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Abstract 

This study aimed to assess landslide susceptibility in the Sahla 

watershed in northern Morocco. Landslides hazard is the most 

frequent phenomenon in this part of the state due to its 

mountainous precarious environment. The abundance of 

rainfall makes this area suffer mass movements led to a notable 

adverse impact on the nearby settlements and infrastructures. 

There were 93 identified landslide scars. Landslide inventories 

were collected from Google Earth image interpretations. They 

were prepared out of landslide events in the past, and future 

landslide occurrence was predicted by correlating landslide 

predisposing factors. In this paper, landslide inventories are 

divided into two groups, one for landslide training and the other 

for validation. The Landslide Susceptibility Map (LSM) is 

prepared by Logistic Regression (LR) Statistical Method. 

Lithology, stream density, land use, slope curvature, elevation, 

topographic wetness index, slope aspect, and slope angle were 

used as conditioning factors. The Area Under the Curve (AUC) 

of the Receiver Operating Characteristic (ROC) was employed 

to examine the performance of the model. In the analysis, the 

LR model results in 96% accuracy in the AUC. The LSM 

consists of the predicted landslide area. Hence it can be used to 

reduce the potential hazard linked with the landslides in the 

Sahla watershed area in Rif Mountains in northern Morocco. 
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INTRODUCTION 

 

 

Mass movements are the most frequent natural 

hazards that affect large areas of 

the Rif mountains region in Northern Morocco, 

mostly triggered by heavy rainfall. It is one of 

the most re-occurring phenomena along with the 

Mountains chain threatening infrastructure 

and human properties. 

Within the context of mass wasting, 

landslides can affect communities and influence 

their activities. Thus, mapping and delineating 

susceptible zones to landslides is important for 

land use activities and management decision 

making.  

The method implemented in this paper has 

the overall objective of developing an 

understanding of slope instability processes and 

patterns at a regional scale. 

The main objective of this study is to assess 

landslide hazards in the Sahla watershed which 

is a subject that has not to gain much interest in 

scientific publications in the Rif area. It is 

expected that during the process, many 

conditioning factors affecting slope instability in 

the Rif mountains will be known, thus giving 

land-use planners working on landslides the 

ability to make appropriate decisions based on 

the quantify analyses of the the spatial 

probability (susceptibility) of landslide hazards 

in the Sahla watershed with the use of LR. 

Multivariate statistical model in order To build 

a consistent landslide inventory for the study 

area using aerial photographs, satellite images, 

literature review, and field survey cartography. 

 

 
STUDY AREA 

 

 

Sahla sub-catchment is located in the Central 

Rif mountains, is a part of Wadi (river) 

catchment named Ouerrha (Figure 1) limited 

from Northeast by Sra sub-catchment Wadi, 

Southeast by Ouerrha Wadi, from the West by 

Aoulai Wadi, on the south part is the confluence 

with Ouerrha Wadi. Its boundaries were defined 

by a ridgeline in the total area of 175 Km2. This 

area was chosen for its geological and 

geomorphological characteristics. 

 

The study area belongs administratively to 

the region Fes Meknes, province of 

Taounate, municipality of Ghafsai, 

characterized by a high density of 

population (82.36 inhabitants per km2). 
(HCP, 2014) 

 

Environmental Data 

 

Landslide inventories can be developed from 

field surveys by interpretation of remotely 

sensed images based on either the spectral 

characteristics, shape, contrast, and the 

morphological expression  (Kanungo et al., 

2006), or aerial photographs  (Ayalew and 

Yamagishi, 2005) and Google images 

interpretation  (Xu et al., 2013). The largest 

number of Landslides were mapped from Google 

Earth images interpretation of Central Rif. A 

total of 93 landslide scars were mapped (Figure 

2). To use the landslide Data from Google Earth 

in the GIS environment, it is required to digitize 

the Data from Google Earth images 

interpretation. Then, these items were saved to 

the computer as GIS compatible format, and the 

Data was again subsequently converted into 

shapefile format, then into a raster format. 

