Articles
Efficacy of three local isolates of entomopathogenic nematodes against the tomato leafminer, Tuta absoluta (Meyrick)
Eficacia de tres aislados locales de nematodos entomopatógenos contra el minador del tomate, Tuta absoluta (Meyrick)
Efficacy of three local isolates of entomopathogenic nematodes against the tomato leafminer, Tuta absoluta (Meyrick)
Revista de la Sociedad Entomológica Argentina, vol. 82, núm. 1, 2023
Sociedad Entomológica Argentina
Recepción: 23 Julio 2022
Aprobación: 01 Febrero 2023
Abstract: The tomato leafminer, Tuta absoluta (Meyrick) a key pest of tomato both in greenhouses and open-fields, has spread rapidly throughout Iran. The efficiency of native isolates of three species of entomopathogenic nematodes (Steinernema feltiae, S. carpocapsae, Heterorhabditis bacteriophora) was evaluated against the tomato leafminer, T. absoluta larvae (outside leaf and inside galleries), and pupae at various concentrations and times in laboratory conditions. Experiments were conducted at 25 ± 2ºC, 65 ± 5% RH, and 16L:8D h photoperiod. S. feltiae nematode caused the highest mortality for larvae outside the gallery (53.61%), followed by 45% mortality for larvae inside galleries, and lowest mortality for pupae (3.88%). The effect of infective juveniles (IJ) and exposure time (ET) on larval mortality in different treatments showed a significant (P< 0.01) relationship between IJ and ET and their interactions. Mortality of the T. absoluta larvae and pupae rose with more IJ and longer exposure time. The LC50 for, S. feltiae, S. carpocapsae and H. bacteriophora were 156.01, 225.13, and 317.66 IJs/ml for the second instar larvae of T. absoluta (outside the gallery), 296.31, 305.23 and 320.66 IJs/ml for inside gallery, respectively. Therefore, S. feltiae was a more effective species and can be suggested for complementary studies for finding a suitable biocontrol agent of the pest.
Keywords: Biological control, Heterorhabditis bacteriophora, Steinernema carpocapsae, Steinernema feltiae.
Resumen: El minador del tomate, Tuta absoluta (Meyrick), plaga clave del cultivo de tomate tanto en invernadero como en campo abierto, se ha extendido rápidamente por todo Irán. Este trabajo evaluó la eficacia de aislados nativos de tres especies de nematodos entomopatógenos (Steinernema feltiae, S. carpocapsae, Heterorhabditis bacteriophora) contra larvas (fuera de la hoja y dentro de las galerías) y pupas de T. absoluta a varias concentraciones y tiempos en condiciones de laboratorio. Los experimentos se realizaron a 25 ± 2ºC, 65 ± 5% HR, y fotoperiodo 16L:8D h. El nematodo S. feltiae causó la mayor mortalidad para las larvas fuera de la galería (53,61%), seguido de una mortalidad del 45% para las larvas dentro de las galerías, y la menor mortalidad para las pupas (3,88%). El efecto de los juveniles infecciosos (JI) y del tiempo de exposición (TE) sobre la mortalidad larvaria en los diferentes tratamientos mostró una relación significativa (P< 0,01) entre JI y TE y sus interacciones. La mortalidad de las larvas y pupas de T. absoluta aumentó con más JI y más TE. La CL50 para S. feltiae, S. carpocapsae y H. bacteriophora fue de 156,01, 225,13 y 317,66 JIs/ml para las larvas de segundo estadio de T. absoluta (fuera de la galería) y de 296,31, 305,23 y 320,66 JIs/ml para larvas dentro de la galería, respectivamente. Por lo tanto, S. feltiae fue una especie más eficaz y puede sugerirse para estudios complementarios con el fin de encontrar un agente de biocontrol adecuado de la plaga.
Palabras clave: Control biológico, Heterorhabditis bacteriophora, Steinernema carpocapsae, Steinernema feltiae.
