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Abstract: We are concerned with a nonhomogeneous elliptic equation with random
potential and supercritical nonlinearity. Existence of solution is obtained almost surely
for a class of potentials that includes continuum and discrete ones. Also, we provide a
law of larger numbers for the obtained solutions by independent ensembles and estimate
the expected value for their Loo-norms.
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Resumen: Estamos interesados en una ecuacién eliptica no homogénea con potencial
aleatorio y no linealidad supercritica. Obtenemos la existencia de solucién casi
seguramente para una clase de potenciales que incluye continuos y discretos. Ademis,
proporcionamos una ley de grandes nmeros para las soluciones obtenidas por conjuntos
independientes y estimamos el valor esperado para sus normas Loo.

Palabras clave: Ecuaciones elipticas, potenciales aleatorios, ecuaciones no lineales
aleatorias.

1. Introduction

A class of models that appears naturally in a wide number of phenomena
are the random differential equations. This occurs because randomness
is a powerful tool and concept to control complex systems involving
a large number of variables and particles. The basic idea is to describe
complex systems by means of their statistical properties. Another kind
of phenomena are those governed by quantum mechanics and the
uncertainty principle. In this direction, we have Schrédinger equations,
and their random versions, which are the core in the study of condensed
matter.
The semilinear Schrodinger equation reads as

(e

57 = —h*AY +V(2)y = [Py, zeRY, (1)

ih

where t e B, n >3, 1< p < , h is the Planck constant and i is the
imaginary unit. When looking for standing wave solutions, namely those
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with the special form (1) =) £cr we are leading to solve an

equation of the type

~Au+V(z)u=|uftu, zeR". (2)

From the physical viewpoint, the function V is the potential energy,
and therefore the force acting on the system is given by F(x) = - #V(x). In
[20] the author considered a singularly perturbed version and obtained
the existence of solution by assuming that V is such that

0 < inf V(z) < liminf V(z).

reR™ J'l—.~+'\:

In [8], the authors showed that the same holds if V has a local
minimum. Later, many authors considered multiplicity and qualitative
properties of solutions (see [1], [2] and references therein).

The main interest of this paper is to study situations where the potential
Vis not deterministic. We show existence and probabilistic properties for
a nonhomogeneous random version of (2), namely

{ —Au 4V (2)u=b(z)ululr~' +g(z), ifzel; .
(3)

u=0, if # € AU,

where 1 < p < c0,Vw is a random variable 17 = p" is a bounded domain
and the termsb, g# Loo( (U) are deterministic. In the case V # 0 Pohozaev-
type identities provide non-existence of positive solutions for (2) with
critical and supercritical variational values 2 < » < ~. So, it is natural to
consider a nonhomogeneous term on the right-hand side of (3). Here
we desire to cover not only high-powers for p, but also the effect on the
random term Vw. Our results work well for b # 1, and in this case (3) is
precisely the perturbation of (2) by the non-homogeneous term g. Also,
the boundedness of U, b, g are not essential and could be circumvented
by working in other settings, such as homogeneous weighted Loo-spaces,
PMa-spaces and anisotropic Lebesgue spaces (see, e.g., [11], [12], [13],
[14], [15]). However, here this condition will simplify matters a bit.
The random potential Vw is constructed as follows: given a continuous
function s:B¥ — B, we consider

Vo(z) = / flz =y)du,(y), (4)
Ju

where pw is a M(U)-valued random variable and M(U) denotes the set
of all Radon measures on U with finite variation.

We present here some examples of (4) that have been treated in the
literature (see e.g. the review [18]). We first consider a model of an
unordered alloy, that is, a mixture of several materials with atoms located
at lattice positions. Assuming that the type of atom at the lattice i e 7 is
random, we are led to consider potentials of the type

V() = Y aiw)f(z - i), (5)

ickn
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where the random variables qi describe the charge of the atom at the
position i of the lattice. Other examples can be obtained by considering
materials like glass or rubber, where the position of the atoms of the
material are located at random points #i in space. By normalizing the
charge of the atoms, the suggested potential is formally

Volz) = ) flz—m(w)), (6)

where the 7(w) are random variables which localize the atoms in space.