In susceptibility assessment, it is crucial to 

assume that future landslides will occur in the 

same condition that caused the past landslides 

(Varnes, 1984). There are no strict guidelines for 

causal factors selection to be used in landslides 

modeling, and as such, the selected predisposing 

factors vary widely between studies (Ayalew et 

al., 2005). Also, the determination of landslide 

predisposing factors was associated with the 

availability of Data. The entire landslide causal 

factors that this paper has used also fall in this 

category. 
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Figure 1- Geographical placement of the Sahla watershed in Rif mountains in northern Morocco 

 
Source: By the authors 

 

Landslide Data was used as a dependent 

variable of eight causal factors including slope, 

curvature, aspect, stream density, lithological 

facies, and land use pattern which were selected 

as independent variables for the landslide 

hazard mapping.  All of these data are 

commonly employed in landslide susceptibility 

analysis.  Budimir et al. (2015) mention that in 

a total of 37 variables commonlly used slope, 

aspect, and lithology, are significantly used 

especially on studies regarding rainfall-induced 

landslides. The relevance of the spatial Data 

combination used in the prediction became an 

important issue in mass movements 

susceptibility analysis (Dewitte et al., 2010). A 

high quality DEM provides a high quality of its 

derivatives. In order to to carry out detailed 

geomorphological analysis, a DEM with 5m 

pixel size of the study area was built, it is 

generated from two types of data: countours 

with 5m interval and quoted points, the 

altimetric data is derived from the Moroccan 

National Agency for Land Conservation, 

Cadastre and Cartography (ANCFCC) at 

1:50000 scale. 
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Slope Angles and Aspects 

 

The slope angle is known as the inclination 

between the horizontal plane and the slope 

topographic surface. For classification 

objectives, it was considered the parameters 

already adopted in different works of literature 

and authors all around the world (Guillard-

Gonçalves, 2016). 

 

Figure 2- Training Data from literature, field surveying, and orthophoto. 

 
Source: By the authors 

 

The relationship between slope angle and 

landslide occurrence is very strong (Guzzetti et 

al., 2005). Thus, slope angles that have higher 

values, at least, up to a certain value range, tend 

to be related to an increase in landslide 

occurrence. Almost 70% of the watershed area is 

dominated by slope angles below or equal to 15° 

and that only 1.5% of the study area has slope 

angles above 30° (Figure 3). 
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Aspect is known as a plane tangent to a 

topographic surface. It identifies the downslope 

direction of the maximum rate of change in 

value from each cell to its neighbors. Thus, the 

aspect can be identified as the slope orientation 

in azimuth. Aspect is measured clockwise in 

degrees from 0 (North azimuth) to 360, coming 

full circle. The value of each cell in an aspect 

dataset indicates the direction of the cell’s slope 

faces. Flat areas having no downslope direction 

are given a value of -1 (Burrough, 1986).  

The slope aspect is recognized as a crucial 

topographic factor. It affects the quantity and 

daily cycle of solar radiation received at 

different times of the year and has a big 

influence on the microclimate, especially air 

temperature, humidity, and soil moisture 

(Rosenberg et al., 1983). All these influences 

must be taken into consideration. Thus, 

incorporating the aspect as a predisposing factor 

for landslide susceptibility assessment through 

the statistically based model makes too much 

sense. The slopes, within the study area, are 

mostly exposed to Southwest and West (Figure 

4). 

 

Figure 3- Slope angle in the Sahla watershed 

 
Source: By the authors 
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Figure 4- Slope aspects of the Sahla watershed 

 
Source: By the authors 

 
Inverse of the Wetness Index 

 

The Topographic Wetness Index (IWI) is 

generally used to simulate the soil moisture 

conditions quantitatively in a watershed, and it 

is commonly used as an indicator for static soil 

moisture content (

 

Figure 5). Thus, it is considered an important 

factor in the research of soil erosion and 

distributed hydrological models in watersheds 

(Sørensen et al., 2006). While concave areas can 

retain water (high IWI values), steep and convex 

areas are more prone to shed water (low IWI 

values). The IWI uses Flow Direction and Flow 

Accumulation raster’s as inputs. 

Flow direction is derived from the digital 

elevation model, and, from it, we can obtain the 

contributing area (Flow Accumulation). 