Introduction
The tomato leafminer, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae), a key pest of tomato and native to the western part of South America, invaded Brazil around 1980 (Souza and Reis, 1992). It is now a devastating pest of tomato crops in South America, Europe, Africa, and Asia (Tropea Garzia et al., 2012; Zappalà et al., 2013). This pest is crossing borders and devastating tomato production in both protected and open fields (EPPO, 2008; 2009; Urbaneja et al., 2012). In Iran, T. absoluta was first discovered in November 2010 infesting open-field tomato crops of the Uromiyeh Plant Protection Organization from Uromiyeh in Azerbaijan province in Northwest region (Baniameri & Cheraghian, 2012). The insect has spread rapidly, and it is currently considered a key insect pest on tomato crops, both in greenhouses and open fields. Damage is caused by larval tunneling and they can penetrate young stems and fruits which finally result in the loss of over 80% of fruits (Desneux et al., 2011).
During the last decades, T. absoluta controls were directed to the utilization of chemical insecticides. Environmental safety of insecticides is the first and foremost criterion for T. absoluta control programs (Tropea Garzia et al., 2012). In most countries where T. absoluta occurs, the main control strategy includes frequent sprays with chemical insecticides, because, without control, T. absoluta causes about 100% yield losses and dramatically decreases the fruit quality in both field and greenhouse tomato crops (Gilardón et al., 2001; Tropea Garzia et al., 2012). Nevertheless, because of the development of resistance, chemical control has demonstrated limited efficacy even after the use of different types of pesticides and increased the application frequencies (Siqueira et al., 2000; Lietti et al., 2005; Tomé et al., 2012).
The use of environmentally friendly pest control strategies is important to minimize the use of insecticides on tomato fields. Environmentally friendly strategies include cultural control (e.g. crop rotation, selective removal and destruction of infected plant materials), and the use of natural enemies (parasitoids, predators, and entomopathogens) (Dlamini et al., 2020). Entomopathogenic nematodes (EPNs) are good alternatives to synthetic insecticides. They are soil-dwelling organisms that attack insect pests that live in, on, or near the soil surface and can be used effectively to control harmful insect pests (Adams & Nguyen, 2002). Entomopathogenic nematodes in the Steinernematidae and Heterorhabditidae families do not affect non-target species, do not leave residues (Georgis et al., 2006), and are essential biocontrol agents used for controlling insect pests (Grewal & Georgis, 1999).
Gözel & Kasap (2015) studied the efficacy of the infective juveniles of four native EPNs species, Steinernema affine, S. carpocapsae, S. feltiae and Heterorhabditis bacteriophora against the larvae of T. absoluta in the field and it was found that the most effective nematode species on T. absoluta larvae was S. feltiae with 90.7% and 94.3% mortality in 2012 and 2013, respectively. Van Damme et al. (2016) evaluated the potential of S. feltiae, S. carpocapsae and H. bacteriophora against larvae of T. absoluta inside leaf mines and observed that the species were effective against all four larval instars of T. absoluta but caused higher mortality in the later instars (77.1–97.4% mortality) than in the first instars (36.8–60.0% mortality). Overall, S. feltiae and S. carpocapsae yielded better results than H. bacteriophora. Mutegi et al. (2017) demonstrated that native EPNs including Heterorhabditis sp. and S. karii have a potential for management of T. absolutaKamali et al. (2018) examined the effect of temperature, soil type, and exposure time on the efficacy of the EPN species including S. carpocapsae and H. bacteriophora against last-instar T. absoluta larvae in the laboratory. Also, Ndereyimana et al. (2019) assessed the potential of six local isolates of EPNs in the management of T. absoluta in Rwanda. Finally, Dlamini et al. (2020) investigated the virulence of two sub-tropical EPN species, S. yirgalemense and S. jeffreyense on T. absoluta larvae.
Despite the successes that have been recorded for the use of EPNs to control the tomato leafminer, environment determines the success or failure of EPNs because of the potential differences in persistence, virulence, host range, and familiarity to habitats between local and non-local EPN isolates (Lacey & Georgis, 2012). The target host and the environment where EPNs will be applied should be considered when designing a control program using EPNs. Thus, screening several nematode isolates against a particular target host in a specific environment is a prerequisite in the development of any control program using EPNs (Biondi et al., 2018).
