
2 ^a Classe	Usada também para estender o registro de parcelas, minuendo, fator ou registro de resultado, quando os números são de ordem unidade de milhar à centena de milhar.
3 ^a Classe	Adição: Segunda parcela da adição. Subtração: Subtraendo. Multiplicação: Segundo fator ou multiplicador.
4 ^a Classe	Adição e subtração: Classe destinada à repetição do registro feito na primeira classe. Como na 1º classe o numeral será alterado e passará a ser resultado o registro inicial se mantém na terceira classe relembrando o primeiro número da operação quando necessário a leitura da operação como um todo. Multiplicação: Primeira parcela da multiplicação.

Fonte: Dados da pesquisa (2020).

Podemos observar as separações e localizações das classes do *Soroban dos Inteiros*, tanto do lado direito e esquerdo, respectivamente, lado positivo e negativo na Figura 5.

Aª Classe 3ª Classe 2ª Classe 1ª Classe 4ª Classe 3ª Classe 2ª Classe 1ª Classe

Números negativos

Números positivos

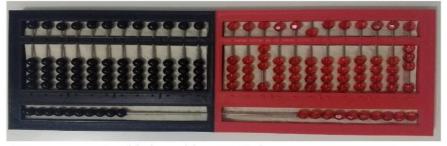
Figura 5 - Classes positivas e negativas no Soroban dos Inteiros

Fonte: Dados da pesquisa (2020).

Com isso, uma ação padrão decorrente desse registro é a de obter o resultado a partir da alteração da primeira parcela, minuendo ou primeiro fator sempre na primeira classe. Basicamente, usando o material opera-se a partir do primeiro número da operação.

Nesse sentido, é a interpretação dos sinais de adição e subtração como ações de acrescentar e tirar nos lados do material que tem carga simbólica, sobretudo no contexto de compreender a multiplicação como adição de parcelas iguais que possibilita identificar a movimentação dos resultados no lado positivo e negativo do material. E acrescentando e tirando contas (bolinhas/esferas), sempre na primeira classe do lado positivo ou negativo conforme a natureza do número, é que poderá ser utilizada a ideia do equilíbrio ou a ideia de cancelamento entre uma quantidade negativa e positiva, ou seja, a ideia de destruições mútuas dos chineses.

Após a ação descrita anteriormente, é possível fazer a leitura e ter compreensão da operação como um todo, graças ao registro duplo do primeiro número na primeira classe e sua alteração para a obtenção do resultado. Entretanto, salientamos que no material não é registrado o símbolo operatório +, -, x e ÷. Assim, o estudante deve memorizar ou ter anotado em paralelo à operação realizada, além de interpretar estes símbolos como operações e, consequentemente, em ações de acrescentar ou tirar bolinhas, quebradas ou

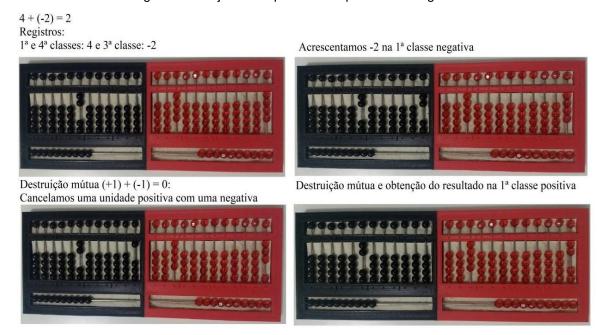

lisas. Os símbolos predicativos, que qualificam a natureza e estado do número e que, matematicamente, são representados por + ou - antecedendo o numeral para representar, respectivamente, números positivos e negativos são registrados no material *Soroban dos Inteiros*, somente através de lugares simbólicos, ou seja, o lugar do registro é que caracteriza uma parcela ou resultado como positivo ou negativo. No lado direito do material, registramos parcelas e resultados positivos, do lado esquerdo negativos.

Para realizar adições no *Soroban dos Inteiros* envolvendo quantidades de mesma natureza, adições de positivo com positivo e negativo com negativo, basta acrescentar ou juntar as bolinhas que representam as parcelas da adição na primeira classe do material. Como exemplo, podemos observar a operação 3 + 5 = 8, na Figura 6.

