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134 J.E. HErNANDEZ H. & J.F. GOMEZ

1. Introduction

The study of convex functions has been of interest for mathematical analysis based on
the properties that are deduced from this concept. Due to generalization requirements of
the convexity concept in order to obtain new applications, in the last years great efforts
have been made in the study and investigation of this topic.

A function f: T — R is said to be convex if for all 2,y € I and ¢ € [0, 1] the inequality

flz+ (1 =t)y) <tf(z)+ 1 -1)f(y)
holds.

Numerous works of investigation have been realized extending results on inequalities
for convex functions towards others much more generalized, using new concepts such
as E—convexity [35], quasi-convexity [28], s—convexity [3], logarithmically convexity [2],
and others.

A compendium about the history of the Hermite-Hadamard inequality can be found in
the work of D.S. Mitrinovic and I.B. Lackovic [22]. The formulation of this result is as
follows:

(Hermite-Hadamard Inequality). Let f : I — R be a convex function, and a,b € I with

a < b, then
f<a+b) <! /bf(x)de SORFIO}

2 b—a 2

The inequality of Hermite-Hadamard has become a very useful tool in the Theory of
Probability and Optimization (See [18]).

The study on convex stochastic processes began in 1974 when B. Nagy, in [23], applied
a characterization of measurable stochastic processes to solving a generalization of the
(additive) Cauchy functional equation. In 1980 Nikodem [24] considered convex stochas-
tic processes. In 1992 and 1995 Skowronski [31], [32] obtained some further results on
convex stochastic processes which generalize some known properties.

In the year 2014, E. Set et. al. in [27] investigated Hermite-Hadamard type inequali-
ties for stochastic processes in the second sense (For other results related to stochastic
processes see [4], [9], [20], [29], [30], where further references are given).

Also, Fractional calculus [10], [21] was introduced at the end of the nineteenth century
by Liouville and Riemann, the subject of which has become a rapidly growing area and
has found applications in diverse fields ranging from physical sciences and engineering to
biological sciences and economics.

In 2011, U. Katugampola presented a new fractional integral operator in [12], which
generalizes the Riemann-Liouville and the Hadamard integrals into a single form, and
various researchers have made use of this result in the field of convexity, generalized
convexity and others ([5], [7], [8], [33]).

Recently, several Hermite-Hadamard type inequalities [19], [34] associated with frac-
tional integrals have been investigated. Here, it is established some generalized Hermite-
Hadamard type integral inequalities for stochastic processes using Katugampola frac-
tional integral operator, which generalize, in a single form those found using Riemann-
Liouville fractional integral and Hadamard fractional integral. Also, it is proposed a
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Hermite-Hadamard type inequalities, convex stochastic processes 135

refinement of the inequality object of study using the aforementioned fractional integral.
Application areas of the results found are optimization, especially in optimal designs,
and also useful for numerical approximations when there exist probabilistic quantities
[29].

2. Preliminaries

2.1. About calculus of stochastic processes.

The following notions corresponds to ordinary and convex Stochastic Process (References
about can be found in [16], [17], [20], [31], [32].

Definition 2.1. Let (£2, .4, P) be an arbitrary probability space. A function X : Q — Ris
called a random variable if it is A-measurable. Let I C R be an interval indicating time.
A function X : I x Q — R is called a stochastic process if for every ¢ € I the function
X(t,-) is a random variable.

1. If X (t,w) takes values in R™ it is called vector-valued stochastic process.

2. If the time I can be a discrete subset of R, then X (¢,w) is called a discrete time
stochastic process.

3. If the time [ is an interval, RT or R, it is called a stochastic process with continuous
time.

Definition 2.2. Let (2, A, P) be a probability space and I C R be an interval. A
stochastic process X : I x 2 — R is called:

1. Increasing (decreasing) if for all u,v € I such that u < v,

X(u,") < X(v,-), (X(u,")>X(v,-), (ae);

