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Abstract: This survey article aims to provide an introduction to the theory of local zeta
functions in the p-adic framework for beginners. We also give an extensive guide to
the current literature on local zeta functions and its connections with other fields in
mathematics and physics.
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Resumen: En este articulo panordmico brindamos una introduccién a la teorfa de las
funciones zeta locales p-ddicas para principiantes. También se presenta una revisiéon
extensiva a la literatura especializada sobre funciones zeta locales y sus conexiones con
otros campos de las matemdticas y la fisica.
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1. Introduction

In these notes we provide an introduction to the theory of local zeta
functions from scratch. We assume essentially a basic knowledge of
algebra, metric spaces and basic analysis, mainly measure theory. Let ¥
be a local field, for instance .C.,. the field of p-adic numbers, or &)
the field of formal Laurent series with coeflicients in a finite field with p
elements. Let h(z) € K[z,....,2,] be a non-constant polynomial and let 92
be a test function. The local zeta function attached to the pair (h, 9) is

defined as

Zo(s,h) = [ wl(z) |h(z)|; d"z, Re(s) >0,

K™\h-1(0)

where | - |« denotes the absolute value of %, s # C, and 4 ” x denotes
a normalized Haar measure of the topological group ( ¥ ", +). These
integrals give rise to holomorphic functions of s in the half-plane Re(s)
> 0. If ¥ has characteristic zero, then Z.(s.h) admits a meromorphic
continuation to the whole complex plane. The p-adic local zeta functions
(also called Igusa's local zeta functions) are connected with the number of
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solutions of polynomial congruences mod p™ and with exponential sums
mod p™ (see e.g., (14] 28] 311y,

In the Archimedean case, ¥ = & or C. the study of local zeta functions

was initiated by Gel'fand and Shilov 2!, The meromorphic continuation
of the local zeta functions was established, independently, by Atiyah 4

and Bernstein (¢ (see also [31, Theorem 5.5.1 and Corollary 5.5.1]).
The main motivation was that the meromorphic continuation of
Archimedean local zeta functions implies the existence of fundamental
solutions (i.e. Green functions) for differential operators with constant
cocfhicients. It is important to mention here, that in the p-adic
framework, the existence of fundamental solutions for pseudo differential
operators is also a consequence of the fact that the Igusa local zeta
functions admit a meromorphic continuation (see [33, Chapter 10] and
(62, Chapter 5]).

On the other hand, in the middle 60s, Weil initiated the study of

local zeta functions, in the Archimedean and non-Archimedean settings,

in connection with the Poisson-Siegel formula (5%, In the 70s, Igusa
developed a uniform theory for local zeta functions over local fields of

(28]

characteristic zero 28], 3% More recently, Denef and Loeser introduced

n 5 the topological zeta functions, and in [16] they introduce the motivic
zeta functions, which constitute a vast generalization of the p-adic local
zeta functions.

In the last thirty-five years there has been a strong interest on p-adic
models of quantum field theory, which is motivated by the fact that these
models are exactly solvable. There is a large list of p-adic type Feynman
and string amplitudes that are related with local zeta functions of Igusa-
type, and it is interesting to mention that it seems that the mathematical
community working on local zeta functions is not aware of this fact (see
eg, 12, 15 0] (10M13) (181(20] [224{2s] (27) (58] 139 [42) 1481(52] png| che
references therein).

The connections between Feynman amplitudes and local zeta

functions are very old and deep. Let us mention that the works of Speer [50]

Mon regularization of

and Bollini, Giambiagi and Gonzélez Dominguez [
Feynman amplitudes in quantum field theory are based on the analytic
continuation of distributions attached to complex powers of polynomial
functions in the sense of Gel'fand and Shilov 2V (see also P, ), 1% and

42] among others). This analogy turns out to be very important in the

rigorous construction of quantum scalar fields in the p-adic setting (see

%3] and the references therein).

The local zeta functions are also deeply connected with p-adic string
amplitudes. In 8] the authors proved that the p-adic Koba-Nielsen
type string amplitudes are bona fide integrals. They attached to these
amplitudes Igusa-type integrals depending on several complex parameters
and show that these integrals admit meromorphic continuations as
rational functions. Then they used these functions to regularize the Koba-

Nielsen amplitudes. In ), the authors discussed the limit p approaches
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to one of tree-level p-adic open string amplitudes and its connections
with the topological zeta functions. There is empirical evidence that p-
adic strings are related to the ordinary strings in the limit p » 1. Denef and
Loeser established that the limit p > 1 of a Igusa's local zeta function gives
rise to an object called topological zeta function. By using Denef-Loeser's

theory of topological zeta functions, it is showed in ) that limit p>1of
tree-level p-adic string amplitudes give rise to certain amplitudes, that we
have named Denef-Loeser string amplitudes.

Finally, we want to mention about the remarkable connection between
local zeta functions and algebraic statistics (see 1401, 581y, 1n B8 s presented
an interesting connection with machine learning,

This survey article is based on well-known references, mainly Igusa's

book PU. The work is organized as follows. In Section 2, we introduce
the field of p-adic numbers, and we devote Section 3 to the integration
theory over Q,. Section 4 is dedicated to the implicit function theorems
on the p-adic field. In Section 5, we introduce the simplest type of
local zeta function and show its connection with number of solutions

of polynomial congruences mod p™. In Section 6, we introduce the
stationary phase formula and use it to establish the rationality of local zeta
functions for several type of polynomials. Finally, in Section 7, we state
Hironaka's resolution of singularities theorem, and we use it to prove the

rationality of the simplest type of local zeta functions in Section 8.

For an introduction to p-adic analysis the reader may consult !, 2%,

(32] 1351 [46] [47) [53] 354 5¢), For an in-depth discussion of the classical

aspects of the local zeta functions, we recommend (31 [14] [21] (28] 130] [31]

(41], There are many excellent surveys about local zeta functions and their

generalizations. For an introduction to Igusa's zeta function, topological

zeta functions and motivic integration we refer the reader to (14] 16]

(7], 144 195) B3] A good introduction to local zeta functions for pre-

homogeneous vector spaces can be found in (301 311 3nd B4, Some general

references for differential equations over non-Archimedean fields are (1

[33], 561, [62], Finally, the reader interested in the relations between p-adic

analysis and mathematical physics may enjoy 2], [13], [19] 1201 [221-24] ‘1271

[33] [137)-39) [43] 148 [49] [52] [54] [56] [57) 5 [62],

2. p-adic Numbers- Essential Facts
2.1. Basic Facts

In this section we summarize the basic aspects of the field of p-adic

numbers, for an in-depth discussion the reader may consult 1, 2], 32

(35] [46] [47] [53] 4, q [56]

> > >

Definition 2.1. Let F be a field. An absolute value on Fis a real-valued
function, | - |, satisfying
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(i) || =0 == 10;

(i) |zy| = |=||yl;

(iii) |z +y| < |z| + |y| (triangle inequality), for any z,y € F.