Our overall goal in this study was to determine the potential for the use of new EPN isolates for T. absoluta suppression. The comparison between susceptibility of T. absoluta larvae inside and outside galleries and pupae to EPNs has not been reported yet. A critical component for success in any biocontrol program with entomopathogenic nematodes is matching the most suitable nematode with the target host, and relative virulence among nematodes to the target pest is a major factor in suitability (Shapiro-Ilan et al., 2009).
Materials and Methods
Insect rearing
Colonies of T. absoluta were originally collected from leaves or leaf parts with larvae from infested greenhouses of Qom province of Iran. All experiments were carried out in the biological control laboratory, Faculty of Agriculture, Shahed University, Tehran, Iran. After the emergence of adults, T. absoluta moths were collected by suction and released into a transparent polyester jar containing fresh, detached, composite tomato leaf (Goldie cultivar) with the cut end fixed in a vial (4 × 1 cm) filled with sterile water. The insects were reared in a gross chamber at 27 ± 2°C, 65 ± 5% RH, and 16L:8D h photoperiod (Rostami et al., 2017). They were provided with water and 10% sucrose solution and allowed to oviposit for 24–48 h. Upon observation of an adequate number of eggs (at least 260 eggs), the infested leaves of potted plants were placed in an insect-proof rearing cage to allow larval development to the second instar (Mohamed et al., 2022). In particular, the infested tomato leaves were placed gently on a potted tomato plant to ensure food availability. Newly emerged 2nd instar larvae inside and outside leaves and pupae were used for bioassay experiments.
Preparation of EPNs inoculum
Native preparations of S. feltiae, S. carpocapsae, and H. bacteriophora were initially obtained from Biological Control Laboratory at Ferdowsi University of Mashhad, Iran. These were cultured in last-instar larvae of the greater wax moth, Galleria mellonella (L.) (Lep.: Pyralidae), as per methods of Kaya and Stock (1997). Each nematode species was passed through G. mellonella less of seven times before use in bioassays. After harvesting, infective juveniles (IJs), they were stored in 250-ml flasks at 13°C and a maximum concentration of 5000 IJs per ml for <1 week before use in the experiments. Infective juveniles stock cultures were serially diluted to achieve concentrations of 25, 50, 100, 200, and 400 IJs per ml of distilled water. Microscopic examinations were done to determine the viability of each nematode in all bioassays.
Pathogenicity test
For the larvae inside the gallery experiment, two 2nd instar larvae were placed on a tomato leaf disc (Goldie, 3 cm diameter) in a petri dish (4 × 1 cm) and allowed to mine into the leaf disc (van Damme et al., 2016). For each nematode species and concentration, five petri dishes were used in five replications and were sprayed with 1 ml for each concentration above mentioned and for each combination of EPN species. Totally, 375 petri dishes were used in experiment. A control treatment was included, consisting of distilled water only.
For larvae outside the gallery experiment, ten 2nd instar larvae were placed in 9-cm-diameter plastic Petri dishescovered with filter paper (Whitman No. 1) and sprayed with EPN species. Individual concentrations, including 25, 50, 100, 200, and 400 IJs per ml of distilled water for each nematode species were treated on the filter paper. Also, a control treatment was included, consisting of distilled water only. Five replications were considered for each concentration.
Newly emerged pupae of T. absoluta were obtained from breeding larvae of last instar. The susceptibility of the pupal stage of T. absoluta was also assessed in soil, ten newly emerged pupae in five replications were placed in 9-cm-diameter plastic Petri dishes covered with filter paper and the dish was filled with 23 g of moistened (10% w/w) sterile sandy loam soil (Kamali et al., 2018). The same concentrations used in the larval treatment were applied on the soil surface of the pupae for each nematode species. Control plates were treated with distilled water only. Five replications were considered for each concentration.