The class of potentials allowed here is sufhiciently large to consider
many known models. For example, the case of glass considered in (6) can
be obtained by taking the random point measure x. =3, 4,,.)- Actually, for
this choice of the measure we have that

Z flz =ni(w)) = / flz = n)du,, (7). (7)
— Ju

icZrn

Also, a combination of potentials like (5) and (6), namely

V,(z) = Z gi(w) f(z = m;(w)).

icZnnl

is also covered by (4) with r. = % .., a(<)i,- It is not difficult to see that
we can also consider other models like, e.g., the Poisson model (see [18]
for more examples).

The models (5) and (6) correspond to discrete measures puw for
which results about localization, spectral properties and decays can be
found in [18], [21]. For Schrodinger equations defined in a lattice, i.c.
r e 2", we refer the reader to [5]. Considering a random time-dependent
potential for (1), the authors of [3] studied asymptotic behavior of
solutions by showing convergence for Gaussian limits when the two-
point correlation function of the potential is rapidly decaying. Still for
time-dependent random potentials, scaling limits for parabolic waves
in random media were investigated in [10]. Another type of random
equations are the parabolic ones, for which we refer to the works
[4], [6], [7] and their references. In fact, the authors of [4] extended
regularity properties (Kalita's results) to the stochastic case by considering
quasilinear parabolic systems under a random perturbation of Itd type
(see [16] for further results on stochastic PDEs).

In this paper we show that a solution for the nonlinear elliptic PDE (3)
exists almost surely (or not) depending on the v-measure of the interval
0.k[ £1=), where v is the probability measure induced on R by the random
variable v — |u.] and kO is a given constant (see Theorem 3.2). For that, we
obtain Proposition 3.1 which seems not to be available in the literature
even for the deterministic version of (3). Solutions are understood in an
integral sense based on Green functions. In Remark 3.3 and Corollary
3.4, we give some examples of continuum random potentials covered by
our results. Since we are considering Loo-valued random solutions, it is
natural to ask about the expected value of the Leo-norm of solutions. In
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Theorem 3.5, we provide an estimate for this value depending on the size
of the potential. Moreover, we obtain alaw of larger numbers for solutions
obtained by independent ensembles. It is worth to mention that, when
dealing with the random variable « - u(z,«) that maps an element of Q) in
the solution of (3) associated with the random potential Vw, we need to
consider some known concepts of real random variables in a more general
setting (see Section 2 for more details).

As a further comment, we observe that the random potentials
considered here are built from a very general probability space. In this
setting it does not always make sense to ask what is the probability that
the problem (3) has a solution in Leo(U). In order to give some sense to
this question we should restrict ourself to probability spaces (.7 ?) and
random potentials V where the set

{w e € : the problem (3) has a solution in L= (U)}

is an event (measurable). Working in such probability spaces, Theorem
3.2 gives us immediately a lower bound for the probability of the non-
linear problem (3) having a solution.

The manuscript is organized as follows. In the next section, we
introduce some notations, basic definitions and give some properties for
an integral operator associated with the random potential Vw - The main
results are stated and proved in Section 3.

2. Preliminaries and notation

Throughout this paper (2. 7, 7) denotes a given complete probability space.
If (£.¢) is a measurable space, any (¥.¢)- measurable function X : Q » E
will be called a E-valued random variable. We use the abbreviation a.s. for
almost surely or almost sure.

Let U « r" be a bounded domain. We adopt the standard notation
M(U)to denote the set of all Random measures on U with finite variation
and we call #m)) the o-algebra of the borelians of M(U) generated by
the total variation norm. The space of all bounded continuous real-valued
functions defined on U will be denoted by BC(U). Since BC(U) is a
metric space with the supremum norm, when we refer to a BC(U)-valued
random variable, the considered o-algebra is always the one generated by
the borelians. Similarly to a X-valued Borel random variable X : Q » X,
where X is an arbitrary metric space.

The random potentials considered here are the BC(U)-valued random
variables defined as follows. Take any random variable X : Q > M(U)
(which is simply a random measure in M(U)) and a fixed function
f e BC(®"). Then, for ¢ , = X(w), the function V: Q » BC(U) defined by

1;.11.:'}::/f[_r—;,r}n’;!*-[ﬂ]. rel,
JU
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is a BC(U)-valued random variable that will be called a random
potential. To see that V is a well-defined BC(U)-valued random variable,
is enough to consider the mapping 7f: M(U) » BC(U) given by

Ty (p)(z) = [f{r—y:wf;e{y}. rel,
JI

and to observe that /"= T} o X. In fact, if we denote by Iu| the total
variation of the measure y, we have the inequality

1T (1)l = ﬁllll’lT,r{#”f-f‘Jﬁ < (-*“le If{J'JI) [l (8)

which implies that T (i) belongs to L*(U). Also, proceeding as in
(8) and using dominated convergence theorem, one can show that 7'()
is a continuous function, and so Borel measurable. It follows that V is
a composition of two Borel measurable functions and a BC(U)-valued
random variable.