Typically, the IWI values range from less than 1 

(dry cells) to greater than 20 (wet cells). 

Threshold values are applied to the output 

raster, via classification, based on the 

researcher’s knowledge of the field, field 

characteristics, and observations of the local 
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terrain’s response to heavy precipitation and 

runoff. Specifically, the IWI relates drainage 

areas with slope variations within a watershed 

and it can be expressed by the Equation 1, 

defined by Beven and Kirkby (1993): 

 

 WI = ln (
𝑎

tan⁡(β)
) (1) 

 

Where a is contributing upstream area (m2) 

from flow accumulation raster, and β is the local 

slope angle (degrees). It is important to mention 

that for its calculations it is important to convert 

degrees to radians. 

The Inverse Wetness Index application 

(Equation. 2) avoids the errors arising 

where cell division matches with β = 0, since a, 

corresponding to the denominator 

value (Oliveira, 2012). 
 

 IWI =
𝛽

𝑎
 (2) 

 

There are a couple of algorithms to calculate 

flow direction: D8 and D∞. For this paper, the 

algorithm D∞ was selected. Such an algorithm 

enables the determination of multiple flow 

directions, providing thus, better results when 

compared to algorithms that only assume 8 

possible directions of flow (Sørensen et al., 

2006). The procedure was done under an 

application called TauDEM (Terrain Analysis 

Using Digital Elevation Models) for ArcGIS 

software, it requires the existence of a DEM free 

of sinks. Then, the flow direction model was 

derived from it. 
 

Figure 5- Topographic wetness index of the Sahla watershed 

 
Source: By the authors 
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The TWI of the Sahla watershed was 

categorized into 7 classes to reveal better 

discrimination. For this reason, we applied a 

range of classes based on a logarithmic 

progression of base 10. The TWI of Sahla 

watershed demonstrates that the beginning 

class is the areas where β = 0. such areas are 

mostly located in the valley bottoms. The spatial 

distribution of potential water accumulation, it 

can be observed that generally increases due to 

the proximity to the streams (TWI classes ]0-

0.00001] and ]0.00001-0.0001]) being, the 

permanent or ephemeral streams, the locations 

where water accumulates. The steepest slope 

areas are associated with the TWI classes 

]0.0001 - 0.001] and ]0.001 0.01], and the 

interfluves areas are dominated by the TWI 

classes ]0.01 - 0.1] and > 0.1. 

 

Stream density 

 

Stream density or wetted index is a commonly 

used method to simulate the amount of water in 

the soil quantitatively (Beven and Kirkby, 

1993). It was used to approximate the 

distribution of groundwater circulating in the 

study area. It is carried out by defining the 

number of line elements of fixed length in a fixed 

area (Süzen and Doyuran, 2004), it is calculated 

by dividing the total length of streams by the 

watershed area (Equation 3) Stream density 

creates a relationship between drainage areas 

and slope variations within a catchment area. 

 

 Stream⁡density =
∑ 𝑠𝑡𝑟𝑒𝑎𝑚⁡𝑙𝑒𝑛𝑔𝑡ℎ

𝑠𝑡𝑢𝑑𝑦⁡𝑎𝑟𝑒𝑎
 (3) 

 

The numbers of line elements were 

calculated per km. As expected, the 

concentration of streams and the wetted index 

diminish with distance length linear magnitude 

per unit area. In the classification of the stream 

density of underground water circulation, no 

preference was given to any zone (Figure 6), and 

the area was classified into seven classes of 

equal density. Around 43% of the study area has 

a stream density between 4.2-6.2 while the 

highest density class (12.6-14.6) of the stream 

density map occupies just 1.56%. 

Concave slopes with low gradient, usually 

drain water into it, and it leads to high giving a 

high value of Wetted Index, while convex slopes 

allow water to flow away from it giving these 

areas a low wetted index value. Generally, the 

stream density index, range from less than one 

in very dry areas to more than twenty in very 

humid areas. This index increases with 

increasing proximity to the hydrographical 

network with permanent streams having a 

higher wetted index than seasonal 

watercourses. The map was classified 

permitting the area of each class to be 

calculated. 
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Figure 6- Stream density in the Sahla watershed 

 
Source: Source: By the authors 

 

Hypsometry 

 

The hypsometry of the study area has altitudes 

ranging from 250m to 1200m and the general 

relief can be divided into three main units 

(Figure 7).This includes the southern part, 

which is a relatively flat area, the middle part 

where the dam is located, and the northern area 

that constitutes of highest altitudes in the area. 

