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GIS This study aimed to assess landslide susceptibility in the Sahla
Inventories watershed in northern Morocco. Landslides hazard is the most
Assessment frequent phenomenon in this part of the state due to its
LR mountainous precarious environment. The abundance of
Rif Mountains rainfall makes this area suffer mass movements led to a notable

adverse impact on the nearby settlements and infrastructures.
There were 93 identified landslide scars. Landslide inventories
were collected from Google Earth image interpretations. They
were prepared out of landslide events in the past, and future
landslide occurrence was predicted by correlating landslide
predisposing factors. In this paper, landslide inventories are
divided into two groups, one for landslide training and the other
for validation. The Landslide Susceptibility Map (LSM) is
prepared by Logistic Regression (LR) Statistical Method.
Lithology, stream density, land use, slope curvature, elevation,
topographic wetness index, slope aspect, and slope angle were
used as conditioning factors. The Area Under the Curve (AUC)
of the Receiver Operating Characteristic (ROC) was employed
to examine the performance of the model. In the analysis, the
LR model results in 96% accuracy in the AUC. The LSM
consists of the predicted landslide area. Hence it can be used to
reduce the potential hazard linked with the landslides in the
Sahla watershed area in Rif Mountains in northern Morocco.
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Landslides Susceptibility Modelling

INTRODUCTION

Mass movements are the most frequent natural
hazards that affect large areas of
the Rif mountains region in Northern Morocco,
mostly triggered by heavy rainfall. It is one of
the most re-occurring phenomena along with the
Mountains chain threatening infrastructure
and human properties.

Within the context of mass wasting,
landslides can affect communities and influence
their activities. Thus, mapping and delineating
susceptible zones to landslides is important for
land use activities and management decision
making.

The method implemented in this paper has
the overall objective of developing an
understanding of slope instability processes and
patterns at a regional scale.

The main objective of this study is to assess
landslide hazards in the Sahla watershed which
is a subject that has not to gain much interest in
scientific publications in the Rif area. It is
expected that during the process, many
conditioning factors affecting slope instability in
the Rif mountains will be known, thus giving
land-use planners working on landslides the
ability to make appropriate decisions based on
the quantify analyses of the the spatial
probability (susceptibility) of landslide hazards
in the Sahla watershed with the use of LR.
Multivariate statistical model in order To build
a consistent landslide inventory for the study
area using aerial photographs, satellite images,
literature review, and field survey cartography.

STUDY AREA

Sahla sub-catchment is located in the Central
Rif mountains, is a part of Wadi (river)
catchment named Ouerrha (Figure 1) limited
from Northeast by Sra sub-catchment Wadi,
Southeast by Ouerrha Wadi, from the West by

Aoulai Wadi, on the south part is the confluence
with Ouerrha Wadi. Its boundaries were defined
by a ridgeline in the total area of 175 Km2. This
area was chosen for its geological and
geomorphological characteristics.

The study area belongs administratively to
the region Fes Meknes, province of
Taounate, municipality of Ghafsai,
characterized by a high density of
population (82.36 inhabitants per km?2).
(HCP, 2014)

Environmental Data

Landslide inventories can be developed from
field surveys by interpretation of remotely
sensed images based on either the spectral
characteristics, shape, contrast, and the
morphological expression (Kanungo et al.,
2006), or aerial photographs (Ayalew and
Yamagishi, 2005) and Google images
interpretation (Xu et al., 2013). The largest
number of Landslides were mapped from Google
Earth images interpretation of Central Rif. A
total of 93 landslide scars were mapped (Figure
2). To use the landslide Data from Google Earth
in the GIS environment, it is required to digitize
the Data from Google Earth images
interpretation. Then, these items were saved to
the computer as GIS compatible format, and the
Data was again subsequently converted into
shapefile format, then into a raster format.