Let (V. #.41) be a measure space. For a measurable function f we define

||f”!'.":{'.r.l’gi: = illf {“ 2 ”.F‘!{{J : |f{J‘]| > ”}) = 0} ?

and the space L. #(U).x) as the set

{f:U=R: fis Borel measurable and || f||r =1 4u) < o0}

When dyp = dx is the Lebesgue measure in ' ¢ 2", we simply denote
L*(U) = L=(U,#(U).dz). Although we are assuming that s  BC(®"), most of
the results presented here are also valid if we suppose only the weaker
condition f £ Mo L= 2(U), ).

In order to state some convergence results, we need to use the notion
of Bochner integrals. Let (¥.]-|x) be a Banach space and . 7.#) be a
probability space. If X : 0 — x is a X-valued Borel random variable such
that X = Ya.s.in Q, where V: QO > X is a X-valued Borel random variable
with Y(Q) # X separable, and

[ 1X (@)l dP(w) < o0,

of O}

then there exists a unique element E[X) € ¥ with the property
HE[X]) = / X (w)) dP(w)

forall ¢ € ¥, where X* stands for the dual of X. Following the standard
notation, we write

E[X] = / X (w) dP(w).
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We call 1x) the Bochner integral of X with respect to P. More details

about the existence and some properties of this integral can be found in
[17], [19]

For X-valued random variables, we define the convergence in
probability similarly to the real-valued case. If {Xj} is a sequence of X-
valued random variable, we say that X ; converges to a X-valued random
variable X in probability if for all € > 0, we have

lim P({we Q: | X;(w) — X(w)|lx =})=0. 9)
j—roe

When X is a real-valued random variable, we use the usual notation and
denote the expected value of X and its variance by

E[X] := / X(w)dP(w) and VarX := E[(E[X] - X)3],

respectively. For both senses of expectation presented above, we also
use the notation

EalX] = / X (w) dP(w), (10)
JA

when A # Q is measurable and the right-hand-side of (10) makes sense.
Let X and Y be two E-valued random variable in the same probability
space. We say that they are identically distributed if for all 4 € £ we have

P(X1A)) =P(Y " 1(A)).

Now we introduce the notion of independence. Given a finite set
of random variables Xj,... Xj, they are said to be independent if for all
4, € £,1<i<j wehave

J
P (M., X € 4;) = [[P(X, € 4)).

i=1

Finally, a sequence of random variables {X;, Xj,...} is independent if
all finite collection of this sequence form a set of independent random
variables.

3. Main results and proofs

Let G be the Green function of the Laplacian operator -A in the bounded
domain 1/ = B® with z > 3. It is known that (see [9]), forall x, y # U, there

holds

1 1
0<G(z,y) < =
= 6TY) S nan(n —2) |z —y|"2

where ¢ , stands for the volume of the unit ball in B*. Hence, if we
denote by dy the diameter of U, namely
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dy == sup |y — T2,

xy., ol
and
Ba,(z)={yeR":|ly—2z| <dv},

a straightforward calculation provides

1 1
Glz,y)dy < 7/. —dy
/; y)ay nag(n=2) /gy (@ |z —y"? v
. (11)
_ 1 nandy;  dj
T onop(n=2) 2 2n-=2)

for all x # U. From now on, we write only / o = /¢(%,U) to denote the

quantity

lp = —L—. (12)

Inequality (11) implies that the map H : L®(U) » L(U) given by
H(p)(z) == / G(z,y)p(y)dy, zeU,
JU

is well-defined. More specifically, for any ¢ # L*(U), we have that

|H(p)(z)] < [t Gz, y)ley)ldy < [l#l=< /; G(x,y)dy,

and then

15 (#)loo < ol o- (13)