These unities were classified following their 

altitudes, shape, and depth which are important 

components in relief defining. The study area 

has altitudes ranging from 250 m to 1200 m. 

 

 

Lithological Facies 

 

Lithology is among the most important 

conditioning factor affecting the mechanisms of 

mass movements (Terzaghi, 1953) and plays a 

fundamental role in the formation of shallow 

materials. It has a key impact in monitoring the 

nature and rate of geomorphological processes 

happening on the slopes. Landslides being a 

geomorphological process partially depend on 

the lithology and weathering specifications of 

the underlying materials (Selby, 1993). The 

lithology factor of the Sahla watershed is 

developed from the geology map of the 

Taounate-Ain Aïcha region with a scale of 



EL-FENGOUR; MOTAKI; BOUZIDI Landslides Susceptibility Modelling 

 

10 

 
Soc. Nat. | Uberlândia, MG | v.33  |  e59124 | 2021 | ISSN 1982-4513 

1:50000 (Suter, 1964), (Figure 8). Detail 

lithological formations could not be determined 

at this scale. Therefore, small lithological facies 

areas could not be identified. 

 

Slope curvature 

 

Slopes curvature is the inverse of the radius of a 

circle tangent to the soil surface and it can be 

measured in three ways; longitudinal profile, 

transversal profile, or a tangential profile 

(Clerici et al., 2010). It is difficult to compare the 

relationship between curvature and slope 

instability due to the unspecified curvature 

types employed. Generally, the concave slopes 

are most susceptible, because it is associated 

with the focus of surface and subsurface runoff 

(Zêzere et al., 2004). In this paper, the profile 

curvatures option was chosen because it gives 

the rate of change of gradient or it measures the 

downslope trend and identifies different breaks 

on the slope. 

The profile curvature map was classified into 

three classes and it expresses the variation 

between positive (concavities) and negative 

values (convexities) (Figure 9). Thus, the class 

that corresponds to the rectilinear slopes and 

flat areas is defined by positive and negative 

values near zero. The other classes 

(representing concavities and convexities are 

defined by the limits -0.05 and 0.05. 
 

Figure 7- Hypsometry in the Sahla watershed 

 
Source: By the authors 
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Figure 8- Geological settings in the Sahla watershed 

 
Source: By the authors 
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Figure 9-  Curvature (Cross Section Profile) of the study area 

 
Source: By the authors 
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Land Use 

 

The land use data was developed by direct 

cartography from existing map 1:50000 then 

updated from satellite images, and fieldwork 

(Figure 10). Land use types as small as 10 m2 

were mapped as much as they were visible of the 

satellite images. The land use considers some 

characteristics that can have an impact on slope 

movements (Zêzere et al., 1999). The land use 

was classified into several classes as follows; 

bare rocky soil, croplands, croplands and 

shrublands, croplands and trees, dense 

croplands, dense reforestation, dense trees, 

high-density afforestation, mosaic 

forest/croplands, natural forests, open grassland 

with sparse shrubs, urban area, and low-density 

reforestation over shrubland. Since the area is 

Mountainous, it has vast empty land full of 

vegetation where cattle can feed on. Due to 

overgrazing and other anthropic activities, the 

grassland area is highly degraded and large 

areas are bear with very little vegetation and 

soils. Most of the area is rural with very few 

houses. 

 

Logistic Regression Model 

 
LR is a multivariate model (Chau and Chan, 

2005), also called the logistic model or logit 

model, which has been widely used to estimate 

the probability of landslide occurrence usually 

by relating the dependent variable (landslides in 

our case) with a variety of geo-environmental or 

independent variables (Guzzetti et al., 2005). LR 

can be discrete, continuous, or both, and factors 

for multi-regression must be numerical while 

those for discriminant analysis must have a 

normal distribution. This model uses the 

forward method (Lee and Pradhan, 2007) to 

analyze a binary response from several 

predisposing factors and regresses a 

dichotomous dependent variable on a set of the 

independent variables that can be continuous, 

interval, or categorized. In this study, LR was 

used to analyze the relationship between 

multiple independent variables (X1, X2, . . . Xn) 

(predisposing factors) and the dependent 

variable (y) (landslides). The LR method is 

based on three main assumptions. 

