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Traditional continuum theory arising in
inverse limits with set-valued functions

Teoria tradicional de los continuos que surgen en los limites
inversos con funciones multivaluadas

W. T. Ingram *
University of Science and Technology, USA

Abstract: In the years since their introduction in 2004, almost 100 articles and books
have been written on the subject of inverse limits with set-valued functions. Although
such inverse limits do not always produce continua, much traditional continuum theory
arises in investigations of these interesting objects. In this survey article we discuss several
tradtional topics that have arisen in research into the subject.
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Resumen: En los anos desde su introduccién en 2004, casi 100 articulos y libros han
sido escritos sobre limites inversos con funciones multivaluadas. Aunque tales limites
inversos no siempre producen continuos, muchos aspectos de la teorfa cldsica de los
continuos aparecen en las investigaciones de estos objetos interesantes. En este articulo
discutimos varios de los temas tradicionales que han surgido en el estudio de este tema.
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1. Introduction

In 2013 the author was invited to give a mini-course at a meeting in
Puebla, México. The theme of that series of lectures was traditional
continuum theory arising in inverse limits with set-valued functions.
Here we revisit that theme and survey some results on the topic of
traditional continuum theory in inverse limits with set-valued functions.
We include a discussion of some additional results that have been
obtained in the five years since the Puebla meeting and we raise questions,
some old and some new, suggested by our theme.

Roughly following the outline of the Puebla talks, this article is divided
into sections. In Section 2 we provide some of the background for the
remainder of the paper. In Section 3 we briefly discuss compactness and
connectedness in inverse limits with set-valued functions. In Section 4 we
turn our attention to a very traditional topic in the theory of continua,
chainability. We follow this in Section 5 with a look at treelikeness,
another quite traditional property. We close in Section 6 with a look at
a more recent topic of parameterized families of inverse limits with set-
valued functions that arises out of the interaction between continuum
theory and dynamical systems. Questions and problems are sprinkled
throughout the paper. For the perspective of a member of the audience

for the talks in Puebla, see [6].
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2. Definitions and Notation

A compactum is a compact metric space; a continuum is a connected
compactum. If X is a compactum, 2X denotes the collection of all
compact subsets of X. If each of X and Y is a compactum, a function f:
X > 2Y, herein denoted f: X Y, is said to be upper semi-continuous at
the point x of X provided that if V is an open subset of Y that contains
f (x) then there is an open subset U of X containing x such that if ¢t is
a point of U then f (t) # V .A function f: X ~ Y is called upper semi-
continuous provided it is upper semi-continuous at each point of X. If f:
X 7Y is continuum-valued, we often denote this by f: X > C(Y), where
C(Y) denotes the connected elements of 2Y. If f: X . Y is a set-valued
function, by the graph of f, denoted G(f), we mean {(=.9) X <V | y & f(2)}:
iff: X ~Yandg:Y ~Z,thengof:X ~Zdenotes the function given
by z # go f (x) if and only if there is a point y of Y such that y # f (x) and
z # g(y). It is known that if X and Y are compacta and M is a subset of X
x Y such that X is the projection of M to its set of first coordinates, then
M is closed if, and only if, M is the graph of an upper semi-continuous
function [21, Theorem 2.1] or [13, Theorem 1.2, p. 3]. We call an upper
semi-continuous function f: X Y surjective provided for each point
y of Y there is a point x in X such that y # f (x). If s = s1, 52, s3,... is a
sequence, we normally denote the sequence in boldface type and its terms
in italics. Suppose X is a sequence of compacta and fn : Xn+1 ~ Xn is
an upper semi-continuous function for each n & M. By the inverse limit of
f, denoted 7. we mean {= € [T,., X | = < filz:.1) for each positive integer
i}. The spaces in the sequence X are referred to as factor spaces while the
functions in the sequence fare called bonding functions. If (X, | a € D} is
a collection of sets and A is a subset of D, we denote by 74 the natural
projection of .. X. onto [L.. X.. If a and & are two numbers, we denote
the interval with endpoints a and b by [a, b], whether or not a is smaller.
For the most part, throughout this article we assume the factor spaces are
continua.