Standard calculations show that the problem (3) is formally equivalent
to the integral equation

u(r) = H(g) — H(Vou) + H(bu|u|"1). (14)

A solution of (14) is called an integral solution of (3).
In what follows, we give estimates for the terms of (14) in order to apply

a fixed point argument. We first set X := L*(U) and define, for any fixed
w # Q, the linear function T : X » X given by

T(u):=-H(V,u), Yued.
It follows from (13) and (8) that, for any u G X, there holds
1T ()]l ce < lolIViettlloo < Lol fllochite b 2]l o (15)

and so

IT || x=ax < ol fllcltw |
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For the nonlinear term in (14), we define B : X > X by
B(u) := H(blu|P"'u), YuedX.
For a, a;, € R, there holds
|aifai [P~ — aslaof’”!| < play — az| (|la|"" + |azfP7"),

and then it follows that
16() (alulP™" = &aP) o < blloclt = @l (a2 + ).

This inequality and the same argument used in (15) imply that

I1B(u) = B(@)lle < lopl|bllacllu = llo (lul5 + 1E1257) (16)

for any u. i e L=(U).

All together, the above estimates enable us to solve the random
equation (3) as follows.

Proposition 3.1. Given f, b, g # L* (U) and w # Q, we consider the
potential V , induced by the random measure p: = X(w). Let 1y be the
quantity introduced in (12) and set

Tw = lo|| fllacltte| and K := lop||b|| - (17)

Ife > 0 andw # Q are such that

PPl )
W + 7. < 1, (18)

and g < =/l. then the equation (3) has a unique integral solution u,

(L. it satisfies (14)) such that
Uy, = u(-,w) € L=(U) and |Juy|l < 1'— (19)

- Tw

Proof- For each ¢ > 0 and w # Q satisfying (18), we consider the closed

ball
B L= (U s
9. = 4 U E P |t)| e = =————m—m—m 2,
= {ue LWyl < o )
endowed with the metric d(uv) = [u-v|.. We are going to show that the
map

B(u) == H(g) — H(Vou) + H(bu|u"~") = H(g) + T(u) + B(u) (20)

is a contraction on the complete metric space (8..d). Using the estimates

(13), (15), and (16) with @ = 0, we obtain
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()l < [1H(9)lloo + 11T (w)llo + | B(u)ll~

< Io llglloe + Tllulloo + K ul2.

2s 2P KeP
+
l—7, (1=7,)P

1 PR p1 g
_( ?]*I+{1—T“-:|P I)I—Tﬁ-

for all u Hence, it follows from (18) that

<

]

+ Tw

-

18wl < ;

-—
droa

This shows that & maps B. into B...
For all u. i e B.. it follows from (15) and (16) that

[|P(u) = D(W)]|oc = T (u = )| e + [ B(u) — B(H)||

< Tullu = lloo + Kllu — @l (JulZ* + [@l|2)

PR er—! N
< (rﬁ. + W) || — &[oe-

In view of (18), the above estimate implies that @ is a contraction in
B. Now, the Banach fixed point theorem assures that there is a unique
solution u for the integral equation (14) such that Ju] < (2¢)/(1 - 7).

The next results are related to the randomness introduced by the
random potential V and existence of solutions for the problem (3).
Roughly speaking, we first obtain the probability of (3) having a solution
via the method discussed above. In the sequel we discuss a law of large
numbers for a sequence of random potentials.

Theorem 3.2. Let v be the probability measure induced on R by the
random variable w — \u. Let g # L = (U) be such that 0., < 107 where
K = lop|bl. Choose 0 < ¢y < 1 in such a way that o). <+ with

P (1—(.'11-]” p-T
\_[J = QPI‘L' =

Let A be the set of w # Q such that (3) has a solution u(., ») given by
Proposition 3.1 with ¢ = ¢ . The set A is called the admissible one for the
random variable X(w) and non-homaogeneous term g.

(i) The set A is F-measurable, and the probability of (3) having a solution

P(A) = v {J,L)).
) ’([ ol T

(ii) Let .., i be two solutions of (3) corresponding, respectively, to ...g. A
and i3 i\l il < % Assume that ani+ o and define
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N = lo|| f|leo max{l p i I}, for w € ANA.