Definition 2.2. An absolute value | - | is called non-Archimedean (or
ultrametric), if it satisfies

|z 4+ y| < max{|z|, |y|}.
Example 2.3. The trivial absolute value is defined as

1, ifz#£0,

I(trivial =
| |J'1 ial 0. f_f.i'"=[].

From now on we will work only with non trivial absolute values.
Definition 2.4. Given two absolute values | -

1, | -+ |2 defined on F, we

say that they are equivalent, if there exists a positive constant ¢ such that
1] S " ‘"
|z} = |z[5

foranyx # F.

Definition 2.5. Let p be a fixed prime number, and let x be a nonzero
rational number. Then, = = p*# for some a,b, k # Z, with p # ab. The p-adic
absolute value of x is defined as

if # 0,
2lr =10 if o =
, ifr=0.

Lemma 2.6. The function | - |, is a non-Archimedean absolute value on ©.

The proof is left to the reader. In fact, we kindly invite the reader to
prove all the results labeled as Lemmas in these notes.

Theorem 2.7 (Ostrowski, *>). Any non trivial absolute value on @ is
equivalent ro | - |, or to the standard absolute value | - |...

An absolute value | - | on F allow us to define a distance d(x, y) := |x —
y|, x, y # F. We now introduce a topology on F by giving a basis of open
sets consisting of the open balls B , (a) with center a and radius r > 0:

Bela)={z e F: |z —a| <r}.
A sequence of points {=,}.cx < F is called Cauchy if
| — x| — 0, m, 1 — 00.
A field F with a non trivial absolute value | - | is said to be complete if
any Cauchy sequence {z:}.cx has a limit point x* # F, i.e. if [x, - x*| > 0, n

> oo, This is equivalent to the fact that (F,d) , withd(x,y) = | x-y|,is
complete metric space.
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Remark 2.8. Let (X, ), (Y, D) be two metric spaces. A bijection p : X
> Y satisfying

D(p(x), p(z")) = d(x, 2).

is called an zsomerry.

The following fact is well-known (see e.g. B%).

Theorem 2.9. Let (M, d) be a metric space. There exists a complete metric
space (1,d, such that M is isometric to a dense subset of i1

The field of p-adic numbers @ , is defined as the completion of @ with
respect to the distance induced by | - |,. Any p-adic number x # 0 has a
unique representation of the form

oo

r=p’ Z.a',;;f, (1)

1=10

where y = y(x) € Z, x, € {0.1,....p = 1}, x, # 0. Theintegeryis called the
p-adic order of x, and it will be denoted as ord(x). By definition ord(0) =
o0,

Lemma 2.10. Let (F, | - |) be a valued field, where | - | is a non-
Archimedean absolute value. Assume that F is complete with respect to | - |.
Then, the series Tioo o< F converges if, and only if, limise |ax | = 0.

), =p*"> 0,7 oo, from Lemma 2.10 we conclude that
series (1) converges in | -« |,.

Example 2.11.

Since |x;p

—l=(p-+(-p+(p-1)p"+--

Indeed, set

:IH‘: = [P_ 1] 4 [I)_ ]_:uu—-”}— 1”)'?

Jn:-i-] -1
=(p- 1];—3;—1 =p"t - 1.

Then lim,,e 2™ = limy, e p“+1 -1=0-1=-1, since= |pn+1|p = p_"_l.
The unit ball

Jr: eril}

Q,:zx= Z z;p',ip = 0},

=1

im
i)

Z,={z

{2

M

is a ring, more precisely, it is a domain of principal ideals. Any ideal of

Zp has the form

M = T e — R | ~ Tl
P oLy = {,I Cdp . T = ZJ iP } m e 1.

r'Er.lr



Edwin Ledn-Cardenal, et al. An Introduction to the Theory of Local Zeta Functions from Scratch

Indeed, let 7 ¢ z, be an ideal. Set mo = min,; ord(z) € N, , and let x # I such
that ord(x0) = my. Then I = »Z,.

From a geometric point of view, the ideals of the form p"z,. m < Z
constitute a fundamental system of neighborhoods around the origin in
0, The residue freld of @, is 2,/vZ, =F, ", (the finite field with p elements).

The group ofunits of z, is

:J; — {_!- e :}J : |J“|p = 1}».

Lemma 2.12.x =xo + xjp + .. # Z, zsaumtlfandonlyzfx 0 = 0.
Moreover if x # 0, \{0}, then = =p™uv. mez uez;.

2.2. Topology of Q p

As we already mentioned, ¢, with d(x;y) = |[x > y|, is a complete metric
space. Define

Brla)={reQp:|lz—alp <p"}, 1

M
§

as the ball with center a and radius p', and

Sc(a)={xeQ,:|lr—al,=p"},

M

as the sphere with center a and radius p'.

The topology of @, is quite different from the usual topology of &. First
of all, since ||, : @, — {p™.m < Z} u {0}, the radii are always integer powers of
p; for the sake of brevity we just use the power in the notation Br(a) and
St(a). On the other hand, since the powers of p and zero form a discrete
setin R, in the definition of B, (a) and S, (a) we can always use '<". Indeed,

[reQpilr—al,<p}={reQ,:|z—a|, <p '} = B._1la) C Be(a).
Remark 2.13.

Br(a) =a+p'Z,
Se(a)=a+p"L;.

We declare B(a), r # Z. a # 0, , are open subsets; in addition, these sets
form a basis for the topology of @, .

Proposition 2.14. S, (a), B, (a) are open and closed sets in the topology of

Proof- We first show that S,(a) is open. Note that % =i i+,
then

Sp(a) = U a+pti+pt ]EI, = U B.y(a+pTi)
= ]

is an open set.
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In order to show that S, (a) is closed, we take a sequence {.}..x of points

of S, (a) converging to # < 0,. We must show that # < 5.(a). Note that
2n =a+pu. un = 27 Since {x,} is a Cauchy sequence, we have
|Trn — Tmlp = P |ty — Um|p — 0, n., T — 00,

thus {v.}.ex is also Cauchy, and since Qp is complete, u, > . Then
rn = a + pliio, $0 in order to conclude our proof we must verify that @ < z;.
Because uy, is arbitrarily close to i, their p-adic expansions must agree up
to a big power of p, hence < z;.