Arenas were maintained in an environmental chamber at 25 ± 2°C, 65 ± 5% RH, and 16L: 8D h photoperiod. Arenas were examined and larval mortality was recorded at 24, 48, 72, and 96 h after treatment. Dead larvae were recognized according to change in their body color. Due to symbiotic bacteria associated with EPNs, the infected cadavers of Steinernematidae turn tan, ochre, gray or dark gray, whereas those of Heterorhabditidae turn red, purple, orange, yellow, brown or sometimes green (Kaya and Gaugler, 1993). For the pupae experiment, results were studied after 8 days, and pupae were dissected to verify the presence of nematodes and that were not transformed into an adult after this period were considered dead.
Statistical analysis
Mortality data were normalized by the square root transformation. The effects of three factors of species, concentration, and exposure time were subjected to trifactorial ANOVA using SPSS version 15.0 (SPSS 2006), with a level of significance at P < 0.05. Probit analysis of significantly different treatments were performed using Tukey’s honestly significant difference (HSD) test.
Results
Microscopic examinations found that ≥95% of IJs were viable in each nematode preparation in all bioassays. Analysis of variance on different species of nematodes showed that the effect of nematodes, different concentrations, exposure time, and the interaction of concentration and time on the mortality rate of 2nd instar larvae inside and outside of the gallery were significantly different (P < 0.05). Also, analysis of variance on nematode species showed that only the effect of concentration on the mortality of T. absoluta pupae was significant (P < 0.05) (Table I).

Results of the mean comparison of the mortality rate of T. absoluta larvae under different species of nematodes showed that S. feltiae caused the highest mortality, followed by S. carpocapsae and H. bacteriophora species (Fig. 1).

Data are expressed as mean ± SEM, bars of each nematode species followed by the same letter are not significantly different (P = 0.05) according to Tukey HSD Test for mortality.
The results showed that among different concentrations of the three nematode species, the highest larval mortality was observed when EPNs were applied at a dose of 400 IJs/ml. (Fig. 2a, b). The average mortality rate decreased with a lower concentration of all three nematode species. The mortality of 2nd instar larvae of T. absoluta was significant at different concentrations, and the mortality of 200 and 400 IJs/ml concentrations were higher than those at low concentrations.
The pupae exhibited less pathogenicity in all nematode species tested. Results showed that there was no significant difference between 0 to 100 IJs/ml concentrations on the mortality of T. absoluta pupae, but between 200 and 400 IJs/ml concentrations as well as between these two concentrations and others there were significant differences. In general, the concentrations used resulted in low mortality in the pupae of T. absoluta, with the highest mortality (about 13%) caused by S. feltiae at the highest concentration (Fig. 2c).

Bars (mean±SE) of each nematode species followed by the same letter are not significantly different (P = 0.05) according to Tukey HSD Test for mortality
The mortality percentage of 2nd instar larvae increased with exposure duration. When larvae inside and outside gallery were exposed to EPNs for a similar period time, larvae outside gallery were more vulnerable than those inside. After 72 h, S. feltiae caused 100% and 93% mortality in 2nd instar larvae outside and inside the gallery, respectively, when applied at 400 IJs/ml (Table II).
Lethal concentrations (LC50s) for each nematode species against 2nd larvae of inside and outside gallery were 296.30 and 156.01 IJs/ml for S. feltiae, 305.23 and 225.13 IJs/ml for S. carpocapsae, and 320.66 and 317.66 IJs/ml for H. bacteriophora, respectively. These estimates differed significantly based on the overlap of the 95% confidence intervals except for H. bacteriophora (Tables III, IV).

a the number of infective juveniles per ml.
b Mean values followed by different letters in the same column are significantly different according to Tukey HSD test (P < 0.05).

