
PDF generated from XML JATS4R by Redalyc
Project academic non-profit, developed under the open access initiative

Revista Integración
ISSN: 0120-419X
Universidad Industrial de Santander

An elliptic equation with random potential
and supercritical nonlinearity

Cioletti, L.; Ferreira, L. C. F.; Furtado, M.
An elliptic equation with random potential and supercritical nonlinearity
Revista Integración, vol. 37, no. 1, 2019
Universidad Industrial de Santander
Available in: http://www.redalyc.org/articulo.oa?id=327062425001
DOI: 10.18273/revint.v37n1-2019001

http://www.redalyc.org/articulo.oa?id=327062425001
http://doi.org/


PDF generated from XML JATS4R by Redalyc
Project academic non-profit, developed under the open access initiative

Revista Integración, vol. 37, no. 1, 2019

Universidad Industrial de Santander

Received: 11 March 2018
Accepted: 03 May 2018

DOI: 10.18273/revint.v37n1-2019001

CC BY

Original articles

An elliptic equation with random
potential and supercritical nonlinearity

Una ecuación elíptica con potencial aleatorio y no linealidad
supercrítica

L. Ciolei a
Universidade de Brasília, Brazil

L. C. F. Ferreira b*

Universidade Estadual de Campinas, Brazil
M. Furtado a

Universidade de Brasília, Brazil

Abstract: We are concerned with a nonhomogeneous elliptic equation with random
potential and supercritical nonlinearity. Existence of solution is obtained almost surely
for a class of potentials that includes continuum and discrete ones. Also, we provide a
law of larger numbers for the obtained solutions by independent ensembles and estimate
the expected value for their L∞-norms.
MSC2010: 47B80, 60H25, 35J60, 35R60, 82B44, 47H10.
Keywords: Elliptic equations, Random potentials, Random nonlinear equations.
Resumen: Estamos interesados en una ecuación elíptica no homogénea con potencial
aleatorio y no linealidad supercrítica. Obtenemos la existencia de solución casi
seguramente para una clase de potenciales que incluye continuos y discretos. Además,
proporcionamos una ley de grandes números para las soluciones obtenidas por conjuntos
independientes y estimamos el valor esperado para sus normas L∞.
Palabras clave: Ecuaciones elípticas, potenciales aleatorios, ecuaciones no lineales
aleatorias.

1. Introduction

A class of models that appears naturally in a wide number of phenomena
are the random differential equations. is occurs because randomness
is a powerful tool and concept to control complex systems involving
a large number of variables and particles. e basic idea is to describe
complex systems by means of their statistical properties. Another kind
of phenomena are those governed by quantum mechanics and the
uncertainty principle. In this direction, we have Schrödinger equations,
and their random versions, which are the core in the study of condensed
matter.

e semilinear Schrödinger equation reads as

where  is the Planck constant and i is the
imaginary unit. When looking for standing wave solutions, namely those
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with the special form  we are leading to solve an
equation of the type

From the physical viewpoint, the function V is the potential energy,
and therefore the force acting on the system is given by F(x) = - #V(x). In
[20] the author considered a singularly perturbed version and obtained
the existence of solution by assuming that V is such that

In [8], the authors showed that the same holds if V has a local
minimum. Later, many authors considered multiplicity and qualitative
properties of solutions (see [1], [2] and references therein).

e main interest of this paper is to study situations where the potential
V is not deterministic. We show existence and probabilistic properties for
a nonhomogeneous random version of (2), namely

where 1 < p < ∞,Vw is a random variable  is a bounded domain
and the terms b, g # L∞( (U) are deterministic. In the case V # 0 Pohozaev-
type identities provide non-existence of positive solutions for (2) with
critical and supercritical variational values  So, it is natural to
consider a nonhomogeneous term on the right-hand side of (3). Here
we desire to cover not only high-powers for p, but also the effect on the
random term Vw. Our results work well for b # 1, and in this case (3) is
precisely the perturbation of (2) by the non-homogeneous term g. Also,
the boundedness of U, b, g are not essential and could be circumvented
by working in other settings, such as homogeneous weighted L∞-spaces,
PMa-spaces and anisotropic Lebesgue spaces (see, e.g., [11], [12], [13],
[14], [15]). However, here this condition will simplify matters a bit.
e random potential Vw is constructed as follows: given a continuous
function  we consider

where μw is a M(U)-valued random variable and M(U) denotes the set
of all Radon measures on U with finite variation.