 

- The dependent variable is dichotomous 

with landslides indicated as 1 when 

there is presence or 0 when they are 

absent. 

- The independent variables are 

continuous and should only be included 

for significant importance. 

- The probability Y is equal to 1 given 

distinct values of X. That is if X and Y 

has a positive linear correlation, the 

probability that landslide will have a 

score of Y = 1. This indicates that as X 

(factors that caused previous slides) 

increases, the likelihood that Y 

(landslides) will be equal to 1 will tend 

to increase. As X increases, the 

probability that Y = 1 increases. This is 

based on the presumption that 

landslides will always occur under the 

same conditions that caused past 

landslides. 
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Figure 10 - Land use in the Sahla watershed 

 
Source: By the authors 

 

The LR model used a dichotomous dependent 

variable (Y), and this requires areas without 

landslides to be represented (Figure 11). Since 

the independent variable (Y) is dichotomous and 

the first value (Y = 1) representing areas with 

landslides has been acquired through the 

inventory, the other value (Y = 0) representing 

areas with no slides had to be obtained. This was 

accomplished by randomly generating points 

called non-points (pixels) within the study area 

by developing random points in relatively safe 

areas which are the gentle slopes with a low 

gradient. 
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Figure 11- The used LR method 

 
Source: By the authors 

 

The binary variable employed in this study is 

limited to two outcomes, representing the 

occurrence or non-occurrence of cases (coded as 

1 or 0, respectively). The model predicts the 

probability of the event as a function of the 

independent variables (Youssef et al., 2015). 

Many authors have used it (Cox, 1958) to 

ascertain the probability of landslides occurring 

by associating slope movements motion to 

landslide conditioning factors and represent 

landslides as (1) when they are present or (0) 

when absent. The quantitative relationship 

between landslides occurrence and their 

dependency on pre-condition variables was 

examined through the LR model which is 

expressed in its simplest form in Equation 4. 

 

 P =
1

1 + exp−z
 (4) 

Where: 

 

P = probability of landslide occurrence 

ranging between 0 and 1 

Z = a linear combination of conditioning 

variables 

ez = exponent of conditioning factors 

Z assumes a function as in Equation (4). 

 

 z = B0 + B1⁡X1 + B2⁡X2 +⋯⁡Bn⁡Xn (5) 

 

B0 here is the “intercept” or “constant term”. 

B1...n here are the coefficients of the LR curve 

and X is the independent variable. 

After elimination of highly correlated 

dependent variables, the sample datasets were 

then used to input to the LR algorithm within R 

language to compute the correlation of landslide 

to each predisposing factor. The ahead stepwise 

LR was carried out to include only the predictor 

variables with an essential contribution to the 

presence of landslides. 

The susceptibility index map was built by 

incorporating the coefficient (Table 1) of each 

factor and summing the list of factors. Among 

the seven predisposing factors employed in 

constructing the model, four of them had 

positive computed weights, which means that 

they are significant in causing landslides 

occurrence. Among these factors, slope angle 

stands out as the most important factor of 

landslides. (Selby, 1993). 
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Table 1. Variables and regression coefficients estimated by LR. 

Variable Coefficient  Intercept 

Aspect 0.0014400887  

Curvature -0.1938426176 

Elevation -0.0057429231 

Lithology -0.0000006806 

Slope angle 0.2364887615 

Stream density 0.1495128397 

TWI -0.1608782431 -4.4304492308 

Source: By the authors 

 

Shallow landslides were frequent on concave 

and rectilinear slopes while rockfalls were 

recorded on convex slopes, thus making 

curvature an important factor. The slope 

orientation and elevation had mild significance 

while elevation and lithology had minimal effect 

on slope instability. The spatial probability of 

the area to landslides was assessed using the 

success rate curve (Bai et al., 2008) (Figure 

12). 