Inverse limits with mappings have been employed in continuum theory
for almost sixty years dating back at least to 1959, when Anderson and
Choquet made use of inverse limits to construct a continuum in the plane
no two of whose nondegenerate subcontinua are homeomorphic . The
ease with which complicated continua can be constructed from simple
objects led to an explosion of results involving inverse limits. Detailing
even a few of these significant developments in continuum theory is
beyond the scope of the present article.

Inverse limits with set-valued functions are extensions of inverse
limits with mappings. The only change involves replacing the continuous
functions for bonding functions with upper semi-continuous set-valued
functions. Inverse limits with set-valued functions subsume inverse limits
with mappings. As a consequence the author distinguishes between
the notions simply by making reference to the nature of the bonding
functions in the system. We actually object to the term "generalized
inverse limit" and never make use of it; any generalization is with respect
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to the bonding functions with only a slight adjustment in the definition
of the inverse limit to accommodate this change.

3. Compactness and connectedness

Fundamental to the study of any topic in mathematics is an existence
theorem that demonstrates that there are structures in the area under
consideration. For inverse limits with set-valued functions our interests
in continuum theory extend beyond the existence to compactness and
connectedness. A set traditionally used in the proof that i1 is nonempty
and compact is { € [],.o Xi | @ € fi(zin) for 1 < < n}. This set was originally
denoted G,, in the early papers on this topic and it is easy to see that
the inverse limit is M., G+ thus reducing the question of existence and
compactness of the inverse limit to the question of the compactness of a
nonempty Gy. In case the bonding functions in an inverse limit with set-
valued functions are upper semi-continuous, places to find a discussion
of the compactness of a nonempty G, include [13, Theorem 1.6, p. 9]
and [21, Theorem 111, p. 81]. Connectedness of the inverse limit is
characterized by the connectedness of the set G, for n =1, 2, 3,... as seen
in our first theorem.

Theorem 3.1. Suppose that X is a sequence of continua and - Xir1 /7 X
is upper semi-continuous for each positive integer i. Then, in f is connected z]f
and only if, G , is connected for each positive integer n.

It quickly became clear that the projection of G, into the finite
product 11;% x: holds an equally important place in the area and these
projections, especially ¢; and ¢ possess an advantage in that in many
instances we are able to represent them with meaningful pictures. As a
consequence of the importance of these projections and because when
the factor spaces are continua they are connected if, and only if, the
sets Gn are connected, we adopt and use throughout this article the
notation ¢, = {x < [I;7} Xi | =, « £:(xis) for 1 < i < n} for the projection of G,
into the product of the first n+1 factor spaces, i.e., G = 712, i1y (Ga)- Also,
when the bonding functions are upper semi-continuous, these sets G’ are
precisely the "approximations” whose compactness yields compactness of
the inverse limit. In the literature G, has also been denoted by G'(fi, £,
...fn) and we shall make use of both means of denoting this important set.
In an effort to honor Bill Mahavier (an effort the author applauds) for
his introduction of set-valued bonding functions into the study of inverse
limits %%, some have suggested and some authors have even used the term
'"Mahavier product' for the sets This author has pointed out to anyone who
will listen that these sets are not actually products in any traditional sense
and should not be called products.

Examples show that even when the factor spaces are all [0,1] and the
graph of the only bonding function in the system is connected, the inverse
limit may not be connected; for example, see [13, Example 2.1, p. 15].
However, by assuming the bonding functions are continuum-valued we

obtain a connected inverse limit, see ?”) or [21, Theorem 125].
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Theorem 3.2. Suppose that X is a sequence of continua and fi: Xiq » C(X;)
1S upper semi-continuous for each positive integer i. Then, in 5 is a continuum.

In case the factor spaces are the interval [0,1], Greenwood and
Kennedy have characterized connectedness of inverse limits with set-
valued functions, ”). The Greenwood-Kennedy result is complicated to
state so we omit it and its proof is long. As a consequence, the search
continues for other simple suflicient conditions on the bonding functions
for connectivity of the inverse limit.

4. Chainable inverse limits

It is known that inverse limits with mappings on chainable continua
produce chainable continua. Unlike inverse limits with mappings, even
on the interval [0,1] inverse limits with upper semi-continuous bonding
functions need not produce chainable continua. Such inverse limits may
fail to be connected [13, Example 1.2], be infinite dimensional [13,
Example 1.1], contain triods [13, Example 2.4], or contain simple closed
curves as seen in Example 5.1 below. In this section we discuss some results
that show some set-valued functions on [0, 1] that are not mappings
produce chainable inverse limits.