Figura 6 – Exemplo de adição com quantidades positivas

3 + 5 = 8Registros:

1ª e 4ª classe: 3 e 3ª classe: 5


Acrescentamos 5 unidade positivas na 1ª classe

Fonte: Dados da pesquisa (2020).

Para realizar adições no *Soroban dos Inteiros* envolvendo quantidades de diferentes naturezas, acrescentamos as quantidades positivas ou negativas na primeira classe, entretanto, para obter o resultado utilizamos o princípio de equivalência para cancelar unidade positiva com negativa, num processo de *destruição mútua*, até esvaziar uma das primeiras classes. Este processo, permite a percepção de que adicionar um número negativo equivale a subtrair seu valor em módulo, conforme ilustrado na figura 14, na resolução de 4 + (-2) = 2, quando registramos 4 e por fim, deste número, retiramos 2.

Figura 7 – Adição com quantidades positivas e negativas

Fonte: Dados da pesquisa (2020).

Os registros e movimentações nas operações de subtração são similares às demonstradas acima, porém com o sentido de retirar quantidades positivas ou negativas e usar o cancelamento de unidades positivas com negativas por *destruição mútua* para obter resultados. Orientamos que para as operações de adição e subtração, o registro da 1ª parcela seja efetuado simultaneamente na 1ª e 4ª classe (conforme indica o quadro 1), isso fará com que após seja alterada a 1ª classe para a obtenção do resultado, a 1ª parcela se mantenha anotada na 4ª classe para leitura da operação e seu resultado.

O cego e o Soroban dos Inteiros

Mediante ao lema: *Nada sobre nós sem nós*, foi instituída a Lei 13.146/15, denominada Lei Brasileira de Inclusão - Estatuto da Pessoa com Deficiência (LBI). O lema mencionado na pesquisa de Peixoto, Góes e Bitencourt (2019), por uma estudante cega, fazem os autores refletirem e afirmarem "o ponto de partida para a adaptação dos recursos deve ser o próprio estudante" (p. 283).

Embora não seja objetivo deste artigo, apresentar os resultados do desenvolvimento das tarefas com o estudante cego, salientamos que para nós, não se trata somente do estudante cego, ser o motivo da adaptação ou construção de um material didático manipulável, mas dele ser participante da sua elaboração. Pouco sabemos sobre os estudantes cegos sem os mesmos, pouco sabemos sobre a potencialidade, validação e

aceitação de um material para cegos sem cegos, isto, porque podemos levantar hipóteses e evidências, que talvez não sejam as mais adequadas e assertivas. Assim, a fim de ilustrar seu papel na adaptação do Soroban dos Inteiros, discutimos brevemente algumas contribuições de uma aluna cega, identificada por nós pelo nome fictício Verônica, a fim de garantir a confidencialidade dos dados⁹, para o desenvolvimento do Soroban dos Inteiros.

Nas tentativas de Verônica, identificamos a dificuldade de realizar operações com números de naturezas distintas. Para Rodrigues (2009) e Lima e Moisés (1998), quando aprendemos a contar números naturais, intuitivamente contamos em movimento de mão única, ou seja, em um único sentido. Enquanto no contexto da simultaneidade de opostos no conjunto dos inteiros, devemos considerar as operações num movimento em dois sentidos, em mão-dupla. Claramente, Verônica modifica a operação3 x (-4) para realizar contagens de quantidades de mesma natureza, o movimento que conhece e consegue realizar.

Pesquisadora: Lembra lá o que significa adicionar um negativo?

Verônica: Aumentar um positivo.

Pesquisadora: Será?

Verônica: Não. Diminuir um positivo.

. . .

Pesquisadora: De menos quatro para menos oito, aumenta?

Verônica: Não, na verdade diminuiu. Ah, somar é igual a diminuir os negativos.