A similar argument shows that B , (2) is closed.

Proposition 2.15. b # B , (a) then B , (b) =B , (a), i.e., any point of
the ball B , (a) is its center.

Proof- Letx # B, (b); then,

|z —alp=|z—b+b—al, <max{|z bl [b—al} <p",

ie, Bi(b) # B , (a). Since a # B,(b) (i.c. |b-a|, =|a-b|, < p*), we can
repeat the previous argument to show that B, (2) # B, (b). 0

Lemma 2.16. The following assertions hold:

(i) any two balls in o, are either disjoint or one is contained in another;

(ii) the boundary of any ball is the empty set.

Theorem 2.17 ([1, Sec. 1.8]). A set K # ©, is compact if, and only if; it is
closed and bounded in @, .

2.3. The n-dimensional p-adic space

We extend the p-adic norm to ©; by taking

|'r”f’ = 1“)”,?{], |~]'z|p~ forx = (xy,...,: r,) € 0
it St

Wedefine ord(z) = min,<.c.{ord(z.)}: then, ||x]|, = p*™(¥). The metric space
(@11 1}) is a separable complete ultrametric space (here, separable means
that ©; contains a countable dense subset, which is 0" ).

Forr# z. denote by B(@) = {2 € Q¢ © lle —all, < v} the ball of radiusp "

with center at a = (ap,...a,) # @ and take Br(0) := Br. Note that
B(a) = Be(a1) x - x Br(an), Where Be(w) = {z: € Q@ : |z —alp < p’} is the
one-dimensional ball of radius p" with center at @ Q.. The ball 5;
equals the product of n copies of Bo = 7, . We also denote by
Sia)={zeQ « |lw—al, =) the sphere ofradius p* with center ata = (ay, . . .,
a,) # 07 , and take 57(0) := 57. We notice that si =z; (the group of units of
zZ, ), but (z) < sp.forn 2

As a topological space (2;.1-1,) is totally disconnected, i.c., the only
connected subsets of @; are the empty set and the points. Two balls in
0; are either disjoint or one is contained in the other. As in the one
dimensional case, a subset of ©; is compact if, and only if, it is closed
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and bounded in ©; . Since the balls and spheres are both open and closed

subsets in Q’, one has that (@;.1/-1,) is a locally compact topological space.
3. Integrationon @,

For this section we assume a basic knowledge of measure theory (see e.g.
26)).

Theorem 3.1 ([26, Thm B. Sec. 58]). Let (G, -) be a locally
compact topological group. There exists a Borel measure dx, unique up to
multiplication by a positive constant, such that |, i > o for every non empty
Borel open set U, and. |. . iz = |, =, for every Borel set E.

The measure dx is called a Haar measure of G. Since (@, , +) is a locally
compact topological group, by Theorem 3.1 there exists a measure dx,
which is invariant under translations, i.e., d(x + 2) = dx. If we normalize
this measure by the condition

[n?_:- = 1.

&p

then dx is unique.
For the n-dimensional case we use that ( ¢; , +) is a locally compact

topological group. We denote by 4 ” x the product measure dxi ... dx ,,
such that

d"r = 1.

A Tl
P

This measure also satisfies thatd ” (x + 2) =d ” x, for a # ©; The open

measure d ” x assigns to each open compact subset U a nonnegative real
number J, ¢z, which satisfies

-
Ay = [ &z 2)
.[x Us, g.u

ey

for all compact open subsets U 4 in ©;, which are pairwise disjoint, and
verify vz, U is still compact. In addition,

[ dty = / arx,
o a7 o [T

3.1. Integration of locally constant functions

A function ¢: @} = C is said to be locally constant if for every x # ©; there
exists an open compact subset U, containing x, and such that /(x) = f'(x)
forall u # U.
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Lemma 3.2. Every locally constant function is continuous.
Remark 3.3. Set 7=0,/Z,; then I is countable. We fix a set of
representatives for the elements of 7 of the form

T ™4z gp

If V7' is an open subset of @, , then for any x # 7 there exists a ball
contained in ¥ of the form

i T :|

prg+ 4y

for somej# 1" and m # Z. containing x. Consequently, ©; is a second-
countable space.

Any locally constant function ¢:@; ~C can be expressed as a linear
combination of characteristic functions of the form

+0oC

wlx)= Zt'j\.'lr',\ (x), (3)

n=1

where ex e C
1, if »el,
1y, () =
0, if = i U,
and vx ¢ ¢; is an open compact for every 4. In the proof of this fact one

may use Remark 3.3.
Let ¢:0; — ¢ be a locally constant function as in (3). Assume that
a=u, v, with U; open compact. Then we define

/;{.r')d".r = [ff”_r+ R /rf"_r_ (4)
' 0, Ui

A

We recall that, given a function ¢ : @ - € the support of 9 is the set

in

Supp(¢) = {J'nl—:'\,_!.l s p(r) £ 0}

A locally constant function with compact support is called a p-adic test
function or a Brubat-Schwartz function. These functions form a C-vector
space denoted as D. From (2) and (4) one has that the mapping

-

D — C

o — Joupdiz, ©)
\Ell

is a well-defined linear functional.
3.2. Integration of continuous functions with compact support

We now extend the integration to a larger class of functions. Let U be
a open compact subset of 2} . We denote by C(U, © ) the space of all
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the complex-valued continuous functions supported on U, endowed with
the supremum norm. We denote by ¢u(@;.©) the space of all the complex-
valued continuous functions vanishing at infinity, endowed also with the
supremum norm. The function 9 vanishes at infinity, if given & > 0, there
exists a compact subset K such that j¢(z)| < = if 2 ¢ K.

It is known that D is dense in c0(@;.9) (see, e.g., [53, Prop. 1.3]). We
identify C(U, ) with a subspace of ¢(@;.¢), therefore D is dense in C(U,
C).

We fix an open compact subset U and consider the functional (5), since

‘/- ¢ d"r| < sup |p(z2)| /- d*z,
JQn el JU

This means that if £ # C(U, € ) and {fu}men is any sequence in D
approaching f in the supremum norm, then

Ny

fd'z= lilyl_/ fm d™ 2.

3.3. Improper Integrals

Our next task is the integration of functions that do not have compact
support. A f:Q, - Cis said to be locally integrable, s = L;,.. if

/ flzx)dx
i{

exists for every compact K.

Example 3.4. The function |x|, is locally integrable but not integrable.