In susceptibility assessment, it is crucial to
assume that future landslides will occur in the
same condition that caused the past landslides
(Varnes, 1984). There are no strict guidelines for
causal factors selection to be used in landslides
modeling, and as such, the selected predisposing
factors vary widely between studies (Ayalew et
al., 2005). Also, the determination of landslide
predisposing factors was associated with the
availability of Data. The entire landslide causal
factors that this paper has used also fall in this
category.
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Figure 1- Geographical placement of the Sahla watershed in Rif mountains in northern Morocco
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Landslide Data was used as a dependent
variable of eight causal factors including slope,
curvature, aspect, stream density, lithological
facies, and land use pattern which were selected
as independent variables for the landslide
hazard mapping. All of these data are
commonly employed in landslide susceptibility
analysis. Budimir et al. (2015) mention that in
a total of 37 variables commonlly used slope,
aspect, and lithology, are significantly used
especially on studies regarding rainfall-induced
landslides. The relevance of the spatial Data
combination used in the prediction became an

important issue In mass movements
susceptibility analysis (Dewitte et al., 2010). A
high quality DEM provides a high quality of its
derivatives. In order to to carry out detailed
geomorphological analysis, a DEM with 5m
pixel size of the study area was built, it is
generated from two types of data: countours
with 5m interval and quoted points, the
altimetric data is derived from the Moroccan
National Agency for Land Conservation,
Cadastre and Cartography (ANCFCC) at
1:50000 scale.
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Slope Angles and Aspects

The slope angle is known as the inclination
between the horizontal plane and the slope
topographic surface. For  classification

objectives, it was considered the parameters
already adopted in different works of literature
and authors all around the world (Guillard-
Gongalves, 2016).

Figure 2- Training Data from literature, field surveying, and orthophoto.

The relationship between slope angle and
landslide occurrence is very strong (Guzzetti et
al., 2005). Thus, slope angles that have higher
values, at least, up to a certain value range, tend
to be related to an increase in landslide

occurrence. Almost 70% of the watershed area is
dominated by slope angles below or equal to 15°
and that only 1.5% of the study area has slope
angles above 30° (Figure 3).
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Aspect is known as a plane tangent to a
topographic surface. It identifies the downslope
direction of the maximum rate of change in
value from each cell to its neighbors. Thus, the
aspect can be identified as the slope orientation
in azimuth. Aspect is measured clockwise in
degrees from 0 (North azimuth) to 360, coming
full circle. The value of each cell in an aspect
dataset indicates the direction of the cell’s slope
faces. Flat areas having no downslope direction
are given a value of -1 (Burrough, 1986).

The slope aspect is recognized as a crucial
topographic factor. It affects the quantity and

e

daily cycle of solar radiation received at
different times of the year and has a big
influence on the microclimate, especially air
temperature, humidity, and soil moisture
(Rosenberg et al., 1983). All these influences
must be taken into consideration. Thus,
incorporating the aspect as a predisposing factor
for landslide susceptibility assessment through
the statistically based model makes too much
sense. The slopes, within the study area, are
mostly exposed to Southwest and West (Figure
4).

Source: By the authors
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Figure 4- Slope aspects of the Sahla watershed

Inverse of the Wetness Index

The Topographic Wetness Index (IWI) is
generally used to simulate the soil moisture

Figure 5). Thus, it is considered an important
factor in the research of soil erosion and
distributed hydrological models in watersheds
(Serensen et al., 2006). While concave areas can
retain water (high IWI values), steep and convex
areas are more prone to shed water (low IWI
values). The IWI uses Flow Direction and Flow
Accumulation raster’s as inputs.

conditions quantitatively in a watershed, and it
is commonly used as an indicator for static soil
moisture content (

Flow direction is derived from the digital
elevation model, and, from it, we can obtain the
contributing area (Flow Accumulation).
Typically, the IWI values range from less than 1
(dry cells) to greater than 20 (wet cells).
Threshold values are applied to the output
raster, via classification, based on the
researcher’s knowledge of the field, field
characteristics, and observations of the local
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terrain’s response to heavy precipitation and
runoff. Specifically, the IWI relates drainage
areas with slope variations within a watershed
and it can be expressed by the Equation 1,
defined by Beven and Kirkby (1993):

WI = In (ﬁ) 1)

Where a is contributing upstream area (m2)
from flow accumulation raster, and B is the local
slope angle (degrees). It is important to mention
that for its calculations it is important to convert
degrees to radians.