Conforme o excerto anterior, no *Soroban dos Inteiros*, registramos de quatro em quatro, ficando com doze, logo realmente aumentou a quantidade (se considerarmos o valor em módulo), porém do lado negativo. Devido ao acréscimo de *bolinhas lisas*, tem-se a falsa percepção de aumento, já que, segundo a regra *zheng/fu*, nas adições de quantidade de mesma natureza deve-se acrescentá-las mutuamente (RODRIGUES, 2009).

Nesse excerto identificamos que, para a estudante, o processo de destruições mútuas e o cancelamento entre uma unidade positiva e outra negativa é que auxiliaram a encontrar o resultado da operação em estudo. A associação entre positivos e negativos e o equilíbrio entre os contrários. Para Lima e Moisés (1998), fazem parte do pensamento social da China, vinculado ao princípio Yin/Yang, em que "Nada existe na natureza sem o seu contrário [...] existem aos pares, pois a todas correspondem aspectos opostos, contrários,

formando unidades de contrários. E estes contrários em unidade coexistem na forma de movimento" (LIMA; MOISÉS, 1998, p. 14). Assim, é o movimento em sentidos opostos, entre os contrários (positivos e negativos), que permitem as destruições mútuas e o zero oriundo de equivalências no material.

Após resolver os itens de *a*) a *f*) da tarefa 5 sobre adições de números positivos, perguntamos: Até agora estávamos trabalhando com que tipo de operação e que tipo de número? Os estudantes associaram estas questões a contar bolinhas a partir da primeira parcela. Perguntamos, então, o que significa adicionar um número positivo à Verônica, que respondeu: Somar um número positivo com um número que já tem ali. Identificamos aqui a percepção da aluna quanto a regularidade de que adicionar um número positivo é equivalente a adicionar este número com valor absoluto.

A resposta de Verônica, baseada no uso do *Soroban dos Inteiros*, faz referência a regra *zheng/fu,* para adição de palitos da mesma cor, em que devemos acrescentá-los mutuamente. Dessa maneira, ao acrescentar as *bolinhas quebradas* no material mediante a regra dos matemáticos da Dinastia Han, Verônica utiliza o nexo conceitual de números inteiros, oriundo do cálculo com palitos, para adicionar números positivos (RODRIGUES, 2009).

Em todas as intervenções, Verônica participou ativamente, se organizou e orientou lendo as tarefas na folha impressa em braille, registrando os números no material, movimentando as *bolinhas lisas* e *quebradas* e digitando na máquina braille Perkins as respostas obtidas, tudo isso com as mediações da professora/pesquisadora.

Conclusão

Apresentamos e discutimos neste artigo o Soroban dos Inteiros, material adaptado a partir do quadro teórico referente ao ensino de números inteiros, com suporte nos nexos conceituais, ábaco dos inteiros e soroban.

A partir deste estudo, construímos o Soroban dos Inteiros, cuja estrutura é formada por peças fixas, com características agradáveis ao tato, de fácil manuseio, porém sem que se movimentem soltas. Estas características associadas a forma como foram estipulados os registros padrões relativos aos números inteiros, favoreceram a compreensão epistemológica dos números inteiros pela aluna cega, por meio da percepção das transformações de operações com números de diferentes naturezas e de criar meios de registros e contagens, correspondências um a um e anotações de parcelas (registros não estabelecidos) para facilitar as manipulações para obter os resultados.

Avaliamos este material manipulável, por nós denominado *Soroban dos Inteiros*, como um recurso potencial para estudantes cegos significarem números inteiros, a partir de experiência sensorial tátil e/ou visual, representativa e manipulativa dos significados e lógica operatória de números inteiros. Além disso, dada suas características e a possibilidade de ser usado em sala de aula com alunos cegos e videntes, possui potencial inclusivo, porque é um material que também beneficia todos os estudantes, os integra às práticas da sala de aula e favorece interação comunicativa e colaborativa. Portanto, o Soroban dos Inteiros favorece a inclusão e a compreensão dos inteiros para além de regras e algoritmo.

Referências

BOCK, Geisa LetíciaKempfer. **Simbologia Braille**. Org: Geisa Letícia Kempfer Bock, Solange Cristina da Silva; Design instrucional: Carla Peres Souza. 1. ed. – Florianópolis: DIOESC: UDESC/CEAD/UAB, 2013.

