Revisión

Recepción: 02 Agosto 2024
Aprobación: 19 Marzo 2025
DOI: https://doi.org/10.25085/rsea.840202
Abstract: Insects, particularly dung beetles, are highly sensitive to environmental changes due to their dependence on climatic variables like temperature and humidity. These variables control numerous physiological and biochemical functions, making the study of insect ecophysiology crucial for understanding their spatial and temporal distribution. Dung beetles play vital roles in ecosystems, such as nutrient recycling, soil aeration, greenhouse gas mitigation, seed dispersal, and improving livestock health. Due to their sensitivity to environmental changes and antiparasitic drugs excreted in cattle feces, they serve as excellent bioindicators. Extensive studies worldwide have examined the ecophysiological responses of dung beetles to temperature, humidity, residues of veterinary medications excreted in cattle dung, and trophic preferences, revealing significant impacts on their survival and ecosystem functions. In Argentina, although some local and regional studies have explored some of these aspects, comprehensive ecophysiological research remains limited. Future studies in Argentina should focus on the effects of temperature, humidity, antiparasitic drugs, and trophic resources, to enhance the understanding of dung beetles' ecophysiological responses. Such research is essential for developing effective conservation strategies, particularly in regions with high cattle production and diverse dung beetle populations, ensuring the maintenance of their important ecological functions.
Keywords: Antiparasitics, Ecophysiology, Humidity, Insects, Temperature.
Resumen: Los insectos, en particular los escarabajos estercoleros, son muy sensibles a los cambios ambientales debido a su dependencia a variables climáticas como la temperatura y la humedad. Estas variables controlan numerosas funciones fisiológicas y bioquímicas, haciendo que el estudio de la ecofisiología de los insectos sea crucial para comprender su distribución espacial y temporal. Los escarabajos estercoleros desempeñan funciones vitales en los ecosistemas, como el reciclaje de nutrientes, aireación del suelo, mitigación de los gases de efecto invernadero, dispersión de semillas y mejora de la salud del ganado. Debido a su sensibilidad a los cambios ambientales y drogas antiparasitarias excretadas en las heces del ganado, sirven como excelentes bioindicadores. Extensos estudios en todo el mundo han examinado las respuestas ecofisiológicas de los escarabajos estercoleros a la temperatura, a la humedad, a residuos de productos médico-veterinarios eliminados en los excrementos del ganado, y a preferencias tróficas, revelando impactos significativos sobre su supervivencia y las funciones del ecosistema. En Argentina, aunque algunos estudios locales y regionales han explorado algunos de estos aspectos, la investigación ecofisiológica exhaustiva sigue siendo limitada. Futuros estudios en Argentina deberían centrarse en los efectos de la temperatura, la humedad, las drogas antiparasitarias, y los recursos tróficos para mejorar la comprensión de las respuestas ecofisiológicas de los escarabajos estercoleros. Este tipo de investigación es esencial para desarrollar estrategias de conservación eficaces, especialmente en regiones con una elevada producción ganadera y diversas poblaciones de escarabajos estercoleros, garantizando el mantenimiento de sus importantes funciones ecológicas.
Palabras clave: Antiparasitarios, Ecofisiología, Humedad, Insectos, Temperatura.
IMPORTANCE OF STUDIES IN INSECT PHYSIOLOGY
Insects are among the most sensitive organisms to environmental changes because they depend on environmental and ecological variables (e.g., temperature, humidity, solar radiation, infrared radiation, wind, trophic resources, pharmaceutical antiparasitics) from the molecular to the macroecological level (Lee & Denlinger, 1991; Chown & Nicholson, 2004; Dixon et al., 2009; Kingsolver, 2009; Verdú et al., 2010, 2013; Reis et al., 2011; Andersen et al., 2015). Among the environmental variables that most affect insects are temperature and humidity; both control several biochemical and physiological functions, behavior, and development in insects (Kingsolver, 2009; Reis et al., 2011). In terrestrial ecosystems, insects face a wide variety of climatic conditions among different habitats and throughout the day and year (Chown et al., 1995), and their ecophysiological response determine their spatial and temporal distribution (Bartholomew & Heinrich, 1978; Verdú et al., 2004, 2007). Previous studies have examined the morphological, ethological, and ecophysiological responses of insects to environmental changes at local, regional and global scales, and it was observed that the ecophysiological response is the one that explains the patterns observed in nature (Tauber & Tauber 1986; Chown et al., 2002; Moriyama & Numata, 2019; Nervo et al., 2021a; Giménez Gómez et al., 2022, 2025; Lehmann & Wheat, 2022; Gonzalez et al., 2023).
Given the sensitivity of insects to environmental changes, the study of their ecophysiological responses is highly relevant in the short term due to human-induced environmental disturbances (e.g., replacement of natural environments with disturbed ones, livestock) and in the long term due to climate change (global warming) (Dirzo & Raven, 2003; Nunez et al., 2019; Verdú et al., 2018, 2019). All insect species have thermal and metabolic limits that determine their tolerance to environmental changes; outside these limits, they lose their motor skills and become vulnerable to predation or exposure to lethal environmental conditions (such as extreme temperature and humidity) (Byrne et al., 2004). These limits, together with the capacity to regulate changes in ecophysiological variables (e.g., thermoregulation), determine the thermal niche of each species (Verdú & Lobo, 2008). This axis of the ecological niche is used to explain not only the current distribution and response of insect species but also their future distribution and response to environmental changes (mechanistic distribution models) (Kearney & Porter, 2004, 2009; Peterson et al., 2015). Understanding the thermal niche and the response of insect species to short- and long-term environmental changes is crucial for developing conservation strategies to prevent future species loss, especially for those important to the ecosystem, such as dung beetles (Nichols et al., 2007, 2008; Giménez Gómez et al., 2020a, 2022). This is critical in these times when many ecosystems are losing the right conditions for species survival (Nunez et al., 2019).
IMPORTANCE OF DUNG BEETLES
Dung beetles are one of the most studied insect groups in ecology because they exhibit high species richness and abundance (Ocampo & Hawks, 2006; Spector, 2006), and they are sensitive to anthropogenic disturbances (Verdú et al., 2007; Gardner et al., 2008; Tonelli et al., 2017), either by human-induced changes in the trophic resource diversity (Culot et al., 2013) or climatic conditions (Osberg et al., 1993; Oliveira-Filho & Fontes, 2000; Broennimann et al., 2012). Additionally, their taxonomy is relatively stable and well-known (Philips et al., 2004), and they play a crucial role in ecosystem functioning (Hanski & Cambefort, 1991; Andresen & Feer, 2005; Nichols et al., 2008; Verdú et al., 2018). Through their ecological functions, the dung beetles contribute significantly to soil health, climate regulation, and livestock areas.