Definition 3.5 (Improper Integral). A function <z, is said to be
integrable in ©; if

i
lim /. f(z)d"x = lim Z [ f(z)diz
B (0} [—++oc =00 55(0)

[—+o0
exists. If the limit exists, it is denoted as /i:/@#= and we say that the

improper integral exists.
Note that

o

/ flz)d"z = Z / f(z)d"z.
JOn - Sy ()
ip J==nC b !

3.4. The change of variables formula in dimension one

Let us start with the formula
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d(azx) = |a|, dz, a € Qy, (6)
which means the following:
/ch- = |al, ftf;i'.
alf ur

for every Borel set U c 0,. for instance an open compact subset. Consider

withe = ;. 7.isatopological and algebraic isomorphism. Then v ~ |, dx
is a Haar measure for ( 0., +), and by the uniqueness of such measure,
there exists a positive constant C(a) such that /,.dx = ¢(),i=. To compute

C(a) we can pick any open compact set, for instance U =Z, and then we
must show

/ dr = Ca) = |u|P.

Let us consider first the case « <7, ic.a =18 v <z Fix a system of
representatives {b} of Z,/#'Z, in Z,: then,

_ Iy
Z, = |_| b+p'Z,,

belp /P Ly

And
1= /.fi'j'z Z / dr = Z [ dr
2, beZy/p'Zp paniz,, beZy/P'Zp iz,
= 4 (Z,/p'Z,) f dz,
p'Zp
ie.,
I _ _ . .
p- =lal, = f dr = frf:.r.

IrF

P.:‘J-' (!;{.J_.

The case ¢ 7, is treated in a similar way.
Now, if we take 7:U = . where U is a Borel set, then

/f (r)dr =|a|, / flay+Db) dy, for any a € Q7. be Q.

L} a~-1U7+b
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The formula follows by changing variables as x = ay + b. Then we get
dx =d (ay + b) = d(ay) = | a|, dy, because the Haar measure is invariant
under translations and formula (6).

Example 3.6. Take U = 2, \ {0}. We show that

/:h' = /fh' =1.
ir 7,

Notice that U is not compact, since the sequence (9"},..x U converges to 0
# U. Now, by using

=

Z,~ {0} = |_| {.‘!' €Ly : 2|, = ;_;-—J;}.

we have

o0

=
[ dr = Z / dr =
=0 o
P

Zp~ (0}

p /‘r{f;, fx=p'y)
0 ¥
A

1 1 1—p!
B (l—p") [dy_ (l—p“) {_./dr -__[dy} T—p1 b
Pép

. p
A4

i

This calculation shows that 7, \ {0} has Haar measure 1 and that {0} has
Haar measure 0.
Example 3.7. Forany r # 7.,

[ dr = [ dr =p" /_ﬂ'y =p".

h’: (0) p—rip Ly
Example 3.8. Foranyr# 1z,

[ dr = f dr — / de=p —p '=p (1-p7").

.k'_.:-:m B.(0) B, ’ 1 (D)

Example 3.9. Set

Z(s) = /|J|; dz, s € C with Re(s) > —1.
Z,

We prove that Z(s) has a meromorphic continuation to the whole complex

plane as a rational function of p = .
Indeed,

o =0, . g "
Zp~.{0} z|p=p~7 : |zlp=p~7

Z(s) = / z|) dr = Z / ||, dx= Z p* [ dx
J : j=0

=(1- p’l}z p 7Y (here we need the hypothesis Re(s) > —1)
J*f]

_(1-pY)

=1 e

for Re(s) > —1.
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We now note that the right hand-side is defined for any complex number s
# -1, therefore, it gives a meromorphic continuation of Z(s) to the half-plane
Re(s) < -1. Thus we have shown that Z(s) has a meromorphic continuation
to the whole C with a simple pole at Re(s) = -1.

Example 3.10. Lez 1 : @, — ¢ be a radial function, i.e., f{x) = f{|x|,). If

42‘\/uw~ <400, [hé’n

Q% j==oo j=os

ff(|.r|P).-F.a' = Zl [ f(|zl,) dz=(1-p7") i f) .
aly=p?

Example 3.11. By using s - one may show that

Inp
T

.f'ln{:rhj] dr = e

Example 3.12. We compute

Z(s, 2 —-1)= [|,r"“ - ]|}J dz, for Re(s)>-1,p#2.
Z,

Let us take (0.1.....p- 1} ¢ Z ¢ 7, as a system of representatives of ¥, = Z,/pZy.

Then,

p—1

Zp = | |(G+PZp),

g=u

and

p=1
Z(s,2a®—1)=3 /;{_a-—l}[.a-+1;|;<h-

=0_.,"~
T=0 j+ply

p=1
=p ]Z [HJ —1+py) G+ 1+pyll,dy. (z=j+py)

j=0
=0z

Let us consider first the integrals in which i=1+m<Z;. i.e., the reduction
mod p of j # 1 is a nonzero element of ¥,: in this case,

/IU —1+py)(j+1+py)l dy=1,

-

_'aj-.
and since p # 2, there are exactly p - 2 of those j's; then,

Z(s,2* = 1)=(p-2)p ' +p! /Ipy (24 py)l;dy+p! [l(—?+rr!}]13y|;r11;
7y Z,

7

1—pt

=(p-2)p +2p7! ‘[;;|;(I_¢;=tg)—2);r tyapmtiee

Z,

1—p-i=s’

Lemma 3.13. Take q (x) = FJ (x > ag)" # Z, [x], a¢ # Z,, ¢j # N\
{0}. Assume that «o-fie-or <zivem e Assume that o; 2 a; mod p. Then by
using the methods presented in examples 3.9 and 3.12, one can compute the

integral
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Z(s.q(x)) = /|q “HP dr.

3.5. Change of variables (general case)

A function i:U - ¢, is said to be analytic on an open subset U # @, , if there
exists a convergent power series ¥, forsc . with 7 open, such that
h(z) =¥, a0 for » « 7. In this case, ¥ (z) = T, ia ' is a convergent power series.
A function fis said to be bi-analytic if fand ' are analytic.

LetK ¢, K ; # 0, be open compact subsets. Let o K ; > K ¢ be abi-
analytic function such that ¢ ((y) # 0, y # K ; . Then, if f is a continuous
function over Ko,

[fi'-i'} dr = /f{ﬂ[y)‘llﬂ'[ﬁ'llp dy, (x=a(y))
Ko Ky

4. Implicit Function Theorems on Q,

Let us denote by @, [[x1,..., Xn]], the 7ing of formal power series with
coefhicients in @, . An element of this ring has the form

E Gr' = Z Ciy,..iinXy' o I,

(13 ,.c0pbp JENN

A formal series e+ is said to be convergent if there exists r # Z such

that Sea converges for @ = (ar.....a.) < @ satisfying ||a||, = max; |2 ; |, <p
" . The convergent series form a subring of ©, [[xy,....X,]], which will be
denoted as Q, ((z1....,2.)).