* LC index, number of third instar larvae of nematode (IJ) required for 50 and 90% mortality of X. luteola
a Upper and lower limits of 95% confidence level

* LC index, number of third instar larvae of nematode (IJ) required for 50 and 90% mortality of X. luteola
a Upper and lower limits of 95% confidence level
Discussion
This study showed that entomopathogenic nematodes can infect larvae and kill them inside larval tunnels. In all three species of nematodes, high success was achieved to control the larvae, but in the case of pupae, no specific results were obtained. The difference in the nematode's ability to infect larvae and pupae is consistent with studies by Henneberry et al. (1995). They reported 91.9% mortality for pink bollworm, Pectinophora gossypiella (Saunders) (Lep.: Gelechiidae) larvae, and 13% for pupae by S. carpocapsae in vitro and moist soil. A study by Lindegren et al. (1993), revealed that P. gossypiella pupae are not a sensitive stage for nematode attack, which can be justified due to the lack of input pathways (mouth and anus) for the nematode. As previously reported by Gözel & Kasap (2015), EPNs most likely entered feeding canals in the leaves of tomatoes and many larvae of T. absoluta died inside these galleries, which indicates that IJs were able to find and infect them.
Summary of research data showed that the susceptibility of the T. absoluta larvae to EPNs depends on concentration of nematode larvae, time of exposure, nematode species used, and nematode species seeking strategies. In the case of Petri dishes, the nematodes move only on the surface of the filter paper (one dimension), and the 2nd instar larvae of T. absoluta can stick to parts of the container (moving in several dimensions), thus becoming inaccessible and dying as recorded randomly. In an experiment by Batalla-Carrera et al. (2010), the effect of three species of nematodes; H. bacteriophora, S. carpocapsae, and S. feltiae were studied on larvae, pupae, and adult insects of T. absoluta, which were tested in Petri dish, as the mortality rate of out-of-leaf larvae at a dose of 25 IJs/ml were equal to 78.6, 85.7 and 100% for applied nematodes, respectively. At 50 IJs/ml dose for the above nematodes, it reached 100, 86.6, and 100%, respectively. Pupae were more resistant to nematodes and no significant mortality was observed in the treatments. In our experiment within the Petri dish, the mortality of larvae outside the gallery at low doses was relatively high for S. feltiae, S. carpocapsae and H. bacteriophora, respectively.
In another study, the efficacy of soil treatments of three native EPNs (S. carpocapsae, S. feltiae and H. bacteriophora) against T. absoluta larvae, pupae and adults was determined under laboratory conditions (Garcia-del Pino et al., 2013). When the larvae dropped into the soil to pupate, soil application of nematodes resulted in high mortality of larvae: 100%, 52.3%, and 96.7% efficacy for S. carpocapsae, S. feltiae and H. bacteriophora, respectively. No mortality of pupae was observed and mortality of adults emerging from soil was 79.1% for S. carpocapsae and 0.5% for S. feltiae. Azarnia et al. (2018) reported the lethal concentration (LC50) for the same nematode species at 35.97 IJs/ml for S. feltiae, 44.0 IJs/ml for S. carpocapsae, and 104.5 IJs/ml for H. bacteriophora against the last instar larvae of clearwing moth, Paranthrene diaphana (Dalla Torre & Strand) (Lepidoptera: Sesiidae). These values were much lower than the present study, which may be due to the greater resistance of T. absoluta to entomopathogenic nematodes.
Conclusion
Obtained results suggest that S. feltiae can be used as biological control agent against the larvae of T. absoluta. Typical feeding galleries made by T. absoluta larvae provide EPNs an excellent environment to penetrate the pest easily and avoid negative factors (desiccation, ultraviolet light, etc.). However, future field studies are recommended to focus on field efficacy and field application against T. absoluta for using this nematode as a biopesticide.
REFERENCES
Adams, B.J., & Nguyen, K.B. (2002) Taxonomy and systematics. Entomopathogenic Nematology (ed. Gaugler, R.), pp. 1-34.CABI, New York, USA.
Azarnia, S., Abbasipour, H., Saeedizadeh, A., & Askarianzadeh, A. (2018) Laboratory assay of entomopathogenic nematodes against clearwing moth (Lepidoptera: Sesiidae) Larvae. Journal of Entomological Science, 53(1), 62–69.
Baniameri, V., & Cheraghian, A. (2012) The first report and control of Tuta absoluta in Iran. Eppo Bulletin, 42(2), 322–324.