Like chainability and connectedness, many of the properties that
researchers in inverse limits with mappings are accustomed to obtaining
in the inverse limit space fail to hold when the bonding functions are
set-valued even in the case where the factor spaces are [0, 1]. As already
mentioned, with set-valued bonding functions on [0, 1] the inverse limit
can even be infinite dimensional. See [13] for more information on such
differences. The tools available from the theory of inverse limits with
mappings are available in the literature and many of them can be found in
these sources (' and ?!1). The following theorem is quite easy to prove,
but it is very useful in attacking certain problems in inverse limits with
set-valued functions, specifically because it allows us to bring the power
of inverse limits with mappings to bear on the problems we are trying to
solve.

Theorem 4.1. Suppose X is a sequence of compacta and f: Xipy .~ Xiisa
surjective upper semi-continuous function for each positive integer i. Then,
im £ is homeomorphic to an inverse limit on the sequence of spaces X, G'(f1),
G'(fi, &), G'(f1, £, £3),... with bonding functions that are mappings.

The bonding mappings in Theorem 4.1 are restrictions of projections,
{12..n}> of products to the factor spaces. This theorem is useful in proving
that the inverse limit has certain properties that are preserved by inverse
limits with mappings by showing that the sets G’ possess the given
property. Such properties include, but are not limited to: chainability,
treelikeness, dimension not greater than n, atrioidicity, and hereditary
unicoherence. Recent applications of Theorem 4.1 include our next two
theorems where inverse limits are shown to be chainable. In the proof of
Theorem 4.2 the sets G’ are shown to be arcs, while in Theorem 4.4 the
sets G’ are shown to be chainable continua. Theorem 4.2 may be found



Revista Integracién, 2019, 37(1), Jan-Jun, ISSN: 0120-419X

in [17, Section 7]. Theorem 4.4 is found in a recent manuscript currently
available in preprint form, 1%/,

Theorem 4.2. Suppose a is a number 0 < a < 1 and £, is the upper semi-
continuous function whose graph consists of three straight line intervals, one
from (0, 0) z0 (1/2,1), one from (1/2,1) to (1/2, a), and one from (1/2, a)
to (1,1). Then, vn s. is a chainable continuum ifand only if 17 (a) # 172 for each
positive integer n.

We require some definitions to state Theorem 4.4. Suppose 2, z1, Zy,...

is a sequence of numbers from [0, 1] such that

1. Zo = 1;
2. zip1 > ziifiisoddand z ; + ; < 2 ; otherwise;
3. some subsequence of z converges to 0 and another subsequence

of z converges to 1.

Letf:[0,1] .~ [0,1] be the upper semi-continuous function defined as
follows:

1. f0)=[0.1].
2. £(1/2"Y) =z fori=0,1,2...
3. fis a homeomorphism on [1/2},1/2""] for each i.

We call G( ) the sinusoid determined by z, or, simply, a sinusoid.
Sinusoids include a traditional sin(1/x)-curve and the curve shown by
Dorothy Sher-ling 5] not to be homeomorphic to an inverse limit on
intervals with a single mapping. Her example from 5] is the sinusoid
determined by the sequence 1,0,1/2,0,1,0,1,0,1/2,0,1,0,1,0,1,0,1/2,0.....
The proof of Theorem 4.4 may be found in (8] 1e employs an old
theorem of R. H. Bing that characterizes chainability among hereditarily

deomposable continua Bl A continuum M is hereditarily unicoberent
provided if A and B are subcontinua of M with a point in common
then A # B is connected. A continuum M is a #riod provided there is a
subcontinuum H of M such that M - H has (at least) three components; a
continuum is atriodic provided it does not contain a triod. The following
theorem of Bing Bl key in the proof of Theorem 4.4 in (18],

Theorem 4.3 (Bing). Suppose M is an hereditarily decomposable
continuum. Then M is chainable if, and only if, it is atriodic and hereditarily
unicoberent.