If for Te.x' there exists T e & ((ay.....2.)) such that i), < for all i & M». we

say that s« is a dominant series for S c.r' and write

0
E et << E e, x.

Proposition 4.1. A formal power series is convergent if, and only if; it has
a dominant series.

Proof. Set li| =iy + ... + i, for (ir.....i,) € N". Assume that ses << 5”». then
. . {1}
lim ||, < lim e ' =0,
|i]| = I |E]—r o

and thus Se.e" is convergent by Lemma 2.10.
If e € @y ({21, 2)). then there exists r # Z such that Yee* converges
for any ||a|| , < p". Choose ry # 7 such that 0 < p™ < p”. Then for every a
Y3l p p =P Iy

# o satisfying ||a|| p < pr0 , we have

J'l 0

|rri”‘r|F .-— |("|PP *-- |(.E|P.Fjlrlr'
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and thus tm. - «l,»" 0. Hence, 11,5 < 1. for some positive constant M.
Finally,

Zr'm" << Z (1”1:{) x'.

We say that f(x) = Seot €0, [len...2) is a special restricted power series,
abbreviated SRP, if f (0) = 0, i.e., co = 0, and ¢; = 0 mod p =1 for any
i€ N®, i #0.

Lemma4.2. Assume that f(x) is a SRP; then the following assertions hold:
(i) f(x) # 2, 1[w1.-..2l); () £ (@) s convergent at every a in Z: (i) f(a) £ Z,.

Theorem 4.3 (First Version of the Implicit Function
Theorem). (i) Take F (xy) = (Fi (%)), Fn (x, 3)), with
Foy) € Qlloll == Qpl[ens o 2 yis ooyl Stich that F ; (0, 0) = 0, and

det [d—h {[}.[]J] o F#E0.
UHJ 1<i<m
122m

Then there exists a unique [ (x) = (f i (X [ w (x)), with
filz) € Qlles,-zll f5 (0) = 0, satisfying F (x, f(x)) = 0, i.e., F ; (%, f(x))
= 0for all i.

(ii) If each Fi (x, y) is a convergent power series, then every fi (x) is a
convergent power series. Furthermore, if a is near 0 in ; then f (a) is near
0in Oy and F (a, f (a)) = 0; and if (a, b) is near (0, 0) in 0 < @y and F (a,
b) =0, thenb=f(a).

For a proof of this result the reader may consult [31, Thm. 2.1.1].

Corollary 4.4 ([31, Cor. 2.1.1]). (0 If 5. (#) € Qy [lzs, .2l 0: (0) =0 for ] <4 <
n, and

il
det [,i{[},‘l] = 0,
dr;

then there exists a unique [ (x) = (f i (X)eef n (x)) with f; (x) # 0, [[x
i seesX n [ JE(0) = 0, for all i, such that g (f(x)) = .

(i) If 0(x) e Qllr....x), then fi(z)e Qllri,....x) for all i
Furthermore, if b is near 0 in @ and a = g(b), then a is also near 0 in O; and
b = f(a). Therefore, y = [ (x) gives rise to a bi-continuous map from a small
neighborhood of 0 in ©; to another neighborhood of 0in < .

Remark 4.5. (i) Take 01 < 0. U2 < 07, open subsets containing the origin.
Assume thateach F; (x,9) : U ; x U > » ©; is a convergent power series.
A set of the form

Vi={{z,y)eUi xUs: Fi(z,y)=0,21=1,..., m}

is called an analytic set. In the case in which all the Fi (x, y) are
polynomials and =@ =0y, v is called an algebraic set. If all the
F, (x,y) € Q, ((x,1)) satisfy the hypotheses of the implicit function theorem,
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V has a parametrization, possible after shrinking U, U,, i.e. there exist
open subsets containing the origin 7, « v, 7. 1., such that

V= {[_r. y) s f’l ® f'-_: E(r,y)=0,i=1,..., m}

= {[r.j,r] < Fl * E‘-_: Y= f{.r‘}}.
(i) If we now use as coordinates
Tlseees T Zp = — f’_ [I:' ---- Zm = Ym — fmt:ﬂl]-

we have
V= {{.r,:]etﬁl xf‘-'-z::l = .= 2, :[}}.

We say that such V'is a closed analytic submanifold of v.<v.c <oy of
codimension m. The word 'closed' means that V is closed in the p-adic
topology.

In the next version of the implicit function theorem we can control the
radii of the balls involved in the theorem.

Theorem 4.6 (Second Version of the Implicit Function Theorem). (%)
IfF i (x,y) # Ly (2,9 =Ly (21, T Y1y Y], Fi(0,0) = Ufor all i and

aF
det [ - {{].[]}] Z0 mod p,
:Jyj 1<i<m

12j2m

then there exists a unique solution f (x) = (f 1 (x)seeor [ (x)), withf; (x)
# 2wzl £00) =0, of F (x,£ (x)) = 0, ie. Fi (x, f(x)) =0 for all i.

(ii) Ifevery F ; (%, 9) isan SRPin X | sy X 3 5) 1 5ees) m » then everyf ;
(x)isan SRPinx | ,...x , . Furthermore, ifa # 2;. then f (a) # 7, and F (a,
f(a) =0, and if (a, b) # 7 <z satisfies F(a, b) = 0, then b = f (a).

For a proof of this result the reader may consult [31, Thm. 2.2.1].

Corollary 4.7 ([31, Cor. 2.2.1]). (i) If 9:(x) € Z, [[z1.. ... 2.]), 6:(0) = 0 for all
i, and further

dg;

det {i [[]_ﬂ)] Z0 mod p,
du; 1<i<n '

1<35n

then every [ ; (x) in the unique solution of g ; (f 1 (%)er f n (x)) =x
satisfying f ; (0) = 0is also in 2, [z, z.]).

(ii) If every gi(x) is a SRP in x1, . . ., xn, then every fj(x) is also a SRP
in the same variables, and, y = f(x) gives rise to a bi-continuous map from
Zy to itself.

Remark 4.8. Assume that every F ; (x,y) is a SRP in x,y. Take

V= {{.J'_y} = r:;J b r:;;‘ cFi(xy)=0i=1,..., m}_

Under the hypotheses of the second version of the implicit function

theorem, we have
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V={(z,y) €Zy x L7 :y= f(z), 2 € L} }.
By using the coordinate system

Tiye. oy Tn. 2t =41 — fi(z), ..., Zm = Ym — fm(T),
V takes the form

V={(z,2)€Zp xZ}:21=--=2m =0},

dup X by

and we will say 7 is a closed analytic submanifold of z; xzy of
codimension 7.