They recycle nutrients by breaking down animal feces, which enriches the soil with organic matter. This process enhances soil fertility, improves water retention, and reduces soil erosion. By burying dung, dung beetles aerate the soil and increase its organic content, benefiting plant growth and reducing the prevalence of pest insects like flies (Nichols et al., 2008). They help to mitigate greenhouse gas emissions by breaking down dung, which reduces methane and carbon dioxide released from livestock dung. This activity is particularly important in livestock areas where large quantities of animal dung are produced (Slade et al., 2016; Verdú et al., 2019). They also play a role in seed dispersal, as some plant seeds are transported and buried by dung beetles, enhancing plant propagation and maintaining healthy ecosystems (Shepherd & Chapman, 1998; Nichols et al., 2008). In livestock areas, dung beetles improve pasture quality by distributing nutrients and reducing parasite loads in livestock by burying dung, which interrupts the life cycles of many parasitic species. This activity helps maintain healthier livestock and reduces the need for chemical treatments (Nichols et al., 2008). Overall, dung beetles are indispensable for maintaining ecological balance and supporting sustainable livestock practices. Their contributions highlight the importance of conserving these beneficial insects to ensure the health and productivity of ecosystems globally.
ECOPHYSIOLOGICAL STUDIES CONDUCTED THROUGHOUT THE WORLD
Due to the great sensitivity of dung beetles to changes in environmental conditions, to ecological condition (e.g., trophic resources), and their important ecosystem functions, the study of their physiology and their ecophysiological response to environmental variables associated with human activity (e.g., environment replacement, antiparasitic drugs, antibiotics, herbicides) have been widely conducted worldwide. In general, important ecophysiological studies have been carried out on dung beetles associated with temperature, humidity, antiparasitic drugs excreted in cattle feces, antibiotics, herbicides, and trophic resources. In this work, a total of 64 scientific articles associated with dung beetle’s physiology were reviewed, six of which were conducted in Argentina (Table I). Table I includes both studies performed outside Argentina and in the country. The search for articles was conducted using Google Scholar with the keywords 'dung beetles physiology', ´antiparasitics and dung beetles physiology´, ´herbicides and dung beetles physiology´, ´antibiotics and dung beetles physiology´, ´trophic resources and dung beetles physiology´ and through consultations with specialists.
In summary, from all these studies, it can be highlighted that not only do changes in temperature and humidity have negative effects on the ecophysiology (harmful impacts on both the physiology and ecological roles) of dung beetles, but so do the antiparasitic drugs administered to cattle, and herbicides and antibiotics to a lesser degree. Changes in physiology associated with the type of resources used for feeding have also been observed. This demonstrates the great sensitivity of this group of insects to environmental changes, to ecological variables, and the drugs used for parasite control in cattle. This sensitivity makes dung beetles excellent indicators of environmental changes. Regarding the use of ecotoxic synthetic pharmaceutical anthelmintics (e.g., ivermectin), it is important to note that alternatives are being found that are not lethal to dung beetles, such as phytochemical anthelmintics (e.g., thymol, carvacrol, cinnamaldehyde) (Verdú et al., 2023). The latter has been proposed in Spain but given the significant negative impact that previous studies have demonstrated the pharmaceutical antiparasitics present, it is crucial to conduct these studies in other countries to begin the process of replacing the lethal antiparasitics and thus avoid future loss of dung beetle species and their ecosystem functions.
ECOLOGICAL STUDIES CARRIED OUT IN ARGENTINA
In Argentina, the response of dung beetles to environmental disturbances has been studied at both local and regional scales at the community level (Gómez-Cifuentes et al., 2017, 2018, 2023; Giménez Gómez et al., 2018a,2022,2025; Guerra Alonso et al., 2019, 2020, 2021, 2022, 2023; Guerrero et al., 2024). At the local scale, research indicates that dung beetles are highly sensitive to environmental changes, with greater disturbances leading to lower diversity and abundance (Gómez-Cifuentes et al., 2017, 2018; Giménez Gómez et al., 2018a; 2022; Guerra Alonso et al., 2019, 2021; Guerrero et al., 2024). At the regional scale, dung beetle communities exhibit varying responses depending on the environmental conditions of each region (Giménez Gómez et al., 2025; Guerra Alonso et al., 2020, 2022, 2023). To explain these ecological patterns, researchers have assessed multiple ecological traits, including food preference, morphological, behavioral and physiological characteristics (Wurmitzer et al., 2017; Giménez Gómez et al., 2018b, 2020a, 2020b, 2022, 2025; Bobadilla et al., 2024). It is important to note that research has been conducted on the ecosystem functions of dung beetles and how these functions are affected by environmental disturbances (Maldonado et al., 2019, 2023; Gómez-Cifuentes et al., 2023; Vespa et al., 2024); as well as studies on the association of mouthparts with respect to trophic preferences and studies on standardization of functional traits (Giménez Gómez & Tonelli, 2022; Giménez Gómez et al., 2023).
Among the studies conducted in Argentina, five have focused on ecophysiological research to explain the patterns observed in nature (Giménez Gómez et al., 2017, 2020a, 2022,2025; Verdú et al., 2019, 2022). Local-scale studies have found that ecophysiology, rather than morphology and ethology, explains temporal (Giménez Gómez et al., 2017, 2022; Verdú et al., 2022) and spatial distribution (Giménez Gómez et al., 2020a, 2022;Verdú et al., 2019, 2022) of dung beetles. In these studies, variables associated with temperature (variables associated with thermal stress and thermal limits) and metabolic rate (variations in the CO2 emissions by respiration) have been used to investigate the response of species to heat stress. By subjecting them to extreme temperatures, we have been able to determine which species are most tolerant or most susceptible to environmental changes both locally and regionally (Giménez Gómez et al., 2022, 2025). This knowledge has allowed us to suggest strategies for the conservation of some dung beetle species. We have also used variables associated with flight, endothermy, and thermoregulation, which on the one hand helped us to explain the fact that some species are able to tolerate short-term environmental changes, and which also helped us to suggest what will happen in the long term with some dung beetle species.
Currently, in Argentina, studies are being conducted on larger scales using mechanistic distribution models that incorporate basic ecophysiology to explain the current potential distribution of some species and their potential future distribution based on their thermal limits. This approach will allow researchers to predict how species will respond to rising temperatures in the coming years, providing information on future distribution patterns based on their physiological characteristics (Kearney & Porter, 2004, 2009; Evans et al., 2015; Phill & Thomson, 2015; Maino et al., 2016). Argentina will be a pioneer in applying these models to dung beetles, and it is expected that the use of these models will be highly beneficial when replicated in other countries. This will contribute significantly to the ecophysiological studies of dung beetles and their conservation.

Studies carried out in Argentina are highlighted in bold type.
FUTURE ECOPHYSIOLOGICAL STUDIES FOR ARGENTINA
Considering all the studies carried out abroad and in Argentina, it can be said that many ecophysiological studies have yet to be conducted in Argentina. Regarding temperature, we need to deepen the study of its effect on thermal stress and metabolic rate, the lower thermal limits and thermal stress associated with cold. Additionally, we need to explore more variables associated with both heat and cold, the effect of temperature on the cuticle and exoskeleton, the effect of solar and infrared radiation on body temperature, the impact of temperature on body lipids and fat in general, and the effect of temperature on oviposition and developmental stages in dung beetles. Expanding our understanding of species' responses to temperature changes in Argentina will enable a more precise assessment of their susceptibility to environmental shifts. This knowledge will be essential for developing effective conservation strategies to prevent future species loss due to global warming.