BOYER, Carl B. História da Matemática. 7. ed. São Paulo: Edgard Blucher, 1996.

BRASIL. Ministério da Educação. Secretaria de Educação Continuada, Alfabetização, Diversidade e Inclusão. **Grafia Braille para a Língua Portuguesa** / Elaboração: DOS SANTOS, Fernanda Christina; DE OLIVEIRA, Regina Fátima Caldeira – Brasília-DF, 3ª edição. 95p., 2018.

BRASIL. Estatuto da Pessoa com Deficiência. Lei nº 13.146, de 6 de julho de 2015. Legislação Brasileira de Inclusão da pessoa com deficiência. 2015. Disponível em: http://www.planalto.gov.br/ccivil_03/_ato20152018/2015/lei/l13146.htm. Acesso em: 16 nov. 2018.

BRASIL. Ministério da Educação. Secretaria de Educação Especial. **Soroban:** Manual de Técnicas Operatórias para Pessoas com Deficiência Visual. 2. ed. Brasília: 2012.

BRASIL. **Saberes e Práticas da Inclusão**. Desenvolvendo competências para o atendimento às necessidades educacionais especiais de alunos cegos e de alunos com baixa visão. Coordenação geral SEESP/MEC. 2 ed. Brasília: MEC, Secretaria de Educação Especial, 2006. Disponível em:

http://portal.mec.gov.br/seesp/arquivos/pdf/alunoscegos.pdf. Acesso em: 15 ago. 2019.

BRASIL. Ministério da Educação. Secretaria de Educação Especial. **Grafia Braille para a Língua Portuguesa** / Elaboração: Cerqueira, Jonir Bechara, et al. Secretaria de Educação Especial. Brasília: SEESP, 2006.

BRASIL. Secretaria de Educação Especial. **Parâmetros Curriculares Nacionais**: Adaptações Curriculares. Brasília: MEC/SEF/SEESP. 1998. Disponível em: http://portal.mec.gov.br/seb/arquivos/pdf/livro03.pdf Acesso em: 03 set. 2020.

CARAÇA, Bento de Jesus. Conceitos fundamentais da matemática. Lisboa: Bertrand, 1963.

CARAÇA, Bento de Jesus. **Conceitos fundamentais da Matemática**. Portugal: Gradiva, 1984.

COELHO, Márcia Paula Fraga. A multiplicação de números inteiros relativos no "Ábaco dos inteiros": Uma investigação com alunos do 7º ano de escolaridade. 2005, 151 f. Dissertação (Mestrado em Educação na Área de Especialização em Supervisão Pedagógica em Ensino da Matemática) - Universidade do Milho, Braga, 2005.

FERNANDES, Solange Hassan Ahmad Ali; HEALY, Lulu. Cenários multimodais para uma Matemática Escolar Inclusiva: Dois exemplos da nossa pesquisa. In: XIV CIAEM Conferencia Interamericana de Educación Matemática, 2015, Tuxtla Gutiérrez. Anais da Conferencia Interamericana de Educación Matemática. Chiapas: Editora do CIAEM, 2015. v. 1. p. 1-12.

FERNANDES, Solange Hassan Ahmad Ali.; HEALY, Lulu.; SERINO, Ana Paula Albieri. Desconstruindo hierarquias epistemológicas no contexto das interações de alunos cegos com homotetia. **JIEEM – Jornal Internacional de Estudos em Educação Matemática**, v. 7 (2) p. 89-116, 2014.

KALEFF, Ana Maria Martensen Roland (Org.). **Vendo com as mãos, olhos e mente**: Recursos didáticos para laboratório e museu de educação matemática inclusiva do aluno com deficiência visual. Niterói: CEAD / UFF, 2016.

KOPNIN, Pavel V. **A dialética como lógica e teoria do conhecimento**. Rio de Janeiro, Civilização Brasileira, 123 v. (Coleção Perspectivas do homem), 1978.