We have that

- 29{] -
to(lo = ll + T ki — )
— 1
2w Keh!
(1 = Nw )p—l

(21)

[lre(-, w) = (-, @)oo <
1—qy—

Sforall e i
(iii) The map U : A > L* (U) given by U(w) := u(', @) is a random
variable, and there holds

2 = .
(@)l < 7 —— =20 7, (22)

=0

Sforall w# A.
Proof. We first notice that w # A if only if 7. = lo| |l s] verifies with e =
go. Then, if Y (w) = X (@)l = n) it follows that 4- {v<[n-)} is measurable and

P = p(vefoo))
L&y
= Py 0, ——
"'([ Tollf Tl )
0
- ”(l“m))*
This establishes (i).

Now we deal with item (ii). Firstly, observe that n. =max(~.%}. where
Tw = quf” xl”-_.: I and F.J: = IE'[] || f”:xl'_‘_, I

Subtracting the integral equations verified by # , and ., and
afterwards computing | - ||~. we obtain

lue — i)l < H(g— 3l + H(Vo(u— )|
HH (Ve = V)it ||
+ || H® (o |ua?~t — dg|aP~1))|
é f(]H.(.ill - .'_:l'”:-c + lr!)”.)"‘“:»CI-‘M..\.IHH.A. - l-1;;“.}\:,

+ollflloclite = Al lloe

Hopllblloollte =t lloc (Jue 12 + Nl [IBT)-

It follows from (19) that

2= 2s } 2¢g 2¢g
Tom STog il < 75 <7

luslloe <

The two above expressions give us
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[ww = tulle < lollg = dlleo + ol fllocd el — ]|
W P! _
+Fu |\f|| lptes — fol+ ﬁ”"" = e
= lollg = gllso + o7 Hfllxlxr — il

P [eh! _
+ [r;ﬁ. + W [ty = Tl e

which yields (21).

Taking ju., ji. independent of w, i.e. ¢ , = g and jio. = ji, for all w #
Q, we can see from (17) and (21) that the data-map solution £(1,9) = u is
continuous from

{(ﬂ 9) € M{U) > L=(U); |pl < 77— IfH gl F_} to L=(U), (23)
0

where u is the deterministic solution of (3) corresponding to the
data (, g). From this, and because X|4 given by X (w) = p, is measurable,
it follows that the composition U(w)=L(u.g) = L(X(w).y) from Ato L*(U) is
measurable.

In view of the series +~ =, = for 2| < 1. we finish by observing that (22)
follows from (19) with ¢ = gg and w # A.

Remark 3.3. Here we give examples of random potentials for which
there exists a solution almost surely in Q. The first occurs if we suppose
that the measure v has compact support contained in the interval [0,a],
with «< %= In this case it follows from item (i) of Theorem 3.2 that
P(A4) = 1. L.e., the solution exists almost surely in Q. Second, take a sequence
{hsen in M(U), and let {a,(@)},ex be a sequence of random variables from 0
to R. Consider the random variable ¢ ,, defined by

Py = Z aj(w)p;.
j=1

For some g > 1, suppose that

(3 ey '.t-JT'}_J Co

a;(w)| < — a.s. in {},
< T 3

for all j € i. Then,

Hod = a;(w)ljp ———— a.s. in £,

and Theorem 3.2 assures that there is an integral solution for (3) a.s.
in Q.

In the sequel we show how the Borel-Cantelli's Lemma can be used to
give a sufficient condition for the existence of solution a.s. in Q.
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Corollary 3.4. Let c g and g be as in Theorem 3.2. Let {1;}; be a sequence
in M(U) and let {a;(w)};en be a sequence of random variables from Q to .
Assume that the series

fow = Zﬂj[;ﬂ.’}ﬂj
J=l
is convergent in M(U).
For each k < N, define
Ik
Sk(w) = Z a;(w)p;
i=l

ﬂ?’ld Li ={weQ:|S =&}, with 0 < &< co/(lo| fllc)- lf

Y B(Lk) < o,

-
k=1

then there is an integral solution for (3) almost surely in Q.

Proof. By Borel-Cantelli's Lemma we get that P(limsupLi) =0, that is,

P (U3, mis; ISkl < &}) = 1.

It follows that, for almost sure w # Q, there is jo = jo(w) such that for
allj > jo, we have

15;(w)]<e
Therefore, by taking the limit as j » o, we obtain

|| = lim |S;(w)]<£é < 0 a.s. in €2,

o Tollf Tl

This inequality and Theorem 3.2 imply that there is an integral solution
u(x,w) for (3) almost surely in Q.