Theorem 4.4. Suppose fis a sequence of upper semi-continuous functions
such that, for each positive integer i, fi: [0,1] .~ [0,1] has a graph that is a
sinusoid, Then inf is chainable.

4.1. C-sets and monotone mappings

The proof of Theorem 4.4 also makes use of the notions of a C-
set, terminal subcontinua, and monotone mappings. A subset K of
a continuum M is a C-sez in M provided it is true that if H is a
subcontinuum of M containing a point of K and a point of M - K, then
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K # H (see "V for more on C-sets). A subcontinuum C of a continuum
M is said to be terminal in M provided if H and K are subcontinua of M
cach intersecting C, then H # K # C or K # H # C. Terminal continua
were introduced by Fugate; for more information on terminal continua

see 1%, Some results needed to establish Theorem 4.4 include many of the
following theorems.

Theorem 4.5. If A and B are chainable continua and A # B is a continuum
that is terminal and a C-set in both A and B, then A # B is chainable.
Moreover, A # B isa C-setin A # B.

Theorem 4.6. Suppose H is a subcontinuum of the continuum M and K
is a C-set in H. If there is an open subset U of M such that K # U # H, then
Kisa C-set in M.

A mapping between continua is called monotone provided point
inverses are connected. It is well known that preimages of continua under
monotone maps are continua. Below are listed some results from (18] that
relate monotone maps and C-sets.

Theorem 4.7. Suppose each of M and N is a continuum and £: M —=
N is a mapping. If x is a point of N such that £'(x) is a C-set in M, and
H is a subcontinuum of M containing a point of £'(x) such that f (H) is
nondegenerate, then £'(x) is a subset of H.

Theorem 4.8. Suppose each of M and N is a continuum and f: M —+ N
is a monotone mapping such that £'(x) is a C-set in M for each x in N. IfH
is a subcontinuum of M and £ (H) is nondegenerate, then £'(f (H)) = H.

Theorem 4.9. Suppose a and b are numbers with a < b, M is a continuum
and £ — M : [a, b] is a monotone mapping such that £ (t) is a C-set in M

for each tin [a,b). Then, £ '(a) and £ (b) are terminal in M.

Theorem 4.10. Suppose M and N are continua, N is hereditarily
decomposable, and £ : M > N is a monotone mapping such that £'(x) is a
C-set in M for each x in N. If H is a subcontinuum of M such that f(H) is
nondegenerate, then H is decomposable.

Theorem 4.11. Suppose M and N are continua, N is hereditarily
decomposable, and £ : M > N is a monotone mapping such that £ Y(x) is an
hereditarily decomposable C-set in M for each xin N. Then, M is hereditarily
decomposable.

Theorem 4.12. Suppose M and N are continua, N is atriodic, and f: M >
N is a monotone mapping such that £'(x) is an atriodic C-set in M for each
x in N. Then, M is atriodic.

Theorem 4.13. Suppose M and N are continua, N is hereditarily
unicoherent, and £ : M > N is a monotone mapping such that £'(x) is an
hereditarily unicoherent C-set in M for each x in N. Then, M is hereditarily
unicoberent.



Revista Integracién, 2019, 37(1), Jan-Jun, ISSN: 0120-419X
4.2. Theorems and questions about C-sets

Bing's theorem and the preceding results on C-sets and monotone

mappings lead to Theorem 4.14 and Question 4.15 from "8, More
information on the question and its background is contained in (18]
Theorem 4.14. Suppose M is a continuum, N is an hereditarily

decomposable chainable continuum, andt: M —s= N is a monotone mapping

such that £7(x) is an hereditarily decomposable chainable C-set in M for
each x in N. Then, M is chainable.

Traditionally, questions abound about the chainability of a continuum
when its image under a monotone mapping is chainable (see [5, Problem
105, p.382] or 8] for more on such questions). The result in Theorem 4.14
suggests the following question along these lines. This question is posed
in 18],

Question 4.15. If M is a 1-dimensional atriodic continuum and f'is a
monotone mapping of M onto a chainable continuum N such that point-
inverses are chainable C-sets in M, is M chainable?

Theorem 4.14 yields that the answer to Question 4.15 is "yes" in case
N as well as all point inverses are hereditarily decomposable chainable
continua even without assuming M is atriodic and 1-dimensional.