Biondi, A., Guedes, R.N.C., Wan, F.H., & Desneux, N. (2018) Ecology, worldwide spread, and management of the invasive South American tomato pinworm, Tuta absoluta: past, present, and future. Annual Review of Entomology, 63, 239–258.
Batalla-Carrera, L., Morton, A., & Garcia-del-Pino, F. (2010) Efficacy of entomopathogenic nematodes against the tomato leafminer, Tuta absoluta in laboratory and greenhouse conditions. Biocontrol, 55, 523-530.
van Damme, V.M., Beck, B.K., Berckmoes, E., Moerkens, R., Wittemans, L., De Vis, R., Nuyttens, D., Casteels, H.F., Maes, M., Tirry, L., & De Clercq, P. (2016) Efficacy of entomopathogenic nematodes against larvae of Tuta absoluta in the laboratory. Pest Management Science, 72(9), 1702–1709.
Desneux, N., Luna, M.G., Guillemaud, T., & Urbaneja, A. (2011) The invasive South American tomato pinworm, Tuta absoluta, continues to spread in Afro-Eurasia and beyond: the new threat to tomato world production. Journal Pest Science, 84, 403–408.
Dlamini, B.E., Dlamini, N., Masarirambi, M.T., & Kwanele, N. (2020) Control of the tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) larvae in laboratory using entomopathogenic nematodes from subtropical environment. Journal of Nematology, 52, 1-8.
EPPO. (2008) Additional information provided by Spain on EPPOA1 pest. EPPO reporting service (ESTa/2008-01).
EPPO. (2009) First report of Tuta absoluta in France. EPPO reporting service 2009/003.
Garcia-del-Pino, F., Alabern, X., & Morton, A. (2013) Efficacy of soil treatments of entomopathogenic nematodes against the larvae, pupae and adults of Tuta absoluta and their interaction with the insecticides used against this insect. BioControl, 58(6), 723–731.
Georgis, R., Koppermhoofer, A.M., Lacey, L.A., Belair, G., Duncan, L.W., Grewal, P.S., Samish, M., Tan, L., Torr, P., & Van Tol, R.W.H.M. (2006) Successes and failures in the use of parasitic nematodes for pest control. Biological Control, 38, 103–123.
Gilardón, E., Pocovi, M., Hernadéz, C., & Olsen, A. (2001) Papel dos tricomas glandulares da folha do tomateiro na oviposicão de Tuta absoluta. Pesquisa Agropecuária Brasileira, 36: 585–588.
Gözel, C., & Kasap, I. (2015) Efficacy of entomopathogenic nematodes against the Tomato leafminer, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in tomato field. Turkish Journal of Entomology, 39(3), 229–237.
Grewal, P.S., & Georgis, R. (1999) In Entomopathogenic nematodes. In Hall, F. R., and Menn, J. J. (Eds). Methods in Biotechnology, vol. 5: Biopesticides: Use and Delivery Humana Press, Totowa, NJ, pp. 271–299.
Henneberry, T.J., Lindegren, J.E., Forlow Jech, L., & Burke, R.A. (1995) Pink bollworm (Lepidoptera: Gelechiidae): Effects of Steinernematid nematodes on larval mortality. Southwestern Entomologist, 20, 25–32.
Kamali, S., Karimi, J., & Koppenhöfer, A.M. (2018) New Insight into the Management of the Tomato Leaf Miner, Tuta absoluta (Lepidoptera: Gelechiidae) with Entomopathogenic Nematodes. Journal of Economic Entomology, 111(1), 112–119.
Kaya, H.K., & Stock, S.P. (1997) Techniques of insect nematology. Manual of techniques in insect pathology. Biological Techniques Series (ed. Lacey, L.) pp. 281-324. Capítulo VI. Academic Press, San Diego, California, USA.
Kaya, H.K., & Gaugler, R. (1993) Entomopathogenic nematodes. Annual Review of Entomology, 38, 181–206.
Lacey, L.A., & Georgis, R. (2012) Entomopathogenic nematodes for control of insect pests above and below ground with comments on commercial production. Journal of Nematology, 44(2), 218–225.