The Inverse Wetness Index application
(Equation. 2) avoids the errors arising
where cell division matches with = 0, since a,

Figure 5- Topographic wetness
0, e 7 7 AT

=
{ he 41

-

corresponding to the denominator
value (Oliveira, 2012).
IWI = h 2
a

There are a couple of algorithms to calculate
flow direction: D8 and Doo. For this paper, the
algorithm Do was selected. Such an algorithm
enables the determination of multiple flow
directions, providing thus, better results when
compared to algorithms that only assume 8
possible directions of flow (Serensen et al.,
2006). The procedure was done under an
application called TauDEM (Terrain Analysis
Using Digital Elevation Models) for ArcGIS
software, it requires the existence of a DEM free
of sinks. Then, the flow direction model was
derived from it.

index of

‘/,«‘f’ 7
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." 69

Source: By the authors
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The TWI of the Sahla watershed was
categorized into 7 classes to reveal better
discrimination. For this reason, we applied a
range of classes based on a logarithmic
progression of base 10. The TWI of Sahla
watershed demonstrates that the beginning
class is the areas where B = 0. such areas are
mostly located in the valley bottoms. The spatial
distribution of potential water accumulation, it
can be observed that generally increases due to
the proximity to the streams (TWI classes ]O-
0.00001] and ]0.00001-0.0001]) being, the
permanent or ephemeral streams, the locations
where water accumulates. The steepest slope
areas are associated with the TWI classes
10.0001 0.001] and ]0.001 0.01], and the
interfluves areas are dominated by the TWI
classes ]0.01 - 0.1] and > 0.1.

Stream density

Stream density or wetted index is a commonly
used method to simulate the amount of water in
the soil quantitatively (Beven and Kirkby,
1993). It was wused to approximate the
distribution of groundwater circulating in the
study area. It is carried out by defining the
number of line elements of fixed length in a fixed
area (Stizen and Doyuran, 2004), it is calculated
by dividing the total length of streams by the
watershed area (Equation 3) Stream density
creates a relationship between drainage areas
and slope variations within a catchment area.

) Y. stream length
Stream density = study area 3)

The numbers of line elements were
calculated per km. As expected, the
concentration of streams and the wetted index
diminish with distance length linear magnitude
per unit area. In the classification of the stream
density of underground water circulation, no
preference was given to any zone (Figure 6), and
the area was classified into seven classes of
equal density. Around 43% of the study area has
a stream density between 4.2-6.2 while the
highest density class (12.6-14.6) of the stream
density map occupies just 1.56%.

Concave slopes with low gradient, usually
drain water into it, and it leads to high giving a
high value of Wetted Index, while convex slopes
allow water to flow away from it giving these
areas a low wetted index value. Generally, the
stream density index, range from less than one
in very dry areas to more than twenty in very
humid areas. This index increases with
increasing proximity to the hydrographical
network with permanent streams having a
higher  wetted index than  seasonal
watercourses. The map was classified
permitting the area of each class to be
calculated.
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'ofly“

Hypsometry

The hypsometry of the study area has altitudes
ranging from 250m to 1200m and the general
relief can be divided into three main units
(Figure 7).This includes the southern part,
which is a relatively flat area, the middle part
where the dam is located, and the northern area
that constitutes of highest altitudes in the area.
These unities were classified following their
altitudes, shape, and depth which are important
components in relief defining. The study area
has altitudes ranging from 250 m to 1200 m.

12 =il

Source: Source: By the authors

Lithological Facies

Lithology i1s among the most important
conditioning factor affecting the mechanisms of
mass movements (Terzaghi, 1953) and plays a
fundamental role in the formation of shallow
materials. It has a key impact in monitoring the
nature and rate of geomorphological processes
happening on the slopes. Landslides being a
geomorphological process partially depend on
the lithology and weathering specifications of
the underlying materials (Selby, 1993). The
lithology factor of the Sahla watershed is
developed from the geology map of the
Taounate-Ain Aicha region with a scale of

Soc. Nat. | Uberlandia, MG | v.33 | 59124 | 2021 | ISSN 1982-4513 9
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1:50000 (Suter, 1964), (Figure 8). Detail
lithological formations could not be determined
at this scale. Therefore, small lithological facies
areas could not be identified.

Slope curvature

Slopes curvature is the inverse of the radius of a
circle tangent to the soil surface and it can be
measured in three ways; longitudinal profile,
transversal profile, or a tangential profile
(Clerici et al., 2010). It is difficult to compare the
relationship between curvature and slope
instability due to the unspecified curvature
types employed. Generally, the concave slopes

are most susceptible, because it is associated
with the focus of surface and subsurface runoff
(Zézere et al., 2004). In this paper, the profile
curvatures option was chosen because it gives
the rate of change of gradient or it measures the
downslope trend and identifies different breaks
on the slope.