2. Monotonic, if it’s increasing or decreasing;
3. Continuous in probability in the interval I, if for all ¢y € I the following limit holds:
P— lim X(¢,-) = X(to, "),

t—to
where P — lim denotes the limit in probability;

4. Mean square continuous in the interval I, if the limit for all tg € T

lim E[X (t,-) — X (to,)]* = 0,

t—to
where F [X (t,-)] denotes the expectation value of the random variable X (¢, -);

5. Mean square differentiable in I, if there exist a stochastic process X'(t,-) (the
derivative of X) such that for all ¢y € I we have

X(t,-) — X(to, ") —X/(th') ’ =0.
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136 J.E. HErRNANDEZ H. & J.F. GOMEZ

Definition 2.3. Let (Q, A, P) be a probability space, I C R be an interval with
E[X(t)? < oo forall t € I.

Let [a,b] C I,a =ty < t1 < ... < t, = b be a partition of [a,b] and 0}, € [tr_1,1s] for
k=1,2,...,n.

A random variable Y : Q@ — R is called mean-square integral of the process X(¢,-) on
[a, b], if the following identity holds:

2
lim F

n—oo

3 Xt~ ti) = YO =0y
k=1

in such a way, it can be written
b
/ X(t,)dt=Y() (a.e.).
a
Also, mean square integral operator is increasing, that is,

/:X(t, St < /ab Z29dt (),

where X (¢,-) < Z(t,-) in [a, b] .

Throughout this paper, it will be considered mean square continuous stochastic processes.

Important theorems as the mean value theorem for mean square derivatives and integrals
for stochastic processes have been proved in the work of J.C. Cortés et. al. The reader
can find these results in [6, Lemma 3.1,Theorem 3.2].

In 1980 K. Nikodem introduced the following definition [24].

Definition 2.4. Set (2, 4, P) be a probability space and I C R be an interval. The
stochastic process X : I x £ — R is said to be a convex stochastic process if

XAu+ (1 =Nv,-) <AX(u,)+ (1 -NX(v,-) (1)
holds almost everywhere for all u,v € T and A € [0, 1].

One of the results of interest for the present work is the following.

Theorem 2.5. Every Jensen-convex stochastic process and continuous in probability is
convet.

Using Definition 2.4, D. Kotrys presented, in 2012, the Hermite-Hadamard integral in-

equality version for Stochastic Processes [16].

Theorem 2.6. If X : I x Q — R is convex and mean square continuous in the interval
T x Q, then for any u,v € T, the inequality

X<u42rv,_> < uiU[X(t")dtSw

holds almost everywhere.
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2.2. About generalized fractional integral operators

Before establishing the main results, it will be given some necessary notions and mathe-
matical preliminaries of fractional calculus theory which are used further in this paper.
For more details, consult [10], [15], [21], [25].

Definition 2.7. Letf € L; ([a,b]) . The Riemann-Liouville integrals Jg, and J;* of order
a > 0 with a > 0 are defined by

IS @) = s / w0 f(0de

and
1

b
o / (t— 2)* (b,

respectively, where I'(«) is the Euler’s Gamma function defined by

Jy- f(x) =

I‘(a):/ to~letdt.
0

Note that J?, f(z) = J_f(z) = f(z).

Using the Riemann-Liouville fractional integral, Sarikaya et all [26] established the
Hermite-Hadamard inequalities version.

Theorem 2.8. Let f : [a,b] — R be a positive function with a < b and f € Ly ([a,b]). If
f is a convex function on [a,b], then, with a > 0,

a+b 'a+1), o f(a)+ f(b)
f< 2 ) = (b—a)” (Jo f(b) + J5 fla)) < e

Also, J. Hadamard in 1892 introduced the following fractional integral operator ([11]).

Definition 2.9. Let > 0 withn—1<a <n,n €N, and a < < b. The left and
right-side Hadamard fractional integrals of order a > 0 of a function f, are given by

HE, f(t) = FL) /: (m%)a_l @dt

(o
and
o 1P et f(D)
-1 = 55 / (m3) e
respectively.