We present here some examples of (4) that have been treated in the
literature (see e.g. the review [18]). We first consider a model of an
unordered alloy, that is, a mixture of several materials with atoms located
at lattice positions. Assuming that the type of atom at the lattice  is
random, we are led to consider potentials of the type
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where the random variables qi describe the charge of the atom at the
position i of the lattice. Other examples can be obtained by considering
materials like glass or rubber, where the position of the atoms of the
material are located at random points ηi in space. By normalizing the
charge of the atoms, the suggested potential is formally

where the  are random variables which localize the atoms in space.
e class of potentials allowed here is sufficiently large to consider

many known models. For example, the case of glass considered in (6) can
be obtained by taking the random point measure  Actually, for
this choice of the measure we have that

Also, a combination of potentials like (5) and (6), namely

is also covered by (4) with  It is not difficult to see that
we can also consider other models like, e.g., the Poisson model (see [18]
for more examples).

e models (5) and (6) correspond to discrete measures µw for
which results about localization, spectral properties and decays can be
found in [18], [21]. For Schrödinger equations defined in a lattice, i.e.

 we refer the reader to [5]. Considering a random time-dependent
potential for (1), the authors of [3] studied asymptotic behavior of
solutions by showing convergence for Gaussian limits when the two-
point correlation function of the potential is rapidly decaying. Still for
time-dependent random potentials, scaling limits for parabolic waves
in random media were investigated in [10]. Another type of random
equations are the parabolic ones, for which we refer to the works
[4], [6], [7] and their references. In fact, the authors of [4] extended
regularity properties (Kalita's results) to the stochastic case by considering
quasilinear parabolic systems under a random perturbation of Itô type
(see [16] for further results on stochastic PDEs).

In this paper we show that a solution for the nonlinear elliptic PDE (3)
exists almost surely (or not) depending on the v-measure of the interval

 where v is the probability measure induced on  by the random
variable  and k0 is a given constant (see eorem 3.2). For that, we
obtain Proposition 3.1 which seems not to be available in the literature
even for the deterministic version of (3). Solutions are understood in an
integral sense based on Green functions. In Remark 3.3 and Corollary
3.4, we give some examples of continuum random potentials covered by
our results. Since we are considering L∞-valued random solutions, it is
natural to ask about the expected value of the L∞-norm of solutions. In
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eorem 3.5, we provide an estimate for this value depending on the size
of the potential. Moreover, we obtain a law of larger numbers for solutions
obtained by independent ensembles. It is worth to mention that, when
dealing with the random variable  that maps an element of Ω in
the solution of (3) associated with the random potential Vw, we need to
consider some known concepts of real random variables in a more general
setting (see Section 2 for more details).

As a further comment, we observe that the random potentials
considered here are built from a very general probability space. In this
setting it does not always make sense to ask what is the probability that
the problem (3) has a solution in L∞(U). In order to give some sense to
this question we should restrict ourself to probability spaces  and
random potentials V where the set

is an event (measurable). Working in such probability spaces, eorem
3.2 gives us immediately a lower bound for the probability of the non-
linear problem (3) having a solution.

e manuscript is organized as follows. In the next section, we
introduce some notations, basic definitions and give some properties for
an integral operator associated with the random potential Vw - e main
results are stated and proved in Section 3.

2. Preliminaries and notation

roughout this paper  denotes a given complete probability space.
If  is a measurable space, any  measurable function X : Ω → E
will be called a E-valued random variable. We use the abbreviation a.s. for
almost surely or almost sure.

Let  be a bounded domain. We adopt the standard notation
M(U) to denote the set of all Random measures on U with finite variation
and we call  the σ-algebra of the borelians of M(U) generated by
the total variation norm. e space of all bounded continuous real-valued
functions defined on U will be denoted by BC(U). Since BC(U) is a
metric space with the supremum norm, when we refer to a BC(U)-valued
random variable, the considered σ-algebra is always the one generated by
the borelians. Similarly to a X-valued Borel random variable X : Ω → X,
where X is an arbitrary metric space.

e random potentials considered here are the BC(U)-valued random
variables defined as follows. Take any random variable X : Ω → M(U)
(which is simply a random measure in M(U)) and a fixed function

 en, for μ  ω  = X(ω), the function V : Ω → BC(U) defined by
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is a BC(U)-valued random variable that will be called a random
potential. To see that V is a well-defined BC(U)-valued random variable,
is enough to consider the mapping Tf : M(U) → BC(U) given by

and to observe that V = T¡ o X. In fact, if we denote by  the total
variation of the measure μ, we have the inequality

which implies that Tf (μ) belongs to L∞(U). Also, proceeding as in
(8) and using dominated convergence theorem, one can show that T f(μ)
is a continuous function, and so Borel measurable. It follows that V is
a composition of two Borel measurable functions and a BC(U)-valued
random variable.