Landslide predisposing factors settled to be 

necessary by the correlation and association test 

were joined using LR (Equation. 6) to build the 

susceptibility map of the study area. The 

weighted thematic layers for shallow landslides 

were developed by multiplying the rasters for 

conditioning factors by their coefficient and the 

susceptibility index map was built by combining 

the weighted conditioning factor maps. This 

involved the incorporation of the weighted maps 

in the raster calculator and summing them 

(Equation. 6). The entire process can be 

mathematically expressed as: 

 
Y = (Twi × (-0.1608782431) + 

Streamdens × 0.1495128397 

+Geolsett × (-0.0000006806) + 

Aspect × 0.0014400887 

+Slope × 0.2364887615 +Elev×(-

0.0057429231) 

+Curvature × (-0.1938426176) - 

4.4304492308 

(6) 

 

Where TWI is topographic wetness index, 

Streamdens is stream density, Geolsett is 

lithology, Aspect is slope aspect, Slope is slope 

angle, and Curvature is slope curvature. 

whereas the numbers on the equation are 

conditioning factors coefficients excepting the 

last number which is the intercept. The 

combination of the spatial probability layers of 

conditioning variables (Equation. 5) gave the 

susceptibility map (Figure 10). 

The susceptibility map was built using 

prediction values calculated from probabilities 

of binary values and thematic maps. The colour 

ramp displays a maximum susceptibility index 

of 0.999999 and 4.0027e-07 as the lowest. 

Negative spatial probabilities did not exist in 

any area of the map. However, great differences 

in susceptibility exist. The south around the 

outlet of the dam is more probable to be affected 

by landslides than the extreme north and 

extreme south regions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



EL-FENGOUR; MOTAKI; BOUZIDI Landslides Susceptibility Modelling 

 

17 

 
Soc. Nat. | Uberlândia, MG | v.33 | e59124 | 2021 | ISSN 1982-4513 

 

Figure 10- Landslide Susceptibility applied the LR using equal interval classification. 

 
Source: By the authors 

 
RESULTS VALIDATION 

 

 

The model validation was carried out using 50% 

of recorded landslides randomly selected and 

were validated employing a complete set of 

landslides. Multivariate regression analyses 

were used in model validation and consisted of 

creating a relationship between the total 

affected terrain and the non-affected part using 

success rate curve. Here, the validation group of 

landslides, 50% (Figure 13), logistic regression 

susceptibility map obtained from the initial 

modeling and the ROC curve was developed by 

computing the background values (areas 

without landslides) with the susceptibility map 

as input. The crossing points determine the 

goodness of fit of the curve. The ROC curve is a 
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plot that establishes the relationship between 

sensitivity (proportion of true positives) against 

specificity (proportion of false positives) of the 

model at  a series of thresholds for a positive 

outcome. 

 

Figure 11- Validation procedure for the LR model 

 

Source: By the authors 
 

The predictive capability or the competence 

of the susceptibility maps was judged using the 

ROC curves (Zizioli et al., 2013). It is a plot that 

sets the relationship between sensitivity 

(proportion of true positives) against specificity 

(proportion of false positives) of the model at a 

series of thresholds for a positive outcome. The 

sensitivity which is plotted on the y-axis is the 

likelihood that the area with a landslide is 

correctly classified while specificity (false 

negative rate) is the probability that the area 

with no-landslide is correctly classified. The x-

axis expressed as 1 – specificity represents the 

false positive rate (Jaiswal et al., 2010). 

The determination of the AUC enables the 

quantitative evaluation of the overall predictive 

capability of LR susceptibility model (Beguería, 

2006),  ranging between 0 and 1. A value closer 

to 1 indicates the good predictive ability of the 

model. A casual predictive power will be 

manifested for an AUC value of about 0.5, 

describing a diagonal straight line (Figure 14). 

AUC value below 0.5 means models with a 

terrible predictive capacity and should not be 

taken into consideration (Bi and Bennett, 2003); 

. The mathematical expression of the AUC is 

given by Equation 7 (Garcia et al., 2007; 

(Pereira et al., 2012). 