Considering the studies on the effects of changes in humidity - temperature, or only humidity, and the application of herbicides, antiparasitic drugs and antibiotics on cattle, and their impact on the ecophysiology of dung beetles, it should be noted that none of these studies have been conducted in Argentina. Research in the country has only examined water loss and water volume variations under heat stress (Verdú et al., 2019, 2022; Giménez Gómez et al., 2022, 2025). These studies would greatly contribute to the understanding of the ecophysiological response of these insects to environmental changes and the use of antiparasitic drugs, while also promoting the exploration of less toxic alternatives in livestock management to prevent species loss.
Regarding antiparasitic drugs, in Argentina, only studies on the impact of these drugs (ivermectin, moxidectin, doramectin, eprinomectin, among others) on the diversity and abundance of insects or arthropods in general that inhabit cattle feces have been carried out (Suárez et al., 2003, 2009; Iglesias et al., 2006, 2011), but no study has focused only on dung beetles. Considering that Argentina has historically been one of the countries with the highest beef production and per capita beef consumption per year (Arrieta et al., 2020; Bifaretti et al., 2023) and that the diversity and abundance of dung beetles are high in some regions of the country (Giménez Gómez et al., 2018a; Gómez-Cifuentes et al., 2018, 2023; Guerra Alonso et al., 2020, 2022), it is of extreme relevance to evaluate the impact of antiparasitic drugs not only on the diversity and abundance of the species but also on their ecophysiological responses.
Finally, it is crucial to highlight that further research on dung beetle ecophysiology would not only enhance our understanding of how these species respond to environmental changes in Argentina but also contribute to global scientific knowledge. Given the current global threats to dung beetle diversity—such as excessive use of antiparasitic drugs, habitat loss due to environmental disturbances, and global warming—it is essential to advance physiological research. Improving our understanding in this area will be key to preventing future loss of dung beetle species and safeguarding the vital ecosystem functions they perform.
DATA STATEMENT
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
COMPETING INTERESTS
The authors have declared that no competing interests exist.
AUTHORS CONTRIBUTIONS
VCGG, JRV; Bibliography search: VCGG, JRV, VC; Writing - original draft preparation: VCGG; Revision of final draft and approval for publication: VCGG, JRV, VC.
Acknowledgments
We thank the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and the Agencia Nacional de Promoción de la Investigación, el Desarrollo Tecnológico y la Innovación (ANPCyT - PICT-2021-I-INVI-00617 to V.C Giménez Gómez) for the financial support provided.
REFERENCES
Alcântara, C. O. D., Silva, P. G. D., & Hernández, M. I. M. (2023). Body size and body conditions of two dung beetle species (Coleoptera: Scarabaeidae) related to environmental temperatures. Revista Brasileira de Entomologia, 67(2), e20220099. https://doi.org/10.1590/1806-9665-RBENT-2022-0099
Amore, V., Hernández, M. I. M., Carrascal, L. M., & Lobo, J. M. (2017). Exoskeleton may influence the internal body temperatures of Neotropical dung beetles (Col. Scarabaeinae). PeerJ, 5, e3349. https://doi.org/10.7717/peerj.3349
Andersen, J. L., Manenti, T., Sørensen, J. G., MacMillan, H. A., Loeschcke, V., & Overgaard, J. (2015). How to assess Drosophila cold tolerance: Chill coma temperature and lower lethal temperature are the best predictors of cold distribution limits. Functional Ecology, 29, 55-65. https://doi.org/10.1111/1365-2435.12328
Andresen, E., & Feer, F. (2005). The role of dung beetles as secondary seed dispersers and their effect on plant regeneration in tropical rainforests. In P. M. Forget, J. E. Lambert, P. E. Hulme, & S. B. Vander Wall (Eds.), Predation, dispersal and seedling establishment (pp. 331-349). CABI International.
Arrieta, E. M., Cabrol, D. A., Cuchietti, A., & González, A. D. (2020). Biomass consumption and environmental footprints of beef cattle production in Argentina. Agricultural Systems, 185, 102944. https://doi.org/10.1016/j.agsy.2020.102944
Baena-Díaz, F., Martínez-M, I., Gil-Pérez, Y., & González-Tokman, D. (2018). Trans-generational effects of ivermectin exposure in dung beetles. Chemosphere, 202, 637-643. https://doi.org/10.1016/j.chemosphere.2018.03.117
Bartholomew, G. A., & Heinrich, B. (1978). Endothermy in African dung beetles during flight, ball making, and ball rolling. Journal of Experimental Biology, 73(1), 65-83. https://doi.org/10.1242/jeb.73.1.65
Bifaretti, A., Pavan, E., & Griogioni, G. (2023). Consumer attitudes and concerns about beef consumption in Argentina and other South American countries. Agriculture, 13(3), 560. https://doi.org/10.3390/agriculture13030560
Birkett, A. J., Blackburn, G. A., & Menéndez, R. (2017). Linking species thermal tolerance to elevational range shifts in upland dung beetles. Ecography, 41(9), 1510-1519. https://doi.org/10.1111/ecog.03458
Bobadilla, Y. T., Ibarra Polesel, M. G., Gómez-Cifuentes, A., & Zurita, G. A. (2024). Ecological cascades following trophic rewilding: A case study with dung beetles in the Iberá wetlands of Argentina. Biological Conservation, 291, 110478. https://doi.org/10.1016/j.biocon.2024.110478
Broennimann, O., Fitzpatrick, M. C., Pearman, P. B., Petitpierre, B., Pellissier, L., Yoccoz, N. G., Thuiller, W., Fortin, M.-J., Randin, C., Zimmermann, N. E., Graham, C. H., & Guisan, A. (2012). Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography, 21(4), 481-497. https://doi.org/10.1111/j.1466-8238.2011.00698.x
Byrne, M. J., & Duncan, F. D. (2003). The role of the subelytral spiracles in respiration in the flightless dung beetle Circellium bacchus. Journal of Experimental Biology, 206(8), 1309-1318. https://doi.org/10.1242/jeb.00250
Byrne, M. J., Coetzee, J., McConnachie, A. J., Parasram, W., & Hill, M. P. (2004). Predicting climate compatibility of biological control agents in their region of introduction. In J. M. Cullen, D. T. Briese, D. J. Kriticos, W. M. Lonsdale, L. Morin, & J. K. Scott (Eds.), Proceedings of the XI international symposium on biological control of weeds (pp. 351-352). CSIRO Entomology.
Carter, A. W., & Sheldon, K. S. (2020). Life stages differ in plasticity to temperature fluctuations and uniquely contribute to adult phenotype in Onthophagus taurus dung beetles. Journal of Experimental Biology, 223(12), jeb227884. https://doi.org/10.1242/jeb.227884
Chown, S. L., & Nicholson, S. W. (2004). Insect physiological ecology: Mechanisms and patterns. Oxford University Press.