Let  be a measure space. For a measurable function f we define

and the space  as the set

When dμ = dx is the Lebesgue measure in  we simply denote
 Although we are assuming that  most of

the results presented here are also valid if we suppose only the weaker
condition 

In order to state some convergence results, we need to use the notion
of Bochner integrals. Let  be a Banach space and  be a
probability space. If  is a X-valued Borel random variable such
that X = Y a.s. in Ω, where Y : Ω → X is a X-valued Borel random variable
with Y(Ω) # X separable, and

then there exists a unique element  with the property

for all  where X* stands for the dual of X. Following the standard
notation, we write
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We call  the Bochner integral of X with respect to  More details
about the existence and some properties of this integral can be found in
[17], [19].

For X-valued random variables, we define the convergence in
probability similarly to the real-valued case. If {Xj} is a sequence of X-
valued random variable, we say that X j converges to a X-valued random
variable X in probability if for all ε > 0, we have

When X is a real-valued random variable, we use the usual notation and
denote the expected value of X and its variance by

respectively. For both senses of expectation presented above, we also
use the notation

when A # Ω is measurable and the right-hand-side of (10) makes sense.
Let X and Y be two E-valued random variable in the same probability

space. We say that they are identically distributed if for all  we have

Now we introduce the notion of independence. Given a finite set
of random variables X1,... Xj, they are said to be independent if for all

 we have

Finally, a sequence of random variables {X1, X2,...} is independent if
all finite collection of this sequence form a set of independent random
variables.

3. Main results and proofs

Let G be the Green function of the Laplacian operator -Δ in the bounded
domain  with n ≥ 3. It is known that (see [9]), for all x, y # U, there
holds

where α  n  stands for the volume of the unit ball in  Hence, if we
denote by dU the diameter of U, namely
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and

a straightforward calculation provides

for all x # U. From now on, we write only l 0 = l 0(n,U) to denote the
quantity

Inequality (11) implies that the map H : L∞(U) → L∞(U) given by

is well-defined. More specifically, for any ϕ # L∞(U), we have that

and then

Standard calculations show that the problem (3) is formally equivalent
to the integral equation

A solution of (14) is called an integral solution of (3).
In what follows, we give estimates for the terms of (14) in order to apply

a fixed point argument. We first set X := L∞(U) and define, for any fixed
ω # Ω, the linear function T : X → X given by

It follows from (13) and (8) that, for any u G X, there holds

and so
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For the nonlinear term in (14), we define B : X → X by

For  there holds

and then it follows that

is inequality and the same argument used in (15) imply that

for any 
All together, the above estimates enable us to solve the random

equation (3) as follows.
Proposition 3.1. Given f, b, g # L∞ (U) and w # Ω, we consider the

potential V  w  induced by the random measure µw: = X(w). Let l0 be the
quantity introduced in (12) and set

If ε > 0 and w # Ω are such that

and  then the equation (3) has a unique integral solution uw

(i.e. it satisfies (14)) such that

Proof. For each ε > 0 and ω # Ω satisfying (18), we consider the closed
ball

endowed with the metric  We are going to show that the
map

is a contraction on the complete metric space  Using the estimates
(13), (15), and (16) with  we obtain
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for all u Hence, it follows from (18) that

is shows that  .
For all  it follows from (15) and (16) that

In view of (18), the above estimate implies that Φ is a contraction in
 Now, the Banach fixed point theorem assures that there is a unique

solution u for the integral equation (14) such that 
e next results are related to the randomness introduced by the

random potential V and existence of solutions for the problem (3).
Roughly speaking, we first obtain the probability of (3) having a solution
via the method discussed above. In the sequel we discuss a law of large
numbers for a sequence of random potentials.

eorem 3.2. Let v be the probability measure induced on  by the
random variable  Let g # L  ∞  (U) be such that  where

 Choose 0 < c0 < 1 in such a way that  with

Let A be the set of ω # Ω such that (3) has a solution u(·, ω) given by
Proposition 3.1 with ε = ε 0 . e set A is called the admissible one for the
random variable X(ω) and non-homogeneous term g.