Lietti, M.M., Botto, M.E., & Alzogaray, R.A. (2005) Insecticide Resistance in Argentine Populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Neotropical Entomology, 34(1), 113–119.
Lindegren, J.E., Meyer, K.F., Henneberry, T.J., Vail, P.V., ForlowJech, L.J., & Valero, K.A. (1993) Susceptibility of pink bollworm (Lepidoptera: Gelechidae) soil associated stages to the entomopathogenic nematode Steinernema carpocapsae (Rhaditida: Steinermatidae). Southwestern Entomologist, 18(2), 113–120.
Mohamed, S.A., Azrag, A.G.A., Obala, F., & Ndlela, S. (2022) Estimating the Demographic Parameters of Tuta absoluta (Lepidoptera: Gelechiidae) Using Temperature-Dependent Development Models and Their Validation under Fluctuating Temperature. Biology, 11, 181.
Mutegi, D.M., Kilalo, D., Kimenju, J.W., & Waturu, C. (2017) Pathogenicity of Selected Native Entomopathogenic Nematodes against Tomato Leaf Miner (Tuta Absoluta) in Kenya. World Journal of Agricultural Research, 5 (4), 233–239.
Ndereyimana, A., Nyalala, S., Murerwa, P., & Gaidashova, S. (2019) Potential of entomopathogenic nematode isolates from Rwanda to control the tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Egyptian Journal of Biological Pest Control, 29, 57.
Rostami, E., Madadi, H., Abbasipour, H., Allahyari, H., & Cuthbertson, A.G.S. (2017). Life table parameters of the tomato leaf miner Tuta absoluta (Lepidoptera: Gelechiidae) on different tomato cultivars. Journal of Applied Entomology, 141, 88–96.
Shapiro-Ilan, D.I., Cottrell, T.E., Mizell III, R.F., Horton, D.L., & Davis, J. (2009) A novel approach to biological control with entomopathogenic nematodes: Prophylactic control of the peach tree borer, Synanthedon exitiosa. Biological Control, 48, 259–263.
Siqueira, H.Á.A., Guedes, R.N.C., & Picanço, M.C. (2000) Insecticide resistance in populations of Tuta absoluta (Lepidoptera: Gelechiidae). Agricultural and Forest Entomology, 2, 147–153.
Souza, J.C., & Reis, P.R. (1992) Traça-do-tomateiro, histórico, reconhecimento, biologia, prejuízos e controle. EPAMIG, Belo Horizonte, Brazil.
SPSS. (2006) SPSS base 15.0 user’s guide. SPSS, Chicago, IL.
Tomé, H.V.V., Cordeiro, E.M.G., Rosado, J.F., & Guedes, R.N.C. (2012) Egg exposure to pyriproxyfen in the tomato leaf miner, Tuta absoluta: ovicidal activity or genhavioural-mediated hatching mortality? Annals of Applied Biology, 160, 35–42.
Tropea Garzia, G., Siscaro, G., Biondi, A., & Zappalà, L. (2012) Tuta absoluta, a South American pest of tomato now in the EPPO region: Biology, distribution and damage. EPPO Bulletin, 42, 205–210.
Urbaneja, A., González-Cabrera, J., Arnó, J., & Gabarra, R. (2012) Prospects for biological control of Tuta absoluta in tomatoes of the Mediterranean basin. Pest Management Science, 68, 1215–1222.
Zappalà, L., Biondi, A., Alma, A., Al-Jboory, I.J., Arno`, J., Bayram, A., Chailleux, A., El-Arnaouty, A., Gerling, D., Guenaoui, Y., Shaltiel-Harpaz, L., Siscaro, G., Stavrinides, M., Tavella, L., Vercher Aznar, R., Urbaneja, A., & Desneux, N. (2013) Natural enemies of the South American moth, Tuta absoluta, in Europe, North Africa and Middle-East, and their potential use in pest control strategies. Journal of Pest Science, 86, 635–647.
Notas de autor
habbasipour@yahoo.com