 

 AUC = ⁡∑ [(𝑥𝑖+1 − 𝑥𝑖) ×
𝑦𝑖+1 + 𝑦𝑖

2
]

𝑛

𝑖=1
 (7) 

 

Where x is the portion of the study area 

predicted as susceptible by descending order 

and y is the percentage of correctly classified 

landslide area belonging to the validation group. 

Guzzetti et al. (2005) indicates thur fineat 

AUC values between 0.75 and 0.8 correspond to 

an acceptable model, while AUC values ranging 

between 0.8 and 0.9 indicates a good 

susceptibility model, and finally, AUC values > 

0.9 typify excellent models. The success curve 

has an AUC of 0.96. The curve has a good 

prediction power with 96% of the landslides 

righty captured by the model (Figure 14). The 

performance of a model with such values is good 

and capable to predict future landslide events in 

the study area (Guzzetti et al., 2005). 
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Figure 12- ROC curve for LR Model. 

 
Source: By the authors 

 

The LR ROC is the measurement of the 

correlation between unstable and stable areas. 

A greater number of landslides were captured by 

the prediction curve (Figure 12) with 95% of the 

area found under the Curve. The diagonal line 

indicates a 50% probability of occurrence. 

Prediction curves with landslide values below 

the diagonal line are considered to have a low 

predictive capability and should not be 

admissible (Guzzetti et al., 2005). With the 

curve largely above the diagonal line, the model 

is perfect and accepted following the proposal of 

Guzzetti et al. (2005). 
 
 

DISCUSSION 

 

 

The LR model makes a relationship between all 

the variables and slope movements at once. This 

looks more suitable since one factor alone may 

not be enough to explain the slope failure. The 

interaction between combinations of factors 

might give quite a different result than when 

examined independently. For example, a 

moderate slope with a big quantity of weathered 

material might fail due to a serious 

undercutting during road construction although 

the moderate slope or road factors by themselves 

are insignificant. In the study area, human 

action most often acts as a trigger rather than a 

prominent conditioning factor. This makes the 

LR model more fit to assess landslides in the 

area. 

The LR model gives the contribution of each 

factor (e.g., slope curvature and elevation) to 

landslides employing coefficient, where the 

other models provide them by sub-classes. This 

makes it easier for nongeographers or non-earth 

specialists to easily join the factors with high 

coefficients to delimit the anticipated hazard in 

an area. Land-use planners may even decide to 

take measures that scale back the effects of the 

variable and determine which level of risk they 

are ready to accept or to take action against. 

The witness of the LR model is that it 

assumes the independent variables are 

continuous and should only be included for 

practical relevance. In this case, we run the risk 

of creating a model unstable if two or more 

independent variables measure has the same 

effect. The major limitation is in the fact that the 

LR model considers landslides as points with 

equal values rather than polygons thereby 

neglecting the variations in landslide size which 

is an essential component in a landslide as 

viewed by  Aleotti and Chowdhury (1999) 

Guzzetti et al. (1999) who recognize landslide 

magnitude to be incorporated in Varnes (1984) 

definition of a landslide. 
 

 
FINAL CONSIDERATIONS 

 

 

LSM is a fundament of disaster risk evaluation. 

There are a large variety GIS-based qualitative 

and quantitative methods beneficial to examine 

the relationship between landslides and 

landslide predisposing factors. This study 

broadens the utilization of LR to make a 

susceptibility map index based on GIS and R.  



EL-FENGOUR; MOTAKI; BOUZIDI Landslides Susceptibility Modelling 

 

20 

 
Soc. Nat. | Uberlândia, MG | v.33  |  e59124 | 2021 | ISSN 1982-4513 

This study presents the performance of LR. 

The model displays satisfactory results although 

using an equal number of landslide and non-

landslide pixels shows lightly accurate results in 

total. It can be concluded that the landslide 

causal factors (i.e., Slope, curvature, aspect) 

have a notable impact in causing landslides. 

This study also shows that predicting likely 

occur landslides by using LR can be the most 

suitable choice although the result can be more 

accurate on a larger scale. Susceptibility 

assessment is an indispensable means to outline 

areas prone to landslide, and it has become 

crucial information for decision-makers and 

government. 
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