Chown, S. L., Scholtz, C. H., Klok, C. J., Joubert, F. J., & Coles, K. S. (1995). Ecophysiology, range contraction and survival of a geographically restricted African dung beetle (Coleoptera: Scarabaeidae). Functional Ecology, 9(1), 30-39. https://doi.org/10.2307/2390087
Chown, S. L., Addo-Bediako, A., & Gaston, K. J. (2002). Physiological variation in insects: Large-scale patterns and their implications. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 131(4), 587-602. https://doi.org/10.1016/S1096-4959(02)00017-9
Cruz Rosales, M., Martínez, M. I., López-Collado, J., Vargas-Mendoza, M., González-Hernández, H., & Fajersson, P. (2012). Effect of ivermectin on the survival and fecundity of Euoniticellus intermedius (Coleoptera: Scarabaeidae). Revista de Biología Tropical, 60(1), 333-345.
Culot, L., Bovy, E., Vaz-de-Mello, F. Z., Guevara, R., & Galetti, M. (2013). Selective defaunation affects dung beetle communities in continuous Atlantic rainforest. Biological Conservation, 163, 79-89. https://doi.org/10.1016/j.biocon.2013.04.004
Davis, A. L. V., Chown, S. L., & Scholtz, C. H. (1999). Discontinuous gas-exchange cycles in Scarabaeus dung beetles (Coleoptera: Scarabaeidae): Mass-scaling and temperature dependence. Physiological and Biochemical Zoology, 72(5), 555-565. https://doi.org/10.1086/316698
Dirzo, R., & Raven, P. H. (2003). Global state of biodiversity and loss. Annual Review of Environment and Resources, 28, 137-167. https://doi.org/10.1146/annurev.energy.28.050302.105532
Dixon, A. F. G., Honek, A., Keil, P., Kotela, M. A. A., Sizling, A. L., & Jarosik, V. (2009). Relationship between the minimum and maximum temperature thresholds for development in insects. Functional Ecology, 23(2), 257-264. https://doi.org/10.1111/j.1365-2435.2008.01489.x
Duncan, F. D. (2002). The role of the subelytral cavity in water loss in the flightless dung beetle, Circellium bacchus (Coleoptera: Scarabaeinae). European Journal of Entomology, 99(2), 253-258. https://doi.org/10.14411/eje.2002.034
Duncan, F. D., & Byrne, M. J. (2000). Discontinuous gas exchange in dung beetles: Patterns and ecological implications. Oecologia, 122(4), 452-458. https://doi.org/10.1007/s004420050967
Duncan, F. D., & Byrne, M. J. (2002). Respiratory airflow in a wingless dung beetle. Journal of Experimental Biology, 205(16), 2489-2497. https://doi.org/10.1242/jeb.205.16.2489
Duncan, F. D., & Byrne, M. J. (2005). The role of the mesothoracic spiracles in respiration in flighted and flightless dung beetles. Journal of Experimental Biology, 208(5), 907-914. https://doi.org/10.1242/jeb.01479
Duncan, F. D., Forster, T. D., & Hetz, S. K. (2010). Pump out the volume—The effect of tracheal and subelytral pressure pulses on convective gas exchange in a dung beetle, Circellium bacchus (Fabricius). Journal of Insect Physiology, 56(5), 551-558. https://doi.org/10.1016/j.jinsphys.2009.03.009
Esquivel-Román, A., Baena-Díaz, F., Bustos-Segura, C., De Gasparín, O., & González-Tokman, D. (2024). Synergistic effects of elevated temperature with pesticides on reproduction, development and survival of dung beetles. Ecotoxicology, 34(2), 207-218. https://doi.org/10.1007/s10646-024-02825-0
Esquivel-Román, A., Baena-Díaz, F., Bustos-Segura, C., De Gasparín, O., & González-Tokman, D. (2025). Thermal physiology of dung beetles exposed to ivermectin, a veterinary drug. Journal of Thermal Biology, 128, 104080. https://doi.org/10.1016/j.jtherbio.2025.104080
Evans, T. G., Diamond, S. E., & Kelly, M. W. (2015). Mechanistic species distribution modelling as a link between physiology and conservation. Conservation Physiology, 3(1), cov056. https://doi.org/10.1093/conphys/cov056
Fleming, J. M., Carter, A. W., & Sheldon, K. S. (2021). Dung beetles show metabolic plasticity as pupae and smaller adult body size in response to increased temperature mean and variance. Journal of Insect Physiology, 131, 104215. https://doi.org/10.1016/j.jinsphys.2021.104215
Gallego, B., Verdú, J. R., Carrascal, L. M., & Lobo, J. M. (2016). A protocol for analyzing thermal stress in insects using infrared thermography. Journal of Thermal Biology, 56, 113-121. https://doi.org/10.1016/j.jtherbio.2015.12.006
Gallego, B., Verdú, J. R., Carrascal, L. M., & Lobo, J. M. (2017). Thermal tolerance and recovery behaviour of Thorectes lusitanicus (Coleoptera, Geotrupidae). Ecological Entomology, 42(6), 758-767. https://doi.org/10.1111/een.12447
Gallego, B., Verdú, J. R., & Lobo, J. M. (2018). Comparative thermoregulation between different species of dung beetles (Coleoptera: Geotrupinae). Journal of Thermal Biology, 74, 84-91. https://doi.org/10.1016/j.jtherbio.2018.03.009
Gallego, B., Verdú, J. R., Jiménez Ruiz, J., & Lobo, J. M. (2024). Searching for variables representing the response to cold stress in Mediterranean Geotrupinae reveals an association between heat and cold tolerances. Journal of Thermal Biology, 126, 103997. https://doi.org/10.1016/j.jtherbio.2024.103997
Gardner, T. A., Hernández, M. I. M., Barlow, J., & Peres, C. A. (2008). Understanding the biodiversity consequences of habitat change: The value of secondary and plantation forests for neotropical dung beetles. Journal of Applied Ecology, 45(3), 883-893. https://doi.org/10.1111/j.1365-2664.2008.01454.x
Gaston, K. J., & Chown, S. L. (1999). Elevation and climatic tolerance: A test using dung beetles. Oikos, 86(3), 584-590. https://doi.org/10.2307/3546663
Giménez Gómez, V. C., & Tonelli, M. (2022). The importance of body size standardization in functional diversity studies of dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae). The Coleopterists Bulletin, 76(4), 497-502. https://doi.org/10.1649/0010-065X-76.4.497
Giménez Gómez, V. C., Lomáscolo, S., Zurita, G. A., & Ocampo, F. (2017). Daily activity patterns and thermal tolerance of three sympatric dung beetle species (Scarabaeidae; Scarabaeinae: Eucraniini) from the Monte desert, Argentina. Neotropical Entomology, 47(6), 821-827. https://doi.org/10.1007/s13744-017-0567-2