As it was mentioned in the introductory section, Katugampola introduced a new frac-
tional integral that generalizes the Riemann-Liouville and Hadamard fractional integrals
into a single form (see [12], [13], [14]).
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138 J.E. HErRNANDEZ H. & J.F. GOMEZ

In the following will denote the space X? (a,b),(c € R,1 < p < 00) of those complex
valued Lebesgue measurable functions f on [a,b] for which || f||x» < oo, where

b ar\ "
£l = ( / Ok 7) |

Katugampola in [13] established the following definition and property.

Definition 2.10. Let [a,b] C R be a finite interval. The left and right sides of Katugam-
pola fractional integral of order & > 0 of f € XP? (a,b) are defined by

N B pl—a i tp—l
1@ = oy | e 0

and

N B plfa b tp—1
I 10 = Sy |y O

respectively, with a < z < b and p > 0, if the integrals exist.

Theorem 2.11. Let « > 0 and p > 0. Then, for x > a,
lim 12, f(2) = J2 S (@)

and
lim 1%, f(x) = HE, f(@).

p—0t

Similar results also hold for the right-sided operators.

The purpose of this paper is to derive some inequalities of type Hermite-Hadamard for
convex stochastic processes using the Katugampola fractional integrals.

3. Main Results

Theorem 3.1. Let o > 0 and p > 0. Let X : [a”,b°] x @ — R be a positive stochastic
process with 0 < a < b and X(t,-) € XP(a?,bP). If X (t,-) is convez, the following
inequality holds almost everywhere:

a? + b° P(a+1)
X < T (ere X (o) + PI%., X (B,
< ! ,>_2pa(bp_ap)a (I X () + P18, X (1, )

_X(@ )+ X ()

2pa

Proof. Let t € [0,1], and u,v € [a, b] defined by

u? =tPaf + (1 —tP)b* and v” = (1 —t)a” + tPbP. (3)

[Revista Integracion, temas de matemadticas
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Since X is a convex stochastic process,

P P P o
X(u ;—v ,'>§X(u,)—i2-X(v,);

using (3), it can be rewritten as

92X (ap JQF z, ) <X (0 + (1= t7)b%, ) + X (1= t")a” +17b, ") . @)

Multiplying both sides of (4) by t**~!, (o, p > 0) and integrating over ¢ € [0,1], it is
obtained that

2 P 4 b !
—X (a i ) g/ t*PIX (tPaf + (1 —tP) b™, ) dt
ap 2 0

1
+/ tP7EX (1 —tP)a? +tPbP ) dt.  (5)
0

Now, from (3) and the Definition 2.10, it is obtained that

1 1 b upfl
tP=LX (tPaP + (1 — tP)b®, ) dt = X (u?,-)d
EA (tPa? + (1 - 17)b°, ) (bp_aple X )
_ F(O&) prC P
= e — ) I X (a”,) (6)
and
1 1 1 b Up—l
tP=LX (1 —tP) aP + 1PV, ) dt = X (v°,)d
[ e e = ot [
- Tl PIGLX (7)) (7)

)
Replacing (6) and (7) in (5), it is obtained the left side of the inequality (2)

af + b° P(a+1)
X D=t ere X )+ 1o, X (1,).
(55) < ety (X4 X 07)

In order to obtain the right side of the inequality(2), it is used the convex property of
the stochastic process X:

X (tPa” + (1 —t°)b%, ) <t°X (a®,-) + (1 — ") X (b7, ),
X((1=t")a” +tPb, ) < (1 —=t") X (a”,) +t* X (b7, ) ;
adding these inequalities it is obtained
X {tPa” + (1=t )+ X (1 —t")a” +tPb°,-) < X (a”,) + X (b°,-). (8)

Multiplying both sides of (8) by t*~1 (a,p > 0) and integrating over ¢ € [0,1], it is
attained that

T X (aP.) + X (bP. -
% (pro‘p_X(aP,-)+ p]gszrX(bp,,))S (a”,-) + X ( a)'
2p7 (bP — ar) 2pa
The proof is complete. v
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140 J.E. HErNANDEZ H. & J.F. GOMEZ