The profile curvature map was classified into
three classes and it expresses the variation
between positive (concavities) and negative
values (convexities) (Figure 9). Thus, the class
that corresponds to the rectilinear slopes and
flat areas is defined by positive and negative
values mnear zero. The other classes
(representing concavities and convexities are
defined by the limits -0.05 and 0.05.

F1gure 7 Hypsometry in the Sahla Watershed

?lu_ .
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Source By the authors
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Figure 8- Geological settings in the Sahla watershed
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Figure 9- Curvature (Cross Section Profile) of the study area
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Land Use

The land use data was developed by direct
cartography from existing map 1:50000 then
updated from satellite images, and fieldwork
(Figure 10). Land use types as small as 10 m2
were mapped as much as they were visible of the
satellite images. The land use considers some
characteristics that can have an impact on slope
movements (Zézere et al., 1999). The land use
was classified into several classes as follows;
bare rocky soil, croplands, croplands and
shrublands, croplands and trees, dense
croplands, dense reforestation, dense trees,
high-density afforestation, mosaic
forest/croplands, natural forests, open grassland
with sparse shrubs, urban area, and low-density
reforestation over shrubland. Since the area is
Mountainous, it has vast empty land full of
vegetation where cattle can feed on. Due to
overgrazing and other anthropic activities, the
grassland area is highly degraded and large
areas are bear with very little vegetation and
soils. Most of the area is rural with very few
houses.

Logistic Regression Model

LR 1s a multivariate model (Chau and Chan,
2005), also called the logistic model or logit
model, which has been widely used to estimate
the probability of landslide occurrence usually
by relating the dependent variable (landslides in
our case) with a variety of geo-environmental or
independent variables (Guzzetti et al., 2005). LR

can be discrete, continuous, or both, and factors
for multi-regression must be numerical while
those for discriminant analysis must have a
normal distribution. This model uses the
forward method (L.ee and Pradhan, 2007) to
analyze a binary response from several
predisposing factors and regresses a
dichotomous dependent variable on a set of the
independent variables that can be continuous,
interval, or categorized. In this study, LR was
used to analyze the relationship between
multiple independent variables (X1, X2, . .. Xn)
(predisposing factors) and the dependent
variable (y) (landslides). The LR method is
based on three main assumptions.

- The dependent variable is dichotomous
with landslides indicated as 1 when
there is presence or 0 when they are
absent.

- The independent variables are
continuous and should only be included
for significant importance.

- The probability Y is equal to 1 given
distinct values of X. That is if X and Y
has a positive linear correlation, the
probability that landslide will have a
score of Y = 1. This indicates that as X
(factors that caused previous slides)
increases, the likelihood that Y
(landslides) will be equal to 1 will tend
to increase. As X iIncreases, the
probability that Y = 1 increases. This is
based on the presumption that
landslides will always occur under the
same conditions that caused past
landslides.

Soc. Nat. | Uberlandia, MG | v.33 | e59124 | 2021 | ISSN 1982-4513 13
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Figure 10 - Land use in the Sahla watershed

The LR model used a dichotomous dependent
variable (Y), and this requires areas without
landslides to be represented (Figure 11). Since
the independent variable (Y) is dichotomous and
the first value (Y = 1) representing areas with
landslides has been acquired through the
inventory, the other value (Y = 0) representing

areas with no slides had to be obtained. This was
accomplished by randomly generating points
called non-points (pixels) within the study area
by developing random points in relatively safe
areas which are the gentle slopes with a low
gradient.
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Figure 11- The used LR method
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The binary variable employed in this study is
limited to two outcomes, representing the
occurrence or non-occurrence of cases (coded as
1 or O, respectively). The model predicts the
probability of the event as a function of the
independent variables (Youssef et al., 2015).
Many authors have used it (Cox, 1958) to
ascertain the probability of landslides occurring
by associating slope movements motion to
landslide conditioning factors and represent
landslides as (1) when they are present or (0)
when absent. The quantitative relationship
between landslides occurrence and their
dependency on pre-condition variables was
examined through the LR model which is
expressed in its simplest form in Equation 4.

1

P=—r-——
1+exp2 @

Where:

P probability of landslide occurrence
ranging between 0 and 1

Z = a linear combination of conditioning
variables

ez = exponent of conditioning factors

Z assumes a function as in Equation (4).

Soc. Nat. | Uberlandia, MG | v.33 | e€59124 | 2021 | ISSN 1982-4513

z=By+B; X, +B, X, +- B (5)

BO0 here is the “intercept” or “constant term”.
Bi1... here are the coefficients of the LR curve
and X is the independent variable.