Giménez Gómez, V. C., Verdú, J. R., Guerra Alonso, C. B., & Zurita, G. A. (2018a). Relationship between land uses and diversity of dung beetles (Coleoptera: Scarabaeinae) in the southern Atlantic forest of Argentina: Which are the key factors? Biodiversity and Conservation, 27(13), 3201-3213. https://doi.org/10.1007/s10531-018-1597-8
Giménez Gómez, V. C., Verdú, J. R., Gómez-Cifuentes, A., Vaz-de-Mello, F. Z., & Zurita, G. A. (2018b). Influence of land use on the trophic niche overlap of dung beetles in the semideciduous Atlantic forest of Argentina. Insect Conservation and Diversity, 11(6), 554-564. https://doi.org/10.1111/icad.12299
Giménez Gómez, V. C., Verdú, J. R., & Zurita, G. A. (2020a). Thermal niche helps to explain the ability of dung beetles to exploit disturbed habitats. Scientific Reports, 10(1), 13364. https://doi.org/10.1038/s41598-020-70284-8
Giménez Gómez, V. C., Verdú, J. R., Velazco, S. J. E., & Zurita, G. A. (2020b). Dung beetle trophic ecology: Are we misunderstanding resources attraction? Ecological Entomology, 46(3), 552-561. https://doi.org/10.1111/een.13001
Giménez Gómez, V. C., Verdú, J. R., Casanoves, F., & Zurita, G. A. (2022). Functional responses to anthropogenic disturbance and the importance of selected traits: A study case using dung beetles. Ecological Entomology, 47(4), 503-514. https://doi.org/10.1111/een.13135
Giménez Gómez, V. C., Tonelli, M., Verdú, J. R., Medina, C. A., Sánchez, M. V., & Zurita, G. A. (2023). Possible indicators of feeding habit types: Analysis of the mouthparts of five Dichotomius Hope (Coleoptera: Scarabaeidae) species from Argentina. The Coleopterists Bulletin, 77(2), 231-238. https://doi.org/10.1649/0010-065X-77.2.231
Giménez Gómez, V. C., Verdú, J. R., & Zurita, G. A. (2025). Physiological traits explain the response of dung beetles to land use at local and regional scales. Scientific Reports, 15, 7424. https://doi.org/10.1038/s41598-025-92149-8
Gómez-Cifuentes, A., Munévar, A., Giménez Gómez, V. C., Gatti, M. G., & Zurita, G. A. (2017). Influence of land use on the taxonomic and functional diversity of dung beetles (Coleoptera: Scarabaeinae) in the southern Atlantic forest of Argentina. Journal of Insect Conservation, 21(1), 147-156. https://doi.org/10.1007/s10841-017-9964-4
Gómez-Cifuentes, A., Giménez Gómez, V. C., Moreno, C. E., & Zurita, G. A. (2018). Tree retention in cattle ranching systems partially preserves dung beetle diversity and functional groups in the semideciduous Atlantic forest. Basic and Applied Ecology, 34, 64-74. https://doi.org/10.1016/j.baae.2018.10.002
Gómez-Cifuentes, A., Munévar, A., & Zurita, G. A. (2023). Dung beetles diversity and their role in nutrient cycling in livestock systems of the dry Chaco. Agriculture, Ecosystems and Environment, 358, 108708. https://doi.org/10.1016/j.agee.2023.108708
Gonzalez, V. H., Manweiler, R., Smith, A. R., Oyen, K., Cardona, D., & Wcislo, W. T. (2023). Low heat tolerance and high desiccation resistance in nocturnal bees and the implications for nocturnal pollination under climate change. Scientific Reports, 13(1), 22320. https://doi.org/10.1038/s41598-023-49815-6
González-Tokman, D., Martínez-M, I., Farrera, A., Ortiz-Zayas, M. R., & Lumaret, J.-P. (2017). Effects of an herbicide on physiology, morphology, and fitness of the dung beetle Euoniticellus intermedius (Coleoptera: Scarabaeidae). Environmental Toxicology and Chemistry, 36(1), 96-102. https://doi.org/10.1002/etc.3498
González-Tokman, D., Gil-Pérez, Y., Servín-Pastor, M., Alvarado, F., Escobar, F., Baena-Díaz, F., García-Robledo, C., & Martínez-M, I. (2021). Effect of chemical pollution and parasitism on heat tolerance in dung beetles (Coleoptera: Scarabaeinae). Journal of Economic Entomology, 114(2), 462-467. https://doi.org/10.1093/jee/toaa216
Gotcha, N., Machekano, H., Cuthbert, R. N., & Nyamukondiwa, C. (2021a). Heat tolerance may determine activity time in coprophagic beetle species (Coleoptera: Scarabaeidae). Insect Science, 28(5), 1076-1086. https://doi.org/10.1111/1744-7917.12844
Gotcha, N., Machekano, H., Cuthbert, R. N., & Nyamukondiwa, C. (2021b). Low-temperature tolerance in coprophagic beetle species (Coleoptera: Scarabaeidae): Implications for ecological services. Ecological Entomology, 46(5), 1101-1112. https://doi.org/10.1111/een.13054
Guerra Alonso, C. B., Zurita, G. A., & Bellocq, M. I. (2019). Livestock areas with canopy cover sustain dung beetle diversity in the humid subtropical Chaco forest. Insect Conservation and Diversity, 12(4), 296-308. https://doi.org/10.1111/icad.12340
Guerra Alonso, C. B., Zurita, G. A., & Bellocq, M. I. (2020). Dung beetles response to livestock management in three different regional contexts. Scientific Reports, 10(1), 3702. https://doi.org/10.1038/s41598-020-60575-5
Guerra Alonso, C. B., Zurita, G. A., & Bellocq, M. I. (2021). Response of dung beetle taxonomic and functional diversity to livestock grazing in an arid ecosystem. Ecological Entomology, 46(3), 582-591. https://doi.org/10.1111/een.13004
Guerra Alonso, C. B., Zurita, G. A., & Bellocq, M. I. (2022). Livestock grazing impacts differently on the functional diversity of dung beetles depending on the regional context in subtropical forests. Scientific Reports, 12(1), 1636. https://doi.org/10.1038/s41598-022-05616-x
Guerra Alonso, C. B., Filloy, J., & Zurita, G. A. (2023). Climate as a determinant of dung beetle response to native forest replacement by cattle pastures in South America. Austral Ecology, 48(6), 1092-1106. https://doi.org/10.1111/aec.13334
Guerrero, S. E., Vespa, N. I., & Gómez-Cifuentes, A. (2024). Efectos de la calidad de los bosques de ribera sobre la diversidad de escarabajos estercoleros (Coleoptera: Scarabaeinae). Boletín de la Sociedad Entomológica Argentina, 35(1), 4-7.