4.1. General change of variables formula

Theorem 4.9 ([31, Prop. 7.4.1)). Let K o, K 1 # @ be open compact subsets,
andleto=(cl,...,04): Ki> K be a bi-analytic map such that

det [ﬂ{:}} =0, zeK,.
ay;

If fis a continuous function on K ¢ , then

[1@) = 1)
Ko Ky

let [—U “( J] | i (r=0a(y))
C —(y)|| d"y, r=o(y)).
()_UJ v ‘p Y Y

5. The Igusa local zeta functions

Let p be a fixed prime number. Set

Ay =Z/pmZ, m € N~ {0},

the ring of integers modulo p ™ . Recall that any integer can be written
in a unique form as

ng]+ﬂlp+...—ru.pk. a; € {0,1,...,p—1}.

Thus we can identify, as sets, A, with

{ap+arp+ ... +am1p™ L a;€{0,1,..., p—1}}.
Take £ (x) # Z [X1 X \ Z , and define

{ #l{z e (Zfp™L)" : f(x) =0 modp™} if m>1,
A\'m =

1 if m=0.
A basic problem is to study the behavior of the sequence \V ,,, as m - co.

More generally, we can take f (x) # Z , [X1, »Xn] \ Z  (recall that 7, #
7 pand that 2/p"2 = 2,/p"7, ), and
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{ #{zr e (Zp/p™Zp)" : f(x) =0 mod p™} if m=>1,
Np =

1 if m=0,

where x = y mod p™ means x>y # p™ 7 ;.. To study the sequence (V..},...
we introduce the following Poincaré series:
P(t) = i N (p7™t)™, te Cwith |t < 1. (7)
m=0
We expect that the analytic properties of P(t) provide information

about the asymptotic behavior of the sequence {¥.},... . A key question is

the following:

Is P({t) a rational function of 7

In what follows we will use the convention: given a > 0 and s # C, we
Set a® = eflne,

Definition 5.1. Let f(z) € Q,[z1,...,2.] ~ @, and let 92 be alocaﬂy constant
function with compact support, i.c., an element of (¢;). The local zeta
function (also called Igusa's local zeta function) attached to (f; @) is

Zo(s,f) = [ ¢(@)f @) d"z, s € C,Re(s) >0,
:2;:---:F L{o)

where d"x is the Haar measure of ( @;, +) normalized such that & ==
Remark 5.2. Z 4 (s, f) is an holomorphic function on the half-plane
Re(s) > 0. For the proof of this fact the reader may consult [31, Lemma

5.3.1].
Given f(z) € Z, [21.....7.] ~ Z,. We set
Z(s, f):=Z(s) = [ |ffij|;? d"z, s C Re(s) >0
FAL J o)

Proposition 5.3. With the above notation,

1 —tZ(s) f

;S —
P(t) = —

=p~*., for Re(s) > 0,

where P(t) is the Poincaré series defined in (7).

Proof. We first note that
Z(s) = / ;]| d"x —Z p 7 / d™x.
AL f-1(0) 3=0 {;t:‘,j;:|jl|.r: =p~1}
On the other hand,

{zeZy:1f (@) =p7} ={zeZ}:0rd(f(2)) = j}

= {J' (= Ei;j cord(f(2)) '2_}'} ~ {_r c Z:Z;j cord(f(x) =25+ 1}_

Now, take =<2 satisfying ord (f (x9)) = j, then, by using Taylor

expansion,
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fzo+9p'2) = flzo) + I”Z% (x0) (z: — x0,:) + p™ (higher order terms),

j=1

we have ord (f (xo + p'z)) 2 j, for all z # ;. i.e. od (7 (ro + %)) = ;. This fact
implies:

(i) zo € (Ep/p'Z,)" satisfies f(20) =0 mod p7;
(ii) A; = {J' S :;: cord(f(x) = _,i} = H To —p"E;,’:

f(z0)=0 mod p?

(iii) [dnz = N,p-in.
Ay

Therefore,
Z(s) = Z p_j'"' (.\'jp_f” - Ny ;p_'j_“”)
=0
— z .\'.JP—_J'._-—J'H _ Z \_r . ]P—_,l'a-:—lj+|.:rr
j=0 =0

DN ()Y =ty Ny () (t=p)

j=0 i'=1

=Pt)-t"H{P(t)-1),

ie., P = =22 for Re(s) > 0.0

Theorem 5.4 (Igusa, [31, Thm. 8.2.1]). Let [ (x) be a non-
constant polynomial in Q,(x,....x.). There exist a finite number of pairs
(Ng,vg) € (N {0}) x (N~ {O}), E & T, such that

[T (1—p* "“"'-“'}IZ_; (s, f)

EeT

is a polynomial in p ~ with rational coefficients.

The proof of this theorem will be given in Section 8. From Theorem 5.4
and Proposition 5.3, we get:

Corollary 5.5. P(t) is a rational function of t.

The rationality of P(t) was conjectured in the sixties by Borevich and
Shafarevich. Igusa proved this result at middle of the seventies. The
rationality of Z (s, /) also allows us to find bounds for the N,,'s (see e.g.
(28] and B1)).

The proof of Theorem 5.4 given by Igusa depends on a deep result
in algebraic geometry known as Hironaka's resolution of singularities
theorem. Now we introduce the stationary phase formula, which is an
elementary method for computing p-adic integrals like Z , (5, f), Igusa

has conjectured in (2%) that this method will conduct to a new elementary
proof of the rationality of Z ; (s, f).
6. The Stationary Phase Formula

Let us identify F,, set-theoretically, with {0,1,...,,p - 1}. Let - denote the
reduction mod p map, i.c.,
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Lp = F,

To+pl...) —= xp.

This map can be extended to 7 — ¥;. The reduction mod p of a subset
E c z; will be denoted as F « F. 1 f(2) € Z, [w1.... 2] < 92, ... z). T denotes its
reduction mod p.

Proposition 6.1 (Stationary Phase Formula). Take ¥ < =; and denote by
S the subset consisting of all @ < T such that 1@ =Z@=0mod p, for 1 <i < n.
Denote by E, S the preimages of £, under reduction mod p map z; — ¥;.and
by N the number of zeros of 7 (x) in E. Then

p= (1—p1) (N — 45
/Ifn\ 2=y (#E-N)+ T O B [y e

Proof. By definition # = L.z «+»2: then,

[uwn rr=3 [ f@I dr=pY [|f a+po)l:

T€E ot (p, weL;

=7 f f[ﬂ+_m]| d'r+p" Z /|f{ﬂ+p:1‘]\; d*z
eE \Sg

ac?»'r

Z [f[ﬂ+p1]| d’l+/-|f[JH d"r.