After elimination of highly correlated
dependent variables, the sample datasets were
then used to input to the LR algorithm within R
language to compute the correlation of landslide
to each predisposing factor. The ahead stepwise
LR was carried out to include only the predictor
variables with an essential contribution to the
presence of landslides.

The susceptibility index map was built by
incorporating the coefficient (Table 1) of each
factor and summing the list of factors. Among
the seven predisposing factors employed in
constructing the model, four of them had
positive computed weights, which means that
they are significant in causing landslides
occurrence. Among these factors, slope angle
stands out as the most important factor of
landslides. (Selby, 1993).

15
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Table 1. Variables and regression coefficients estimated by LR.

Variable Coefficient Intercept
Aspect 0.0014400887

Curvature -0.1938426176

Elevation -0.0057429231

Lithology -0.0000006806

Slope angle 0.2364887615

Stream density 0.1495128397

TWI

-0.1608782431

-4.4304492308

Source: By the authors

Shallow landslides were frequent on concave
and rectilinear slopes while rockfalls were
recorded on convex slopes, thus making
curvature an important factor. The slope
orientation and elevation had mild significance
while elevation and lithology had minimal effect
on slope instability. The spatial probability of
the area to landslides was assessed using the

success rate curve (Bai et al., 2008) (Figure
12).

Landslide predisposing factors settled to be
necessary by the correlation and association test
were joined using LR (Equation. 6) to build the
susceptibility map of the study area. The
weighted thematic layers for shallow landslides
were developed by multiplying the rasters for
conditioning factors by their coefficient and the
susceptibility index map was built by combining
the weighted conditioning factor maps. This
involved the incorporation of the weighted maps
in the raster calculator and summing them
(Equation. 6). The entire process can be
mathematically expressed as:

Y= (Twi x (-0.1608782431) +
Streamdens x 0.1495128397
+Geolsett X (-0.0000006806) +
Aspect X 0.0014400887

+Slope x 0.2364887615 +ElevX(-
0.0057429231)

+Curvature x (-0.1938426176) -
4.4304492308

()

Where TWI is topographic wetness index,
Streamdens is stream density, Geolsett is
lithology, Aspect is slope aspect, Slope is slope
angle, and Curvature is slope curvature.
whereas the numbers on the equation are
conditioning factors coefficients excepting the
last number which 1is the intercept. The
combination of the spatial probability layers of
conditioning variables (Equation. 5) gave the
susceptibility map (Figure 10).

The susceptibility map was built using
prediction values calculated from probabilities
of binary values and thematic maps. The colour
ramp displays a maximum susceptibility index
of 0.999999 and 4.0027e-07 as the lowest.
Negative spatial probabilities did not exist in
any area of the map. However, great differences
in susceptibility exist. The south around the
outlet of the dam is more probable to be affected
by landslides than the extreme north and
extreme south regions.

Soc. Nat. | Uberlandia, MG | v.33 | 59124 | 2021 | ISSN 1982-4513 16
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Figure 10- Landslide Susceptibility applied the LR using equal interval classification.

gl Al ) § A

TR

RESULTS VALIDATION

The model validation was carried out using 50%
of recorded landslides randomly selected and
were validated employing a complete set of
landslides. Multivariate regression analyses
were used in model validation and consisted of
creating a relationship between the total

affected terrain and the non-affected part using
success rate curve. Here, the validation group of
landslides, 50% (Figure 13), logistic regression
susceptibility map obtained from the initial
modeling and the ROC curve was developed by
computing the background values (areas
without landslides) with the susceptibility map
as input. The crossing points determine the
goodness of fit of the curve. The ROC curve is a

Soc. Nat. | Uberlandia, MG | v.33 | €59124 | 2021 | ISSN 1982-4513 17
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plot that establishes the relationship between
sensitivity (proportion of true positives) against
specificity (proportion of false positives) of the

model at a series of thresholds for a positive
outcome.

Figure 11- Validation procedure for the LR model
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Prediction rate

A"l

Comparison of the.\
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Source: By the authors

The predictive capability or the competence
of the susceptibility maps was judged using the
ROC curves (Zizioli et al., 2013). It is a plot that
sets the relationship between sensitivity
(proportion of true positives) against specificity
(proportion of false positives) of the model at a
series of thresholds for a positive outcome. The
sensitivity which is plotted on the y-axis is the
likelihood that the area with a landslide is
correctly classified while specificity (false
negative rate) is the probability that the area
with no-landslide is correctly classified. The x-
axis expressed as 1 — specificity represents the
false positive rate (Jaiswal et al., 2010).