A straightforward calculation shows that in general Eo(u(z.w)) does not
satisfy the equation (3), even if we replace the random potential by its
mean. However, we are able to obtain some information on the average
and moments of the random solution u,. Let us mention that, when
dealing with the random variable w - uy, the expectation has to be
understood in the Bochner sense (see Section 2). Note also that in fact a
solution u, € L>=(U) of (14) belongs to the separable subspace /().

Theorem 3.5. Assume the hypotheses of Theorem 3.2 and denote by u ,, (x)

=u(xw)# L~ (U) the solution of (3). Let m # 1 be fixed and suppose that

= (m+j—1)!
)! PR e P e o 24)
> o (Toll fllec) Eallpal ] < 4o0. (24)

Then Eallul™(z,w)] € L=(U) and
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Ea [Ild™ (o)l oeier] < 0. (25)
In the case m = 1, we have Eu(z.w) € L=(U) and
Ea [luC,w)llzmqy] < (220) (1 + 3 (ol fll) Ea [ I’ ]) L 26)
j=1

Proof- It follows from (22) that

(2e0)™
™ ()L < lul ey [1—;.]'"'

(27)

[

Computing in (27), we obtain

1A

Ea [0 @)l e

wrafie gl w

(B [l ™ (2, )l L )

1A

By using the linearity of the expectation and recalling that
7 =lollfll<lu.| we get the following upper bound for the right hand side

W

of (28):

m
(260)™ + (220)" Z‘[m_“,:, (ol Ea [ 1l ] (29)
i=1

this bound is finite due to (24). From (25) with m =1 and the estimate
1B [u(z, )l ey < Bt [l o] (30)

we obtain that 24fu(.w)] € L=U). The estimate (26) follows by taking m
= 1in (28)-(29) and afterwards using (30).

In the sequel we show a weak law of large numbers for the random
L*(U)-solutions obtained in Section 2.

Theorem 3.6. Let (X,},ex be an independent sequence of random variables
X i Q > M(U). dssume that the admissible set A ; = Q for all j, and
let w(.w)e L=U) be the solution given by Theorem 3.2 with respect to
X(w) = iy and 9. If X; = X a.5. and

L = sup wwu) i L 31)
1( ll.e .,I) e (
then
k . :
uj(z,w) = Egluj(z,w)] o
Z T -0 (32)
J—I
and
k :
lles (-, ) loe = Eafllei(-, @)oo
= = 0, 33
g T (33)

as k > oo, where the convergences in (32) and (33) are in the sense of

probability (see (9)).
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Proof. Notice that Xj » X a.s. is equivalent to p.,; — p = X(w) in M(U)
almost surely. From this and the continuity of data-solution map Z(-, )

(see (23)), it follows that
(- w) = uls, w)|loo = || Llpwj, 9) — £(12, 9)l|oe — 0.

as j » oo. Recalling (22) and afterwards using (31), we obtain

2z

1 —lo|| flloc(ess sup,cq |t D
2z

ﬁ = L(?U‘ a.s. in €. (34)

””_.l{'-‘*"]”\ <

IA

Next, for a fixed g such that il < # consider

Sg(p) = L(p, 9) (35)

defined from D to L = (U), where o-{u-vwr <) Since Xj's are
independent, it follows that (v;},.« defined by

Y; = ||4‘IJ'{'~L=JJ|:~,\; = [|Sg 0 Xj(w)ll

are also independent. So, from Chebyshev's inequality, the
independence of (v}, , and (34), we have that

| & I?
| o N

< (.l.-(ijfd'” |; E (Nl (- w)]loe — Ea[flui (-5 w) floo] )| ]
7=t |

ke
1) (1w (@)oo — Ealllg (- w)lloo])

j=1

L.
1 [ oot " 2]

= (ko) ZEE? [lfl Uil w)||oe — L‘.gg‘“”_i(: .»']_|x] )|
j=1 :

1A

1 & )
(k)2 ;E“ ['2(‘)'” ]
1 & o
e > 12Qol*Ea 1]
j=1
1Q21

L —

ok

I

Letting k > +o0 in the above expression, we get (33). The convergence

(32) can be proved similarly to (33).
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