TeE \Sip

Take a < £\5 such that 7@ #0.ic. f @+, = : in this case,

[" |f (a ':"f”’”; d*z =1,

Zn

and the contribution of these @sis p (#F - N).
Take now

@ E\ T such that f (@) =0, ;}Tf (@) £ 0 for some i, (8)

sayi= 1. Define

Then yi's are SRP's and w[z0] - £ 0= mod p; hence, the map x > y gives
rise to a measure-preserving map from Z; to itself (cf. Corollary 4.7).

Therefore,

(I i

/If(a—su p d'r= [lprn + fla)l, dyy=p~ f Y +—

v
- )...
[yil, dyr=p~ T

and the contribution of the points of the form (8) is
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P (1= p7") (N~ #5)
l—p1-s )

SCt fla+px):=pef(z) with f(z) € Lp 2, 20] ~ pLp[2y,..., 2] T}‘le Stationary phaSC
formula, abbreviated SPF, can be re-written as

LE (s qam . 2(P7°) n
I[.f{.a]hj d.i_l_p e /|f[.aj d"a
%

Lip~= u
_ LJ‘ +p" Z [U‘ (a _:._Jn‘]'}“J d*z

ue"-

= P> /|f 5| .

We can now apply SPF to each 17wl «= Igusa has conjectured that
by applying recursively SPF, it is possible to establish the rationality
of integrals of type J./wia= in the case in which the polynomial
f has coeflicients in a non-Archimedean complete field of arbitrary
characteristic.

The arithmetic of the Laurent formal series field

Lﬂ

L ((T)) = mef rap € By ko €
ke=kq

is completely analog to that of @, . In particular, given a polynomial
with coeflicients in F,((T)), we can attach to it a local zeta function,
which is defined like in the p-adic case. The rationality of such local
zeta functions is an open problem. The main difficulty here is the lack
of a theorem of resolution of singularities in positive characteristic. The
above-mentioned conjecture can be re-stated saying that the rationality
of local zeta functions for polynomials with coefficients in F, (7)) should
follow by applying recursively SPF.

Remark 6.2. Take f(x)eZ (s, .00~ pZ[r,....2). If the system of
equations
_. . af .
f@=—(@)=0 modp, 1 <i<n
Iy

has no solutions in 7. then § = #, and by SPF,

p H—-l[l_.” l:l'l‘.
== :

Zls, f) = " .n—.'.f_' N
(s, f)=p"( ) + 1=

Example 6.3. Let f(x)eZ,[ri,....x) L, [n.....x] be a homogeneous
polynomial of degree d, such that 7@ = £ @ =0 meap 1 <i<n, implz'es =10 We
now compute Z(s,f). We use SPF with £=2;.E=F;, § = pZ;.5 = {o}.
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T e ey L .
20y = =N+ )] ]mm &'
. e (l—p ) (N=1)
- N+ P (1_; l.J,- . t[lfw dy

prr(l-p) (N -1

=p " (p" = N)+ =i +p " Z(s, f);
therefore,
1 mpn A L P =-pT) (N -1)
Z{s,f}=m{j;r (p" = N)+ = .
6.1. Singular points of hypersurfaces
Take
T . . ! . .
f(z) € Ly [zy,..., Tn] \ PLp [Ty, ..., 2n
and define

(Qp) ={2€Qp:f(2)=0}.

VF( @, ) is the set of @, -rational points of the hypersurface defined by
f. This notion can be formulated on an arbitrary field K. Set

7(Fy) :={z eFp: f(2)=0}.
v7(%,) is the set of F-rational points of the hypersurface defined by 7. If
Vi(Zp) == Vi (Qp) N Zj,

then /%) = v7(,). A point a # Vf( 0, ) is said to be singular if 2« - o for
1 <i < n The set ofsmgular pomts of Vf (@, )is denoted as Sing s( 2, ).
We define sing; (Z,) = Sing; (0,) 7. In a similar form we define Singz (F,).

Note that Sing; @) # sing(7,).. In fact, it may occur that Sing, (z,) = 0 and that
sing; (%) #0. For instance, if ' (x,5) = px + x 2 >y 3 then Sing;(z,) = 0, but
Singz (Fp) = {(0,0)}.

Example 6.4. We compute Z (s, f) for f (x, y) = px +x* -y * by using SPF.

Note that E=72.E=F:, §=p7, x pZ,. 5 = {(0.0)},
o NeT2-u2 a3 —0l-
N=#{(u,v) eF,:u" —=v’ =0};

then, by applying SPF,

prir-p)(N-1)

Zis.f)=p 2 (pP*-N) + T=p + / |pz + 2% — y“|; drdy.
- )

o xplp

By changing variables in the last integral as x = pu, y = pv, we have
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L(p~™*)
—p 1

_ L)
- 1- P—I.—s

Z(s, f) +p “’/ |p*u + p*u® — p*v? |P dudv = ;
iz

+p i / |u+u® — pr3|; dudv.

o

We now apply SPF to the last integral. Take

g(u,v) =u+u?—p®, §lu,v) = u+u? Since the system oﬁ’quatz'ons
7
u+u = 0,1+ '2!: =0, uv € Fp

has no solutions, s = sing; (v,) = 0: by applying SPF we get
2 (1-p 1)}_

Lip~ ooe) o,
Z(s,f) = —2 ) po-as {.v (-2 + I—p i

l _p—]—s
Remark 6.5. Take f(z) € Z,[z1.....2.] ~ pZy[or.....za]. If Sing;(@,) = 0. but
singr (F,) #0; then,

Lp™™)
1 —p1-s’

Z (s, f) =

where L (p * ) is a polynomial in p* with rational coefficients (see [

[61)), The denominator of Z (s, f) is controlled by singy (2,). Nowadays the
numerator is not fully understood, but it depends strongly on sinsr (¥,). The
lack of 0, -singular point, i.e. Sing s (@, ) = #, makes the denominator of
Z (s,f) 'trivial: 1or 1 > p'™.