4.3. More on chainability

In a nice paper in 2014, Kelly (22] showed that a class of set-valued
functions that he calls irreducible functions produce chainable continua
in systems on [0, 1] with a single bonding function. His results confirm
the chainability of Example 5.4 of ') and extend it considerably. We
conclude this section with Kelly's result. Notably, he is able to characterize
chainability in systems with a single irreducible bonding function by the
chainability of G, as well as by conditions on the graph of the function
that are easy to check.

Let A be a closed subset of [0,1] containing 0 and 1 such that 17x = A.
A collection of mappings {7 : [0.1] — [0.1]}xen is called irreducible provided:

1. 0 #£,([0,1]) if, and only if, A = 0; and 1 # f5 ([0,1] if, and only

if, A\ =1;
2. ifu & A’ then f71(0) = {0} or f771(0) = {1};
3. if 1¢ A, then £7'(1) = {0) or £57'(1) = (1}:

4. if A, u # A with} <y, then fi(y) # fu(y) for all y # (0,1), and
G(f) # G(f,) =# if, and only if, (\,pu) # A = #; and

5. if A is a sequence of points of A that converges to A, then the
sequence £, fiz, fi3,... converges uniformly to f;.

A function F : [0,1] .~ [0,1] is called érreducible provided there is an
irreducible collection {fx : [0.1] = [0.1]}rex such that F@) = U,., /'@ for each x in

[0,1].
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Theorem 4.16 (Kelly). IfF : [0,1] .7 [0,1] is an irreducible function, then
the following are equivalent:

1. im Fis chainable.

2. G’5 is chainable.

3. G(F) does not contain a simple closed curve and both F(0) and
E(1) belong ro {10}, {1}, [0,1]}.

S. Treelikeness

Many inverse limits with set-valued functions that are continua but not
chainable turn out to be treelike. Early in its development, treelikeness
was defined by covers by tree chains. Treelikeness has been characterized
in a number of ways including being homeomorphic to an inverse limit
on trees. In order for the reader to appreciate the complexities of the
problem of determining treelikeness we mention the following example
of an upper semi-continuous function on [0,1] whose graph is the union
of two surjective homeomorphisms yet the inverse limit is not treelike.

Example 5.1. Let hy be the homeomorphism of [0,1] whose graph consists
of two straight line intervals, one from (0,0) to (1/2, 3/4) and one from
(1/2,3/4) to (1,1). Let hy be the homeomorphism whose graph consists of
two straight line intervals, one from (0, 1) to (1/2, 3/4) and one from (1/2,
3/4) ro (1,0). Let £: [0,1] .~ [0,1] be the function whose graph ish; # h, .
Then, im 5 contains a simple closed curve and consequently is not treelike.

In 7 the author demonstrated the chainability of inverse limits with
many members of a parameterized family of upper semi-continuous
functions. The functions in the family were first mentioned above in
Theorem 4.2 and may be described as follows: for 0 < a < 1 let f;: [0,1]
> C([0,1]) be the function whose graph consists of three straight line
intervals, one from (0, 0) to (1/2, 1), one from (1/2,1) to (1/2,a),and one
from (1/2,a) to (1,1). It is known that lim f. is treelike for each 2 # [0,1]
([16, Corollary 4.1]). See also Theorem 5.8 below. Had we allowed the
parameter a to be 1, the graph consists of only two straight line intervals
and the inverse limit is an arc.

Theorem 5.2. If 0 < a < 1 then lm f. is treelike.

One class of set-valued functions that has received some attention is
the class of functions whose graphs are a union of two mappings. Example
5.1 above is such a function. In our next example we consider another
member of the class. It is known that treelike continua are unicoherent.
Thus, we can demonstrate that an inverse limit is not treelike by showing
that it is not unicoherent. Consider the following example from [14,
Example 4.3].

Example 5.3. Let f; be the identity on [0,1] and £, be the piecewise linear
map that passes through (0,1/2), (1/4,1), (1/2,1/2), and (1,0). Let f = f; #
5. Then, M = i f is not unicoberent.