Hammer, T. J., Fierer, N., Hardwick, B., Simojoki, A., Slade, E., Taponen, J., Viljanen, H., & Roslin, T. (2016). Treating cattle with antibiotics affects greenhouse gas emissions, and microbiota in dung and dung beetles. Proceedings of the Royal Society B: Biological Sciences, 283(1831), 20160150. https://doi.org/10.1098/rspb.2016.0150
Hanski, I., & Cambefort, Y. (1991). Dung beetle ecology. Princeton University Press.
Heinrich, B., & Bartholomew, G. A. (1979). Roles of endothermy and size in inter- and intraspecific competition for elephant dung in an African dung beetle, Scarabaeus laevistriatus. Physiological Zoology, 52(4), 484-496.
Holter, P., & Spangenberg, A. (1997). Oxygen uptake in coprophilous beetles (Aphodius, Geotrupes, Sphaeridium) at low oxygen and high carbon dioxide concentrations. Physiological Entomology, 22(4), 339-343. https://doi.org/10.1111/j.1365-3032.1997.tb01178.x
Hussain, M., Ghazanfar, M., Malik, M. F., Umar, M., & Younas, M. (2021). Effect of endectocides and antibiotic dung poisoning on mortality of dung beetle species. Pakistan Journal of Scientific and Industrial Research Series B: Biological Sciences, 64B(3), 211-216. https://doi.org/10.52763/PJSIR.BIOL.SCI.64.3.2021.211.216
Iglesias, L. E., Saumell, C. A., Fernández, A. S., Fusé, L. A., Lifschitz, A. L., Rodríguez, E. M., Steffan, P. E., & Fiel, C. A. (2006). Environmental impact of ivermectin excreted by cattle treated in autumn on dung fauna and degradation of faeces on pasture. Parasitology Research, 100(1), 93-102. https://doi.org/10.1007/s00436-006-0240-x
Iglesias, L. E., Fusé, L. A., Lifschitz, A. L., Rodríguez, E. M., Saguéz, M. F., & Saumell, C. A. (2011). Environmental monitoring of ivermectin excreted in spring climatic conditions by treated cattle on dung fauna and degradation of faeces on pasture. Parasitology Research, 108(5), 1185-1191. https://doi.org/10.1007/s00436-010-2161-y
Kearney, M., & Porter, W. (2004). Mapping the fundamental niche: Physiology, climate, and the distribution of a nocturnal lizard. Ecology, 85(11), 3119-3131. https://doi.org/10.1890/03-0820
Kearney, M., & Porter, W. (2009). Mechanistic niche modelling: Combining physiological and spatial data to predict species' ranges. Ecology Letters, 12(4), 334-350. https://doi.org/10.1111/j.1461-0248.2008.01277.x
Kingsolver, J. G. (2009). The well‐temperatured biologist. The American Naturalist, 174(6), 755-768. https://doi.org/10.1086/648310
Kirkpatrick, W. H., & Sheldon, K. S. (2022). Experimental increases in temperature mean and variance alter reproductive behaviours in the dung beetle Phanaeus vindex. Biology Letters, 18(4), 20220109. https://doi.org/10.1098/rsbl.2022.0109
Lee, R. E., & Denlinger, D. L. (1991). Insects at low temperature. Chapman and Hall.
Lehman, P., & Wheat, C. W. (2022). Intrapopulation variance in ecophysiological responses to water limitation in a butterfly metapopulation suggests adaptive resilience to environmental variability. Molecular Ecology, 31(22), 5649-5652. https://doi.org/10.1111/mec.16729
Machekano, H., Zidana, C., Gotcha, N., & Nyamukondiwa, C. (2021). Limited thermal plasticity may constrain ecosystem function in a basally heat tolerant tropical telecoprid dung beetle, Allogymnopleurus thalassinus (Klug, 1855). Scientific Reports, 11(1), 22192. https://doi.org/10.1038/s41598-021-01478-x
Maino, J. L., Kong, J. D., Hoffmann, A. A., Barton, M. G., & Kearney, M. R. (2016). Mechanistic models for predicting insect responses to climate change. Current Opinion in Insect Science, 17, 81-86. https://doi.org/10.1016/j.cois.2016.07.006
Maldonado, M. B., Aranibal, J. N., Serrano, A. M., Chacoff, N. P., & Vazquez, D. P. (2019). Dung beetles and nutrient cycling in a dryland environment. Catena, 179, 66-73. https://doi.org/10.1016/j.catena.2019.03.035
Maldonado, M. B., Serrano, A. M., Chacoff, N. P., & Vazquez, D. P. (2023). The role of dung beetles in seed dispersal in an arid environment. Ecología Austral, 33(2), 370-378. https://doi.org/10.25260/EA.23.33.2.0.2075
Martínez, M. I., Lumaret, J.-P., Ortiz Zayas, R., & Kadiri, N. (2017). The effects of sublethal and lethal doses of ivermectin on the reproductive physiology and larval development of the dung beetle Euoniticellus intermedius (Coleoptera: Scarabaeidae). The Canadian Entomologist, 149(4), 461-472. https://doi.org/10.4039/tce.2017.11
Mena, J. (2001). Role of high body temperature in the endothermic dung beetle Geotrupes mutator (Coleoptera, Geotrupidae). Italian Journal of Zoology, 68(2), 115-120. https://doi.org/10.1080/11250000109356394
Moriyama, M., & Numata, H. (2019). Ecophysiological responses to climate change in cicadas. Physiological Entomology, 44(2), 65-76. https://doi.org/10.1111/phen.12283
Nervo, B., Roggero, A., Chamberlain, D., Caprio, E., Rolando, A., & Palestrini, C. (2021a). Physiological, morphological and ecological traits drive desiccation resistance in north temperate dung beetles. BMC Zoology, 6(1), 26. https://doi.org/10.1186/s40850-021-00089-3
Nervo, B., Roggero, A., Chamberlain, D., Rolando, A., & Palestrini, C. (2021b). Dung beetle resistance to desiccation varies within and among populations. Physiological Entomology, 46(3), 230-243. https://doi.org/10.1111/phen.12366
Nervo, B., Roggero, A., Isaia, M., Chamberlain, D., Rolando, A., & Palestrini, C. (2021c). Integrating thermal tolerance, water balance and morphology: An experimental study on dung beetles. Journal of Thermal Biology, 101, 103093. https://doi.org/10.1016/j.jtherbio.2021.103093
Nervo, B., Laini, A., Roggero, A., Palestrini, C., & Rolando, A. (2024). Spatio-temporal modelling suggests that some dung beetle species (Coleoptera: Geotrupidae) may respond to global warming by boosting dung removal. Science of The Total Environment, 908, 168127. https://doi.org/10.1016/j.scitotenv.2023.168127
Nichols, E., Larsen, T., Spector, S., Davis, A. L., Escobar, F., Favila, M., Vulinec, K., & The Scarabaeinae Research Network. (2007). Global dung beetle response to tropical forest modification and fragmentation: A quantitative literature review and meta-analysis. Biological Conservation, 137(1), 1-19. https://doi.org/10.1016/j.biocon.2007.01.023