Remark 3.2. Using the Theorem 2.11 we get the Hermite Hadamard inequality version
for the Riemann Liouville fractional integral,

X (%b) < % (J&- X (a,) + JEX (b)) < o)

almost everywhere, making coincidence with the result proved by H. Aghahi and A.
Babakhani in [1]. Letting o =1 in (9), it is obtained the Hermite Hadamard inequality
for the ordinary Riemann integral

X<a+b ')S(bi@ /abX“v')dfﬁX(a"HX(b") (a.e.)

X (a,-)+ X (b,-)
200 ’

2 2 ’
making coincidence with the result proved by Kotrys in [16].

Theorem 3.3. Let X : [a”,b°] x Q2 — R be a square mean differentiable stochastic process
with 0 < a < b. If X’ is a square mean differentiable stochastic process, then the following
inequality holds almost everywhere:

X(a?, )+ X (¥,)  ap*T(a+1) pro P pra P
‘ 2 o Q(bp_ap)a ( I X (a”,) + 15, X (b ,))

b — af’)2 1 ,
< ST (O ) (K

Proof. From the proof of Theorem 3.1 we get

I'(a+1)
2pt= (bP — aP)”

("I X (a®,) + P15, X (b))

1 1
:/ to"”lX(tpa”+(1—tp)b0‘,-)dt+/ t*PLX (1 —tP)a? +1Pb°,-)dt.  (10)
0 0

Integrating by parts each of the integrals we have
1
/ toP=LX (tPaP + (1 —tP) 1™, ) dt
0

Yo(ap =

e a 1
_ t pX(tpap+(1_tP)b ,') o )/ taerple/ (tpap-i-(l—tp)ba,')dt
0

ap

«

0

X (aP.- p_ ppP 1
_ X)) (e )/ PN (1PaP 4+ (1 — t9) b2, ) dt
ap « 0

and

1
/ toP7IX (1 = tP) aP +tPbP,-) dt
0
Lr—an) !

- /t°‘P+P*1X’((1—tP)aP+thP,~)dt
0 @ 0

19X (1= tP) aPf + tobP, )
_ ”

X (bP. - bP — qf 1
_X®) | a )/ tPetD=I X (1 —tP) a? + 17D, ) dt.
ap « 0

[Revista Integracion, temas de matemdticas
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So,

I'(a+1)
2p' = (b — a”)
X (a®, )+ X @,) (b” —a”)

= - X
ap o

(/1 tPeAD=L (X7 (tPaf 4 (1 — tP) b, ) — X' (1 — t°) a” + D", -)) dt) : (11)
0

@ (pIZ?Z—X (ap, ) + pIgP-i-X (bpv ))

Applying the Mean Value Theorem for X' it is obtained

I'(a+1)
2pt= (bp — aP)”
. X (apv ) + X (bp’ ) _ (bp - a’p)2 ! pla+1)—1 P _ " .
_ ( /0 ] (20 — X"(€, )dt)

ap «

(PIf X (aP.) + P18, X (,)

for some ¢ € [a”, b”].

Now, it can be written

X (a? )+ X (b°,) [(a+1) o , - )
‘ ap - 2p17a (bp — CLp)a ( Ibp_X (a ,-) 4+ Iap+X (b ,))
P N2 Y . 1
S (b a ) |X (57 )| (/ tp(a+1 |2tP 1|dt>
@ 0

_ () IX”(& UM

1/21/P 1
< plat)—=1 (7 _ 2t”)dt—|—/ tPlat =1 (opp _ 1)dt>
1

/21/p

(b — a?)? ( 1 ) "
< a+ — sup | X"(&, ).
(Oé + 1) (Oé + 2) 20 £€far,br] | ( )|

The proof is complete. v

Remark 3.4. Using Theorem 2.11 and taking limit when p — 1 in Theorem 3.3, it is
obtained the version for the Riemann-Liouville fractional integral

R X0 T (X @)+ IRX )