The determination of the AUC enables the
quantitative evaluation of the overall predictive
capability of LR susceptibility model (Begueria,
2006), ranging between 0 and 1. A value closer
to 1 indicates the good predictive ability of the
model. A casual predictive power will be
manifested for an AUC value of about 0.5,
describing a diagonal straight line (Figure 14).
AUC value below 0.5 means models with a
terrible predictive capacity and should not be
taken into consideration (Bi and Bennett, 2003);

. The mathematical expression of the AUC is
given by Equation 7 (Garcia et al., 2007;
(Pereira et al., 2012).

n 4y
avc= )" 1[(xi+1 —x)x 2 ()
i=

Where x is the portion of the study area
predicted as susceptible by descending order
and y is the percentage of correctly classified
landslide area belonging to the validation group.

Guzzetti et al. (2005) indicates thur fineat
AUC values between 0.75 and 0.8 correspond to
an acceptable model, while AUC values ranging
between 0.8 and 0.9 indicates a good
susceptibility model, and finally, AUC values >
0.9 typify excellent models. The success curve
has an AUC of 0.96. The curve has a good
prediction power with 96% of the landslides
righty captured by the model (Figure 14). The
performance of a model with such values is good
and capable to predict future landslide events in
the study area (Guzzetti et al., 2005).
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Figure 12- ROC curve for LR Model.
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The LR ROC is the measurement of the
correlation between unstable and stable areas.
A greater number of landslides were captured by
the prediction curve (Figure 12) with 95% of the
area found under the Curve. The diagonal line
indicates a 50% probability of occurrence.
Prediction curves with landslide values below
the diagonal line are considered to have a low
predictive capability and should not be
admissible (Guzzetti et al., 2005). With the
curve largely above the diagonal line, the model
is perfect and accepted following the proposal of
Guzzetti et al. (2005).

DISCUSSION

The LR model makes a relationship between all
the variables and slope movements at once. This
looks more suitable since one factor alone may
not be enough to explain the slope failure. The
interaction between combinations of factors
might give quite a different result than when
examined independently. For example, a
moderate slope with a big quantity of weathered
material might faill due to a serious
undercutting during road construction although
the moderate slope or road factors by themselves
are insignificant. In the study area, human
action most often acts as a trigger rather than a
prominent conditioning factor. This makes the
LR model more fit to assess landslides in the
area.

The LR model gives the contribution of each
factor (e.g., slope curvature and elevation) to

landslides employing coefficient, where the
other models provide them by sub-classes. This
makes it easier for nongeographers or non-earth
specialists to easily join the factors with high
coefficients to delimit the anticipated hazard in
an area. Land-use planners may even decide to
take measures that scale back the effects of the
variable and determine which level of risk they
are ready to accept or to take action against.

The witness of the LR model is that it
assumes the independent variables are
continuous and should only be included for
practical relevance. In this case, we run the risk
of creating a model unstable if two or more
independent variables measure has the same
effect. The major limitation is in the fact that the
LR model considers landslides as points with
equal values rather than polygons thereby
neglecting the variations in landslide size which
1s an essential component in a landslide as
viewed by Aleotti and Chowdhury (1999)
Guzzetti et al. (1999) who recognize landslide
magnitude to be incorporated in Varnes (1984)
definition of a landslide.

FINAL CONSIDERATIONS

LSM is a fundament of disaster risk evaluation.
There are a large variety GIS-based qualitative
and quantitative methods beneficial to examine
the relationship between landslides and
landslide predisposing factors. This study
broadens the utilization of LR to make a
susceptibility map index based on GIS and R.
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This study presents the performance of LR.
The model displays satisfactory results although
using an equal number of landslide and non-
landslide pixels shows lightly accurate results in
total. It can be concluded that the landslide
causal factors (i.e., Slope, curvature, aspect)
have a notable impact in causing landslides.
This study also shows that predicting likely
occur landslides by using LR can be the most
suitable choice although the result can be more
accurate on a larger scale. Susceptibility
assessment is an indispensable means to outline
areas prone to landslide, and it has become
crucial information for decision-makers and
government.
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