Proof. Let H be the subcontinuum of M that is the inverse limit of the
sequence b, B, fi, f1, f1, ... and K be the inverse limit of i, £, f3, i, fi,....
Then, Hn K = {(1/2,1/2,1/2,...), (1/2,1/2,0, 0,--)}.
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A sufficient condition for the treelikeness of an inverse limit of a
set-valued function that is the union of two mappings is found in the
following theorem from [14, Theorem 3.4, p, 20].

Theorem 5.4. If fi and £ are mappings of [0,1] inro [0,1]
whose only coincidence point is a common fixed point p such that
F7N0) = £ 0) = {p} and | = f,U fy is surjective, then i 1 is treelike.

Relative to this theorem, note that the only coincidence point of the
maps f; and £, in Example 5.3 is a common fixed point 1/2 but f, 1(1/2)
={0,1/2)}.

Some traditional continuum theory is used in the proof of Theorem
5.4, the notion of clumps that Howard Cook introduced in 1974 in 4],
Stating all of the definitions to give full details on clumps and their use
in the proof is beyond the scope of this survey. The interested reader is

referred to the Cook's paper for more details about clumps along with (14]
for the way they are used in obtaining treelikeness in Theorem 5.4.

One quite useful characterization of treelikeness comes from the
theory of shape where treelikeness is characterized by the properties of
trivial shape and having dimension one. Charatonik and Roe proved a
vital theorem to demonstrating treelikenss of inverse limits on [0, 1] when

they proved the following theorem (7, which reduces the treelikeness
problem for inverse limits on [0, 1] with interval-valued functions to a
dimension problem.

Theorem 5.5. Suppose [ [0,1] > C([0,1]) is upper semi-continuous for
each positive integer i. Then, 1 has trivial shape.

Nall observed that a companion theorem to the Charatonik-Roe
[
statement of Nall's theorem along with its proof).

Theorem 5.6 (Nall). Supposef: [0,1] > C([0,1]) is upper semi-continnons
for each positive integer i. Then, ins=" has trivial shape.

There are several results in the literature having the flavor of Theorems
5.5 and 5.6. For example it is known that if f: [0,1] .~ [0,1] is a surjective

theorem holds (see [?), where one can find a different but equivalent

upper semi-continuous function, then lm7 is connected if, and only if;
im - is connected ([13, Theorem 2.3, p. 16]). Thus, we pose the following
question.

Question 5.7. Suppose f: [0,1] , [0,1] is a surjective upper semi-
continuous function such that lm 7 is treelike. Is im s treelike?

A major obstacle to controlling dimension in inverse limits with set-
valued functions is found in graphs that contain horizontal intervals (flat
spots). This has been known for virtually the entire life of the study of
these inverse limits. One of the earliest examples that was considered was
the function f: [0,1] .~ [0,1] such that f (t) =0 for t > 0 and £ (0) = [0,1],
where lm 7 is infinite dimensional. For interval-valued functions, roughly
speaking, we get treelikeness provided flat spot values do not iterate to a
point with a nondegenerate value. The simplest theorem we know along
these lines is the following.

Theorem 5.8. If f: [0,1] » C([0,1]) is upper semi-continuons and G(f)

contains no horizontal interval, then imf is treelike.
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Recently, Mark Marsh (7] has looked further into treelikenss of inverse
limits on [0,1] with interval-valued functions and subsequently he has

established a characterization in 2%,

6. Inverse limits with parameterized families

A topic somewhat less traditional in continuum theory than the
properties we have examined thus far is the study of inverse limits with
members of parameterized families of functions. However, the topic has
now been under scrutiny for close to twenty-five years or more. Closer
ties between continuum theory and the theory of dynamical systems are
chiefly responsible for the increased interest in parameterized families.

In 1967 Smale published an article, (2] 'in the Bulletin of the American
Mathematical Society in which he described his famous horseshoe.
Continuum theorists were struck by the similarity to a construction of the
familiar Brouwer-Janiszewski-Knaster continuum (B-J-K continuum),
(23, Example 1, pp. 204-205] (n.b., footnote (3) on page 204). In the
1980s questions from the theory of dynamical systems began to appear
in continuum theory. The author's first recollection of such a question
was by Marcy Barge regarding whether the Henén attractor at certain
parameter values is homeomorphic to the B-J-K continuum. In 1996
Barge and the author published a paper 2] containing an investigation
of inverse limits on [0, 1] using single bonding maps chosen from the
parameterized logistic family of mappings. Over the years many research
articles have been devoted to the topology of inverse limits with bonding
maps from the parameterized tent family of maps, f: [0,1] > [0,1] given by
£(t) = min{2kt, 2(1 - t)}. Although the maps from the tent family have
been shown to produce different inverse limits for differing parameter
values, current research is still involved in deciding whether this remains
true of the core maps in the tent family. For inverse limits with set-
valued functions, in ') the author has studied the effects of changing
the parameter in a parameterized family of set-valued functions inspired