LIMA, Francisco José de. **O efeito do treino com desenhos em relevo no reconhecimento háptico de figuras bidimensionais tangíveis**. 2001. 168 f. Tese (Doutorado em Psicologia) - Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP) - Universidade de São Paulo, Ribeirão Preto, 2001.

LIMA, Luciano Castro; MOISÉS, Roberto Perides. **O número inteiro**: numerando movimentos contrários. São Paulo: CETEAC, 1998.

LINS, Romulo Campus; GIMENEZ, Joaquim. **Perspectivas em aritmética e álgebra para o século XXI**. São Paulo: Papirus, 1997.

LORENZATO, Sergio. O laboratório de ensino de Matemática na formação de professores. 3ª ed. Campinas: Autores Associados, 2012.

MARIANO, Adolfo César Souza; MATOS, Fábio Alexandre de. **O ensino de números inteiros no Ensino Fundamental**. 2013. 19 f. Trabalho de Conclusão de Curso do Mestrado Profissional em Matemática - PROFMAT - Universidade Federal de São João Del-Rei - UFSJ. Sociedade Brasileira de Matemática- SBM, 2013.

MARTINS, Élle., FARIAS, Danilo Magalhães; REZENDE, Wanderley Moura. Compreendendo os números inteiros e suas operações. **Encontro Mineiro de Educação Matemática- EMEM**. Universidade Federal de Juiz de Fora (UFJF), 2015. Disponível em: https://www.ufjf.br/emem/files/2015/10/COMPREENDENDO-OS-N%c3%9aMEROS-INTEIROS-E-SUAS-OPERA%c3%87%c3%95ES.pdf. Acesso em: 28 out. 2020.

MOYSÉS, Lúcia. **Aplicações de Vygotsky à educação matemática**. Coleção magistério: formação e trabalho pedagógico. 11ª ed. Campinas (SP): Papirus, 2012.

NEVES, Frank Presley de Lima; PEIXOTO, Jurema. Desenho Universal para Aprendizagem: reflexões sobre o desenvolvimento de aulas de Matemática. **Revista Exitus**, Santarém/PA, Vol. 10, p. 1-30, e020009, 2020.

PEIXOTO, J. L. B.; GÓES, L. E. S.; BITENCOURT, D. V. A inclusão nas aulas de matemática: análise da narrativa de uma estudante cega. Educação Matemática em Revista, Brasília, v. 24, n. 65, p.275-288, set./dez. 2019.PEREIRA, Ana Paula Cabral Couto; PEREIRA, Vinicius Mendes Couto. Operações fundamentais: ideias, significados e algoritmos. **Anais do XI Encontro Nacional de Educação Matemática**, Curitiba-PR, 6 p. 2013.

POMMER, Wagner Marcelo. **Diversas abordagens das regras de sinais nas operações elementares em Z**. Seminário de Ensino de Matemática, SEMA-FEUSP, 13 p. 2010.

REILY, Lucia. **Escola inclusiva**: Linguagem e mediação. Campinas: PAPIRUS, 192 p. 2004.

RODRIGUES, Renata Viviane Raffa. A construção e utilização de um Objeto de Aprendizagem através da perspectiva lógico-histórica na formação do conceito números inteiros. 2009. 219 f. Dissertação (Mestrado em Educação) - Universidade Estadual Paulista, Faculdade de Ciências e Tecnologia, 2009.

ROSA, Fernanda Malinosky C da; BARALDI, Ivete Maria. O uso de narrativas (auto) biográficas como uma possibilidade de pesquisa da prática de professores acerca da educação (matemática) inclusiva. **Boletim de Educação Matemática**, v. 29, n. 53, p. 936-954, 2015. Disponível em: http://www.scielo.br/pdf/bolema/v29n53/1980-4415-bolema-29-53-0936.pdf. Acesso em: 05 set. 2020.

SÁ, Elizabet Dias de. Informática para as pessoas cegas e com baixa visão. In: **Atendimento educacional especializado: deficiência visual**. SÁ, Elizabet Dias de; CAMPOS, Izilda Maria de; SILVA, Myriam Beatriz Campolina, SEESP / SEED / MEC Brasília, 2007.