(b—a)’ 1 ,
ST meTE (O F) 3 XE e 02

and letting « = 1 in (12) it is obtained the version for the ordinary Riemann integral

X (a,")+ X (b,-) 1 b (b—a)’
‘ (= /aX(t ydt| <

sup |XN(§7 )l )

2 £€la,b]

almost everywhere.
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142 J.E. HErNANDEZ H. & J.F. GOMEZ

Theorem 3.5. Let a > 0 and p > 0. Let X : [a”,b”] x Q@ — R be a mean square
differentiable stochastic process with 0 < a < b and X (¢, ) € X? (a”,b”). If | X' (¢,-)| is
convez, then the following inequality holds almost everywhere:

'X(“p");X(bp’.) B Cép[;ffaafﬁ) (L5 X () + P15, X (bp"))’

o W7 —a?) (|X" ()| + [ X' ("))
- 2(a+1) '
Proof.  Using equality (11), the triangular inequality and the convexity of | X' (¢,-)], it
is obtained that

’X<ap,->+x<bp,-> F(a+1)

- PI% X (af, )+ PI%. X (b°,-
ap 2p1— (bP — ar)” ("I X (a®,) + P15, X ( ))‘

P — aP 1
< Yr-d) )/ Pt D=1 X7 (tPaP + (1 —t°) b%, )
« 0

— X' ((1 = tP)a” + t°b”, )| dt

bP — aP 1
< < [ e X @ar s (- ey e
«@ 0

1
+/ gpla+1)—1 X' ((1 —tf’)a”+tpbp,-)|dt>
0

< (b —a?) </1tp<a+1>1 71X (aP-)] + (1 —t°) | X' (b)) dt
6 0

+/1 P (1= 12) [X (a)] + 17| X (b”~)l)dt>

0
- o XD [ e
o 0
_ (B —a”) (I X" (a”)| + | X" (07)])
a ap(a+1) '
The proof is complete. ]

Remark 3.6. With the same reasoning used in Remarks 3.2 and 3.4, it is obtained the
following inequality almost everywhere, for the Riemann-Liouville fractional integral:

- (Jl?—X (a7 ) + Jg—l-X (b7 ))

2 2(b—a)”
< (b=a) (X" (a)[ + | X" (b)])
- 2(a+1) '

‘X(a,-)—i—X(b,-) I'law+1)

(13)
Letting a = 1 in (13), it is obtained the inequality for the ordinary Riemann integral

b—a) (| X (a)| + X' (b)])
- .

|X(a,-)+X(b,~ <!

) 1 ’
) _(b—a)/aX(t’.)dt

[Revista Integracion, temas de matemadticas
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Lemma 3.7. Let X : [a”,b°] x Q — R be a mean square differentiable stochastic process;
then the following equality holds:

X(a? )+ X (O,) ap*T(a+1) ) e ,
2 T 20 —ar)” ("I X (a”,) + P15 X (V)

b — a”®

1
e /[(1—tp)a—tpo‘]t”’lX’(t”a”—i—(1—t”)b”,)dt.
0

Proof. First, it must be noted that
1
/ (1 =) =P P71 X (tPa” + (1 —tP)bP,) dt
0
1
= / (1 —t")2tP=LX (tPal + (1 — tP)bP,) dt
0
1
—/ tPetD=I X! (1PaP + (1 — tP)bP,) dt,
0
and using integration by parts it is obtained

1
/ (1 — )P~ 2 X" (tPaf + (1 — tP)bP, ) dt
0

(1—tP)eX (tPaf + (1 —tP)b2,) |

p(ar —br)

0
(e

aP — bp

X (b)) ap°T (a+1)7
= - I%_X (a”,-),
I N T

and similarly,

1
/ (1 —tP)*tP=L X (tPa? + (1 — tP)bP,) dt
0

X (a?)) ap°T (a+1)7
@) )