by the family of tent maps. The members of the family studied in 17!
all produce treelike continua so the article concentrated on determining
when the inverse limits are chainable.

Letabeanumber, 0 <a < 1andletf, be the upper semi-continuous set-
valued function whose graph consists of three straight line intervals, one
from (0, 0) to (1/2,1), one from (1/2,1) to (1/2, a), and one from (1/2,
a) to (1,1). We have already seen in the section on treelikeness, Section
5, that each fa produces an inverse limit that is treelike. Theorem 4.2
characterizes chainability in terms of the parameter. Our next theorem
addresses the nature of the continua in this family that are chainable (see
(17, Example 7.1]).

Theorem 6.1. Suppose a is a number, 0 < a < 1/2 and 1;() # 1/2 for each
positive integer n. Then, \im fuis the closure of a topological ray with remainder
imaa. where g, = falla.1]
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There are uncountably many values for a, 0 < a < 1/2 such that lim f. is
chainable ([17, Remark 7.1, p.65]). We pose the following question from
that same article ([17, Question 7.1, p. 65]).

Question 6.2. If 0 < a < b < 1/2, are lmf. and lmf topologically
different?

It is known for the parameterized tent family of mappings that two
maps with different parameters greater than 1/2 produce topologically
different continua. Even though maps with parameter values above 1/2
in that family produce an inverse limit that is a topological ray with
remainder the core of the inverse limit, the question of whether the
cores are all topologically different remains unsettled. This fact leads us
to look at cores for the family of Theorem 6.1. Changing f,|[a, 1] into an
upper semi-continuous function on [0, 1] leads us to the following two-
parameter family of maps and a companion to Question 6.2.

Let b, ¢ be numbers, 0 < b < 1 and 0 < ¢ < 1. Define g, to be the
upper semi-continuous set-valued function whose graph consists of three
straight line intervals, one from (0, b) to (c, 1), one from (c, 1) to (c, 0),
and one from (c, 0) to (1, 1). Theorem 5.8 yields that each member of this
two-parameter family produces a treelike continuum in its inverse limit.
We pose the following question, see [17, Question 8.1].

Question 6.3. Suppose c is a number, 0 < ¢ < 1. If a, b are numbers, 0 <
a < b < 1, are msa. and lma.. topologically different?

It is known that if 4.(0) = for some positive integer n, then lma. is a
decomposable continuum that is not chainable even though it is treelike

(see [17, Example 9.1]).
7. Additional topics

After reviewing a draft of this article, Mark Marsh suggested that
the author mention something about two other traditional topics
in continuum theory as they relate to inverse limits with set-valued
functions, plane embeddings and the fixed point property. Not much is
known about either of these topics.

One of the few published results on plane embeddings is found in a
discussion of a surprisingly complicated inverse limit on [0,1] where the
only bonding function has a graph consisting of two straight line intervals,
one from (0,0) to (0,1) and one from (0, 1) to (1, 0), see [13, p. 33].
There it is shown that the inverse limit is nonplanar because it contains
uncountably many mutually exclusive triods.

There are published questions about the fixed point property in [13,
Problems 6.53, 6.54, and 6.55] but, insofar as the author knows, the
only results are found in Marsh's papers, ?* and 7. We refer the
interested reader to Marsh's papers for further information. Marsh poses
the following interesting question in [26, Question 19, p. 225].

Question 7.1 (Marsh). Do all treelike continua obtainable as inverse
limits on [0,1] with interval-valued functions have the fixed point

property?
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Other traditional topics in continuum theory get some mention in [13,
Chapter 6]. These include hyperspaces (Problems 6.47 and 6.48), span
(Problem 6.52), and the Property of Kelley (Problem 6.56). The author

knows of no progress on any of these topics.
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