SGANZERLA, Maria Adelina Raupp; GELLER, Marlise. Professores do AEE na perspectiva do Ensino de Matemática a alunos deficientes visuais. **Educação Matemática em Revista**, Brasília, v. 24, n. 65, p. 190-210, set./dez. 2019.

SILVA, Erickson Gomes Imperador da; CONTI, Kely Cristina. O ábaco dos inteiros: auxílio aos estudantes na compreensão dos números negativos e suas operações. **REVEMAT**. Florianópolis (SC), v.11, n. 1, p. 74-83, 2016.

SOUSA, Maria do Carmo. **O ensino de álgebra numa perspectiva lógico-histórica**: um estudo das elaborações correlatas de professores do ensino fundamental. 2004. 286 f. Tese (Doutorado em Educação) — Faculdade de Educação, Universidade Estadual de Campinas, Campinas, 2004.

STRAUSS, Anselm Leonard; CORBIN, Juliet M. **Basics of qualitative research:** grounded theory procedures and techniques. Newbury Park, CA: Sage Publications, 1998.

TEIXEIRA, Leny Rodrigues Martins. Aprendizagem operatória de números inteiros: obstáculos e dificuldades. **Pró-Posição**, v. 4, n. 1, março, 1993. Disponível em: http://mail.fae.unicamp.br/~proposicoes/edicoes/home67.html. Acesso em: 9 out. 2016.

VYGOTSKY, Lev Semionovitch. **A formação social da mente**. São Paulo: Martins Fontes, 1991.

Notas

- ¹ Intitulado pelas autoras como Soroban dos Inteiros.
- ² Material utilizado por cegos para efetuar registros e operações matemáticas.
- ³ Este artigo faz parte da dissertação de Mestrado da primeira autora do trabalho. O material foi validado por uma aluna cega e um aluno com baixa visão, sendo as peças do Soroban dos Inteiros nomeadas por eles.
- ⁴O Desenho Universal (DU), segundo Neves e Peixoto (2020), é um conceito de origem na área da engenharia e da arquitetura. Trata-se da concepção de construir produtos, serviços e ambientes para serem utilizados por todos, sem a necessidade de maiores adaptações posteriormente. Segundo Sá (2007), os sete princípios fundamentais do Desenho Universal (DU) são: equiparação nas possibilidades de uso; flexibilidade no uso; uso simples e intuitivo; captação da informação; tolerância ao erro; mínimo esforço físico; e dimensão e espaço para uso e interação.
- ⁵ Para Kaleff (2016), um bom material didático manipulável deve apresentar fidelidade matemática, ser um mediador lúdico, ter utilização flexível, auxiliar na abstração matemática e proporcionar a manipulação individual.
- ⁶ A Lei Brasileira de Inclusão da Pessoa com Deficiência (Estatuto da Pessoa com Deficiência) instituída pela Lei nº 13.146, de 06 de julho de 2015, em seu Art. 3º inciso III conceitua Tecnologia Assistiva como [...] produtos, equipamentos, dispositivos, recursos, metodologias, estratégias, práticas e serviços que objetivem promover a funcionalidade, relacionada à atividade e à participação da pessoa com deficiência ou com mobilidade reduzida, visando à sua autonomia, independência, qualidade de vida e inclusão social (BRASIL, 2015, n.p).
- ⁷ Segundo Reily (2004), o Sorobã (Soroban) é um tipo de ábaco de origem oriental, adaptado para utilização de cegos no Brasil por Joaquim Lima de Morais, em 1949. Um material usado para contagem e realizações de operações matemáticas.
- ⁸ Não apresentamos ou discutimos aqui os resultados das intervenções por não serem objeto deste recorte da pesquisa. Aqueles que desejarem podem encontrar os resultados em: http://repositorio.utfpr.edu.br/jspui/handle/1/24098 e https://www.scielo.br/j/ciedu/a/6pJpWLXynyrZWq5sGknk4wy/?lang=pt.
- ⁹ Projeto aprovado pelo Comitê de Ética sob protocolo:86822218.5.0000.5547.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)