Nichols, E., Spector, S., Louzada, J., Larsen, T., Amezquita, S., & Favila, M. E. (2008). Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biological Conservation, 141(6), 1461-1474. https://doi.org/10.1016/j.biocon.2008.04.011
Nunez, S., Arets, E., Alkemade, R., Verwer, C., & Leemans, R. (2019). Assessing the impacts of climate change on biodiversity: Is below 2 °C enough? Climatic Change, 154(3-4), 351-365. https://doi.org/10.1007/s10584-019-02420-x
Ocampo, F., & Hawks, D. C. (2006). Molecular phylogenetics and evolution of the food relocation behaviour of the dung beetle tribe Eucraniini (Coleoptera: Scarabaeidae: Scarabaeinae). Invertebrate Systematics, 20(5), 557-570. https://doi.org/10.1071/IS05031
Oliveira-Filho, A. T., & Fontes, I. A. M. (2000). Patterns of floristic differentiation among Atlantic forests in Southeastern Brazil and the influence of climate. Biotropica, 32(4b), 793-810. https://doi.org/10.1111/j.1744-7429.2000.tb00619.x
Ortiz, A. J., Cortez, V., Azzouz, A., & Verdú, J. R. (2017). Isolation and determination of ivermectin in post-mortem and in vivo tissues of dung beetles using a continuous solid phase extraction method followed by LC-ESI+-MS/MS. PLoS ONE, 12(2), e0172202. https://doi.org/10.1371/journal.pone.0172202
Osberg, D. C., Doube, B. M., & Hanrahan, S. A. (1993). Habitat specificity in African dung beetles: The effect of soil type on dung burial by two species of ball-rolling dung beetles (Coleoptera Scarabaeidae). Tropical Zoology, 6(2), 243-251. https://doi.org/10.1080/03946975.1993.10539225
Pandya, N., Salunke, A., Sharma, P., Pandya, P., & Parikh, P. (2025). Toxic effects of deltamethrin on oxidative stress, behavioural, organosomatic indices and histopathological changes in Digitonthophagus gazella (Coleoptera: Scarabaeinae). Environmental Toxicology and Pharmacology, 114, 104642. https://doi.org/10.1016/j.etap.2025.104642
Peterson, A. T., Papeş, M., & Soberón, J. (2015). Mechanistic and correlative models of ecological niches. European Journal of Ecology, 1(1), 28-38. https://doi.org/10.1515/eje-2015-0004
Philips, K., Pretorius, E., & Scholtz, C. (2004). A phylogenetic analysis of dung beetles (Scarabaeinae: Scarabaeidae): Unrolling an evolutionary history. Invertebrate Systematics, 18(1), 53-88. https://doi.org/10.1071/IS03030
Phill, M. P., & Thomson, L. J. (2015). Species distribution modelling in predicting response to climate change. In C. Björkman & P. Niemelä (Eds.), Climate change and insect pests (pp. 16-37). CABI.
Reis, M., Vieira, C. P., Morales-Hojas, R., Aguiar, B., Rocha, H., Schlötterer, C., & Vieira, J. (2011). A comparative study of the short term cold resistance response in distantly related Drosophila species: The role of regucalcin and frost. PLoS ONE, 6(9), e25520. https://doi.org/10.1371/journal.pone.0025520
Sheldon, K. S., Padash, M., Carter, A. W., & Marshall, K. E. (2020). Different amplitudes of temperature fluctuation induce distinct transcriptomic and metabolomic responses in the dung beetle Phanaeus vindex. Journal of Experimental Biology, 223(12), jeb233239. https://doi.org/10.1242/jeb.233239
Shepherd, V. E., & Chapman, C. A. (1998). Dung beetles as secondary seed dispersers: Impact on seed predation and germination. Journal of Tropical Ecology, 14(2), 199-215. https://doi.org/10.1017/S0266467498000169
Slade, E. M., Riutta, T., Roslin, T., & Tuomisto, H. L. (2016). The role of dung beetles in reducing greenhouse gas emissions from cattle farming. Scientific Reports, 6, 18140. https://doi.org/10.1038/srep18140
Souza, A., Ferreira-Châline, R., Châline, N., Korasaki, V., Beiroz, W., & Louzada, J. (2018). Does Neem trigger the same response as Ivermectin? Dung beetle behaviour and physiology. PeerJ Preprints, 6, e26770v1. https://doi.org/10.7287/peerj.preprints.26770v1
Spector, S. (2006). Scarabaeine dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae): An invertebrate focal taxon for biodiversity research and conservation. The Coleopterists Bulletin, 60(5), 71-83. https://doi.org/10.1649/0010-065X(2006)60[71:SDB]2.0.CO;2
Suarez, V. H., Lifschitz, A. L., Sallovitz, J. M., & Lanusse, C. E. (2003). Effects of ivermectin and doramectin faecal residues on the invertebrate colonization of cattle dung. Journal of Applied Entomology, 127(8), 481-488. https://doi.org/10.1046/j.0931-2048.2003.00780.x
Suarez, V. H., Lifschitz, A. L., Sallovitz, J. M., & Lanusse, C. E. (2009). Effects of faecal residues of moxidectin and doramectin on the activity of arthropods in cattle dung. Ecotoxicology and Environmental Safety, 72(6), 1551-1558. https://doi.org/10.1016/j.ecoenv.2007.11.009
Tauber, C. A., & Tauber, M. J. (1986). Ecophysiological responses in life-history evolution: Evidence for their importance in a geographically widespread insect species complex. Canadian Journal of Zoology, 64(4), 875-884. https://doi.org/10.1139/z86-131
Tonelli, M., Verdú, J. R., & Zunino, M. (2017). Effects of the progressive abandonment of grazing on dung beetle biodiversity: Body size matters. Biodiversity and Conservation, 27(1), 189-204. https://doi.org/10.1007/s10531-017-1428-3
Tyndale-Biscoe, M. (1978). Physiological age-grading in females of the dung beetle Euoniticellus intermedius (Reiche) (Coleoptera: Scarabaeidae). Bulletin of Entomological Research, 68(2), 207-217. https://doi.org/10.1017/S000748530000729X
Tyndale-Biscoe, M., Wallace, M. M. H., & Walker, J. M. (1981). An ecological study of an Australian dung beetle, Onthophagus granulatus Boheman (Coleoptera: Scarabaeidae), using physiological age-grading techniques. Bulletin of Entomological Research, 71(1), 137-152. https://doi.org/10.1017/S0007485300051117
Urrutia, M. A., Cortez, V., & Verdú, J. R. (2025). Ivermectin causes adverse effects on the metabolic rate and thermoregulatory capacity of dung beetles. Scientific Reports, 15, 6906. https://doi.org/10.1038/s41598-025-91375-4
Verdú, J. R. (2011). Chill tolerance variability within and among populations in the dung beetle Canthon humectus hidalgoensis along an altitudinal gradient in the Mexican semiarid high plateau. Journal of Arid Environments, 75(2), 119-124. https://doi.org/10.1016/j.jaridenv.2010.09.010
Verdú, J. R., & Lobo, J. M. (2008). Ecophysiology of thermoregulation in endothermic dung beetles: Ecological and geographical implications. In S. Fattorini (Ed.), Insect ecology and conservation (pp. 1-28). Research Signpost.