1
/ pplat1)=1 5 (tPaP + (1 — tP)bP,) dt = — g X (V,);
0

adding these last results we get the desired result.
The proof is complete. v

Theorem 3.8. Let X : [a”,b°] x Q — R be a mean square differentiable stochastic process

on [a?,b°] . If |X'| is a convexr stochastic process, then the following inequality holds
almost everywhere:

af. - bP. - ap?T (o
s ’);X( ) Zp(bf(_;;)i) ("I X (a®, ) + PIg X (bP,-))‘
()"

b? —a? ’ ’
S%QIEG—Q+J0X@N+mwwu
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144 J.E. HErNANDEZ H. & J.F. GOMEZ

Proof.  Using Lemma 3.7 and the convexity of | X’|, it is obtained that

X(a’pv') _i_X(bP,) apar (CY+ 1) pra p pra P

b — aP
<
- 2

1
/ [(1— )™ — P tP~ | X (tPaf + (1 — t7)b°,)| dt
0

b — a”f

¥ —a [ _ P\ _ gpa|4p=1 (4p | X! (P _ 4P I (bP
S ; [(1—=t2)* =Pt (7 | X7 (P, )|+ (1 = ¢7) | X7 (b7, -)]) dt
X

2

1/21/9
(/O (L= t7)* =)=t (17| X7 (0P, )| + (1= t7) | X (7)) dt

+ / (7% = (L= t") )t~ (7 | X (a”, ) + (1 = t7) [ X7 (7, -)l)df>
1/21/p

b — a”f

= X
2

</0 (= (1 = t7)) P (7 | X (0P, )|+ (1= 1) | X7 (b7, )]) dt

124/
-2 / (P — (1= t")*) P~ (7 | X (aP, )| + (1 = t°) | X (b°,-)]) dt) .
0
Making the corresponding substitution in the previous inequalities, we have:

1
/O (tpa _ (1 _ tP)Oz) tp—l (tP |X/ (aP, )| + (1 _ tp) |X’ (bp7 )|) dt

1 1
= |X' (a”,")| (/O tpo‘tplt”dt—/o (1—tp)atpltpdt)

1 1
— X" (v, )] </ tpo‘tp’l(l—t”)dt—/ tpl(l—tp)“+1dt).
0 0
With the change of variable x = ¢ it is obtained
1
/(tm—(1—tp)“)tpfl(tplX’(apw)l+(1—tp)|X’(bp,~)|)dt
0
= (X’ P — X’ b?, - -« ,
1% @)= 1% 0D (s

and similarly,

1/21/p
A (tpa _ (1 _ tp)oc) tP—1 (tp |X/ (CLP, )| + (1 _ tP) |X’ (bP, )|) dt

L ) X @) X))
pla+1) (a+1)(a+2) a+2

= (IX"(a”, )+ X" (¥, )] ) (
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So,

'X(“p");X(bp’.) B Cép[;ffaafﬁ) (L X (a?,) + P15, X (bp"))’

b — a”f

<o -weon (rmiees)
l a+1 ! ap . ! o .
—2[<|X’<ap,->|+|x’<bp,->|)((2) ) . X @] X <b,>|]}

pla+1) a+1)(a+2) a+2
_ b @) :
—m(l—aJrl (IX (a, )| + X" (0,)]) -
The proof is complete. ]

Remark 3.9. With the same reasoning used in Remarks 3.2, 3.4 and 3.6, it is obtained
the following inequality almost everywhere, for the Riemann-Liouville fractional integral:

‘X (a,°) —;X () _ 2F((ba_+a;l (J5-X (a.) + I3y X (0, ->)‘
(3)°

b—a / !
< B <1_ Oz—l—l) (lX (av')|+|X (bv)l) (14)

Letting o = 1 in (14), it is obtained the following inequality, almost everywhere, for the
ordinary Riemann integral:

3(b—a)
8

< (1X" (a, ) + [X7(b,)]) -

) 1 ’
; —(b_a)/aX(t,-)dt

Next theorem proposes a refinement of the Hermite-Hadamard inequality using Katugam-
pola fractional integral.