(i) e set A is F-measurable, and the probability of (3) having a solution
is

(ii) Let  be two solutions of (3) corresponding, respectively, to 
and  Assume that  and define
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We have that

for all 
(iii) e map U : A → L∞ (U) given by U(ω) := u(·, ω) is a random

variable, and there holds

for all ω # A.
Proof. We first notice that ω # A if only if  verifies with ε =

ε0 . en, if  it follows that  is measurable and

is establishes (i).
Now we deal with item (ii). Firstly, observe that  where

Subtracting the integral equations verified by u  w  and  and
aerwards computing  we obtain

It follows from (19) that

e two above expressions give us
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which yields (21).
Taking  independent of w, i.e. μ  w  = μ and  for all ω #

Ω, we can see from (17) and (21) that the data-map solution  is
continuous from

where u is the deterministic solution of (3) corresponding to the
data (µ, g). From this, and because  given by  is measurable,
it follows that the composition  is
measurable.

In view of the series  we finish by observing that (22)
follows from (19) with ε = ε0 and ω # A.

Remark 3.3. Here we give examples of random potentials for which
there exists a solution almost surely in Ω. e first occurs if we suppose
that the measure v has compact support contained in the interval [0,a],
with  In this case it follows from item (i) of eorem 3.2 that

 i.e., the solution exists almost surely in Ω. Second, take a sequence
 in M(U), and let  be a sequence of random variables from 0

to R. Consider the random variable µ  w  defined by

For some q > 1, suppose that

for all  en,

and eorem 3.2 assures that there is an integral solution for (3) a.s.
in Ω.

In the sequel we show how the Borel-Cantelli's Lemma can be used to
give a sufficient condition for the existence of solution a.s. in Ω.
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Corollary 3.4. Let c 0 and g be as in eorem 3.2. Let  be a sequence
in M(U) and let  be a sequence of random variables om Ω to 
Assume that the series

is convergent in M(U).
For each  define

and  If

then there is an integral solution for (3) almost surely in Ω .
Proof. By Borel-Cantelli's Lemma we get that  that is,

It follows that, for almost sure ω # Ω, there is j0 = j0(w) such that for
all j > j0, we have

erefore, by taking the limit as j → ∞, we obtain

is inequality and eorem 3.2 imply that there is an integral solution
u(x,w) for (3) almost surely in Ω.

A straightforward calculation shows that in general  does not
satisfy the equation (3), even if we replace the random potential by its
mean. However, we are able to obtain some information on the average
and moments of the random solution uw. Let us mention that, when
dealing with the random variable ω → uw, the expectation has to be
understood in the Bochner sense (see Section 2). Note also that in fact a
solution  of (14) belongs to the separable subspace 

eorem 3.5. Assume the hypotheses of eorem 3.2 and denote by u  w  (x)
= u(x,w) # L  ∞  (U) the solution of (3). Let m #  be fixed and suppose that

en  and
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In the case m = 1, we have  and

Proof. It follows from (22) that

Computing in (27), we obtain

By using the linearity of the expectation and recalling that
 we get the following upper bound for the right hand side

of (28):

this bound is finite due to (24). From (25) with m =1 and the estimate

we obtain that  e estimate (26) follows by taking m
= 1 in (28)-(29) and aerwards using (30).

In the sequel we show a weak law of large numbers for the random
L∞(U)-solutions obtained in Section 2.

eorem 3.6. Let  be an independent sequence of random variables
X j: Ω → M(U). Assume that the admissible set A j = Ω for all j, and
let  be the solution given by eorem 3.2 with respect to

 a.s. and

then

and

as k → ∞, where the convergences in (32) and (33) are in the sense of
probability (see (9)).
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Proof. Notice that Xj → X a.s. is equivalent to 
almost surely. From this and the continuity of data-solution map L(·, ·)
(see (23)), it follows that

as j → ∞. Recalling (22) and aerwards using (31), we obtain

Next, for a fixed g such that  consider

defined from D to L  ∞  (U), where  Since Xj's are
independent, it follows that  defined by

are also independent. So, from Chebyshev's inequality, the
independence of  , and (34), we have that

Letting k → +∞ in the above expression, we get (33). e convergence
(32) can be proved similarly to (33).
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