Verdú, J. R., Díaz, A., & Galante, E. (2004). Thermoregulatory strategies in two closely related sympatric Scarabaeus species (Coleoptera: Scarabaeinae). Physiological Entomology, 29(1), 32-38. https://doi.org/10.1111/j.0307-6962.2004.0359.x
Verdú, J. R., Arellano, L., & Numa, C. (2006). Thermoregulation in endothermic dung beetles (Coleoptera: Scarabaeidae): Effect of body size and ecophysiological constraints in flight. Journal of Insect Physiology, 52(8), 854-860. https://doi.org/10.1016/j.jinsphys.2006.05.005
Verdú, J. R., Arellano, L., Numa, C., & Micó, E. (2007). Roles of endothermy in niche differentiation for ball-rolling dung beetles (Coleoptera: Scarabaeidae) along an altitudinal gradient. Ecological Entomology, 32(5), 544-551. https://doi.org/10.1111/j.1365-2311.2007.00907.x
Verdú, J. R., Casas, J. L., Lobo, J. M., & Numa, C. (2010). Dung beetles eat acorns to increase their ovarian development and thermal tolerance. PLoS ONE, 5(4), e10114. https://doi.org/10.1371/journal.pone.0010114
Verdú, J. R., Alba-Tercedor, J., & Jiménez-Manrique, M. (2012). Evidence of different thermoregulatory mechanisms between two sympatric Scarabaeus species using infrared thermography and microcomputer tomography. PLoS ONE, 7(4), e33914. https://doi.org/10.1371/journal.pone.0033914
Verdú, J. R., Casas, J. L., Cortez, V., Gallego, B., & Lobo, J. M. (2013). Acorn consumption improves the immune response of the dung beetle Thorectes lusitanicus. PLoS ONE, 8(7), e69277. https://doi.org/10.1371/journal.pone.0069277
Verdú, J. R., Cortez, V., Ortiz, A. J., González-Rodríguez, E., Martinez-Pinna, J., Lumaret, J.-P., Lobo, J. M., Numa, C., & Sánchez-Piñero, F. (2015). Low doses of ivermectin cause sensory and locomotor disorders in dung beetles. Scientific Reports, 5, 13912. https://doi.org/10.1038/srep13912
Verdú, J. R., Lobo, J. M., Sánchez-Piñero, F., Gallego, B., Numa, C., Lumaret, J.-P., Cortez, V., Ortiz, A., García-Teba, J. P., Rey, A., Rodríguez, A., & Durán, J. (2018). Ivermectin residues disrupt dung beetle diversity, soil properties and ecosystem functioning: An interdisciplinary field study. Science of The Total Environment, 618, 219-228. https://doi.org/10.1016/j.scitotenv.2017.10.331
Verdú, J. R., Cortez, V., Oliva, D., & Giménez-Gómez, V. (2019). Thermoregulatory syndromes of two sympatric dung beetles with low energy costs. Journal of Insect Physiology, 118, 103945. https://doi.org/10.1016/j.jinsphys.2019.103945
Verdú, J. R., Cortez, V., Ortiz, A. J., Lumaret, J.-P., Lobo, J. M., & Sánchez-Piñero, F. (2020). Biomagnification and body distribution of ivermectin in dung beetles. Scientific Reports, 10(1), 9073. https://doi.org/10.1038/s41598-020-66063-0
Verdú, J. R., Oliva, D., Giménez Gómez, V. C., & Cortez, V. (2022). Differential ecophysiological syndromes explain the partition of the thermal niche resource in coexisting Eucraniini dung beetles. Ecological Entomology, 47(5), 689-702. https://doi.org/10.1111/een.13153
Verdú, J. R., Cortez, V., Rosa-García, R., Ortiz, A. J., García-Prieto, U., Lumaret, J.-P., García Romero, C., & Sánchez-Piñero, F. (2023). Nontoxic effects of thymol, carvacrol, cinnamaldehyde, and garlic oil on dung beetles: A potential alternative to ecotoxic anthelmintics. PLoS ONE, 18(12), e0295753. https://doi.org/10.1371/journal.pone.0295753
Vespa, N. I., Gómez-Cifuentes, A., Bellocq, M. I., & Zurita, G. A. (2024). Seeds go up and down: The role of dung beetles in soil seed movement in the Southern Atlantic Forest of Argentina. Ecological Entomology, 50(1), 129-137. https://doi.org/10.1111/een.13387
Villada-Bedoya, S., Córdoba-Aguilar, A., Escobar, F., Martínez-Morales, I., & González-Tokman, D. (2019). Dung beetle body condition: A tool for disturbance evaluation in contaminated pastures. Environmental Toxicology and Chemistry, 38(11), 2392-2404. https://doi.org/10.1002/etc.4548
Villada-Bedoya, S., Chávez-Ríos, J. R., Montoya, B., Castelán, F., Córdoba-Aguilar, A., Escobar, F., & González-Tokman, D. (2021). Heat shock proteins and antioxidants as mechanisms of response to ivermectin in the dung beetle Euoniticellus intermedius. Chemosphere, 269, 128707. https://doi.org/10.1016/j.chemosphere.2020.128707
Wardhaugh, K. G., & Rodríguez-Menéndez, H. (1988). The effects of the antiparasitic drug, ivermectin, on the development and survival of the dung-breeding fly, Orthefia cornicina (F.) and the scarabaeine dung beetles, Copris hispanus L., Bubas bubalus (Oliver) and Onitis belial F. Journal of Applied Entomology, 106(1-5), 381-389. https://doi.org/10.1111/j.1439-0418.1988.tb00607.x
Williamson, J., Teh, E., Jucker, T., Brindle, M., Bush, E., Chung, A. Y. C., Parrett, J., Lewis, O. T., Rossiter, S. J., & Slade, E. M. (2022). Local-scale temperature gradients driven by human disturbance shape the physiological and morphological traits of dung beetle communities in a Bornean oil palm–forest mosaic. Functional Ecology, 36(7), 1655-1667. https://doi.org/10.1111/1365-2435.14062
Wurmitzer, C., Blüthgen, N., Krell, F. T., Maldonado, M. B., Ocampo, F., Müller, J. K., & Schmitt, T. (2017). Attraction of dung beetles to herbivore dung and synthetic compounds in a comparative field study. Chemoecology, 27(2), 75-84. https://doi.org/10.1007/s00049-017-0232-6
Ybarrondo, B. A., & Heinrich, B. (1996). Thermoregulation and response to competition in the African dung beetle Kheper nigroaeneus (Coleoptera: Scarabaeidae). Physiological Zoology, 69(1), 35-48. https://doi.org/10.1086/physzool.69.1.30164199
Notas de autor
vcgimenezgomez@gmail.com
Información adicional
redalyc-journal-id: 3220