‘X(a,-)—i—X(b,-

Theorem 3.10. Let o > 0 and p > 0. Let X : [a”,b”] x Q@ — R be a positive stochastic
process with 0 < a < b and X (t,-) € XP (a”,b?). If X (t,-) is Jensen-convex and mean
square continuous in the interval [a?,b?], the following inequality holds almost everywhere:

X<ap—|—bp,'>
2

I'(a+1)
< P Qo )~ P Qo - )\
<h(\) < DYy Ar— (PST [u,v; X\ X+ P83 [v,u; X; X))
o o
<H(A)_X(a,)+X(b,)7
2pa
where
Z AP uP 4+ \PyP PP VA
h(A)_ApX<(2 /\)1; + AP 7.>+(1_AP)X<(1+A)U ;(1 AP) >
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X (u?) ) + X (MWPvP 4+ (1 = N)ul,-)

H(N\) =N
(A=A S0

X (WPv? + (1= )P, ) + X (v, )

+(1-=MN) 20

)

PSY [, 05X X) = P11 seyur— X (U ) + PTG X (V0P + (1= M)u?, )

and

PST v, u A\ X = PI5, X (A0P + (1 = N)u’, ) + plgﬁypﬁ»(l—)\P)uPJrX (v,).

Proof.  Applying (2) in the interval [u”, \Pv? 4+ (1 — A?)u”], we have:

x ((2 — AP uP + \PoP >
2 "

I'(a+1)
= 2p7oN (vP — up)”

(pISP'UPJr(lf)\P)quX (W) + PLg X (A0P + (1 = A)u?, ))
< X (uP,-) + X (A\PvP 4+ (1 = M)uP,-)

15
N 2pa (15)
Now, for the interval [\Pv? 4 (1 — A\?)u”, v?] we have:
X (14 X2)uf 4+ (1 — NP
2 )
P(a+1) "
= 2p7(1 = \P) (vP — uP)”
(pIs‘p—X (/\pvp + (1 - )\p)up, ) + plgﬂvﬂﬁ-(l—)\l))ul)ﬁ—X (Upa ))
PyP VAV o .

SX()\v + (1 )\)u,)—l—X(v,). (16)

2pa
Multiplying (15) by A? and (16) by (1 — \?), and adding these inequalities, we have

T+ 1) (08§ [u, 05 X + 288 [v,us A X))

h()\) S 2p7a (Up _up)a S H(/\), (17)
where
h(N) =NX <(2—V)1§p+/\%pv.) Lo x <(1+APW;(1 _NJ)UP,) |
H(\) = X (ul, ) + X (VP + (1 — NP)ul, )

2pa
MPoP + (1= NP)ul, ) + X (vP))
2pa

+(1—/\P)X(

)
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PST [u, v M X = PIS, o (1oaeyur— X (W50) + PLIG0 X (A07 + (1= N)u?, )

and

PSY [Uv u; A; X] = I X (A7 +(1— )‘p)upv ) + pISPvPJr(lf)\”)uﬂJrX (V7).

Using Theorem 2.5 it is seen that

X(a+b ) :X()\M+(1_)\)(1+/\)v+(1—)\)u,.>

2’ 2 2
< x <)\v+(g—/\)u7.> +(1_/\)X((1+/\)v42—(1—/\)u,'>

IN

S X0+ (1= A, ) 4 AX () + (1= VX (v,)

X(u,)+ X(v,-)
—

From (17) and (18) it is attained the desired result. The proof is complete. v

<

4. Conclusions

In the present article, the fractional integral of Katugampola was used to find the
Hermite-Hadamard inequality for convex stochastic processes (Theorem 3.1), as well
as some other results that estimate the difference between the value of the fractional
integral and the right side of such inequality (Theorems 3.3, 3.5, 3.8), as well as a re-
finement of the aforementioned inequality (Theorem 3.10). From the results found, the
same were deduced for the particular cases of Riemann-Liouville fractional integral and
Riemann integral. The authors hope that this work will serve as a stimulus for future
research in the area.
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