Example 6.6. We now compute

Z(s, 22+ 9% = [ |z + jj3|; dxdy,

A

z2
by using SPF. Note that £ =2, E=F;. 8 =z, % vz, 5 = ((0.0)}. and that
N=#{(uv)e Ff‘, cut 408 =0} =p,
because the set {(w.v) < F2:u* + v* = 0} can be parametrized as u = a 3 v=a?
, with a € ¥,. By applying SPF we have
Z(s, 2 + ") =p* (PP -p) + Pt H{-p) | / |22 + 97| dedy

l—p =

plpxply

1-p2= 2 g8

1 2, 3

=(1-p )m+ / [a* +y \r‘ dedy.
Ty oy

By changing variables in the last integral as x = pu, y = pv, dxdy = p ~
dudv,

2, .3 o 1-p 7, 2 -
2, 3y (1 -1 2-2s 2 B15 dnedn
Z(s, 2% +y)=(1-p )71_1}__|__ﬁ+p /|u + pt |p dudr
o 1=p72%s —9-_9s~
= (1-p7) T + 2 Zus).

1-p
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We now apply SPF to zus): E =22, E = F%; since glu.v) = 2+ p = 2, the
solution set of u 2 =2u=01is%=0y«5, then S = pZ,  Z,. In addition,
#{wo) e B =0} =5 Therefore,

Zisy=p 2 (p* -p) + f |u? + pv"‘}: dudv
pLpxLp

=(1-p7") +p_l_’[ |pu’ +v3|; dudv
Z;

= (1- p_l) +p 1T 2(s),
and

1—p—=~

Z(s,2* +4°) = (l_P_l)m

+ P—?—ZR (1 —P_I} + P—:S—Bszz(s}_
We now apply SPF to z.(s): £ =22, F =¥, 8 = 7, %%, S = F, x 0); then,

Za(s) =p~* (P* —p) + f pu? +0*| dudv
Zyxplp
=(1-p7") +p"'"’f|u2 + p21r3|; dudv
7
= (1—p™ ') +p~ ' " Zs(s),

and

1=—p 2

Z(s,22+y%) = (1=p7!) T Ap 2 (L p )3 (L= p ) p i 2y ).

Finally, we apply SPF to 7.(s): E =22, F =52, S = 1Z,% 2, 5= {0} x ¥,; then,

Z3(s) = p_2 (p2 - p) + f Iu2 + pz?,‘-3|; duduv
plp x plep

=(1-p7") +p_l_2“[|u2 + v3|: dudv

and
o —2- P -
Z(s, 2 +y') = (1- '1) T (Lo ) 4 p N (1-pY)
+p it (1— )+p"’ 5 Z(s, 2% + %),
i.e.,
2 (1 -r') P aae . _acae.  —a-is
Z(s,2? +9*) - _,—sg l—p—' — = tP +p +p
(1-r")

— —2 & —2—28 __ ,—5—Gs
=T TP
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6.2. Quasi-homogenous singularities

Take v = (wi..w) e (o))" and f(2) € Zyfes,..., 2] We say that f{x)
is a quasi-homaogeneous polynomial of degree d with respect to w if: (1)

Sy, wngz,) = Af(z), Ae Q1 (2) Sings (Qy) = {0} CQj. .

Set |w]| := wy + ... + w,, and

Z(s f) = f|f{1}; d"x.

T
Ly

Proposition 6.7. With the above notation and hypotheses,

i B L(p™™)
‘/‘-l:.‘i,f} - [1 _llrj -1 - _-.}l:l _IP' ds |“-'|}‘

where L (p”) is a polynomial in p * with rational coefficients.
Proof. Set

A= {[_r], iy In) € Eﬁ;j cord(z) zw; fori=1,.. ., n}

— Ry W 77
=piLp % ... x p""Lp,

A :=Z0 < A,

Then,
Z(s, f) =/|ff1]||; d"z + /-|fl{_!]|p d"z.
A As

By  changing  variables in the first integral as
2 =pUtu, i =1,...,n, d"e = p~'¥d"u, WE have

/U‘ (7}{' d'y = p ds :"'|Z{Ff.f}l.
A
And

- I &
Z(s, f) = 1_p——f—I/ f (@)l d"e.
Ac

We now note that Sings (@,)n 4° =0, but it may occur that sing (7,0 @ # 0,
this makes the computation of the integral on A° not simple. By using SPF
recursively and some ideas on Néron p-desingularization, one can show
that /, iye; #:= 22 For a detailed proof, including the most general case of

the semiquasi-homogeneous singularities, the reader may consult [60],
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7. p-adic Analytic Manifolds and Resolution of Singularities

This section is based on [31, Sec. 2.4]. Let U < 0; be a non-empty open set,
and let f: U > @, be a function. If at every point a = (aj,...,a,) of U there
exists an element /() € @, (& —a)) = Q, (1 —a1..... 2, —a,)) such that f (x) =
f,(x) for any point x near to a, we say that fis an analytic function on U. It
is not hard to show that all the partial derivatives of f are analytic on U.

Let U be as above and let h = (hj,..., hy,) : U 7 be a mapping. If each
h ; is an analytic function on U, we say that h is an analytic mapping on U.

Let X denote a Hausdorfl space and n a fixed non-negative integer. A
pair (U, ¢ v ), where U is a nonempty open subset of X and ¢ 7 : U >
$ . (U) is a bi-continuous map (i.c., a homeomorphism) from U to an
open set o (1) of 9;. is called & chart. Furthermore ¢ ¢ (x) = (1., Xn), for
a variable point x of U are called #he local coordinates of x. A set of charts
{(U, ¢ v )} is called an atlas if the union of all U is X and for every U, U’
such that U # U' = # the map

e © r_'?l:l' Ly |.£ M {'j — pre |.'[ M i;]

is analytic. Two atlases are considered equivalent if their union is also
an atlas. This is an equivalence relation and any equivalence class is called
an n-dimensional p-adic analytic structure on X. If {(U, ¢ ¢ )} is an atlas
in the equivalence class, we say that X is an n-dimensional p-adic analytic
manifold, and we write n = dim (X).

Suppose that X, Y are p-adic analytic manifolds respectively, defined
by {(U, ¢ v )}, {(V,¥v)}, and £: X > Y is a map. If for every U, V such that

U #f! (V) # # the map
thy o fo r_'.l;l oy (Un f_] [i.'}] — '::_}fi"”r'

is analytic, then we say that f is an analytic map. This notion does not
depend on the choice of atlases.

Suppose that X is a p-adic analytic manifold defined by {(U, ¢ 7 )} and
Y is a nonempty open subset of X. If forevery U'=Y # U # # we put ¢ ¢
=¢u | v, then{(U, ")} gives an atlas on Y, which makes Y a p-adic
analytic open submanifold of X, with dim(X) = dim(Y).

IfU, U are neighborhoods of an arbitrary point a of X, and f, g are
p-adic analytic functions respectively on U, U’ such that f |w = g |w for

some neighborhood /¥ of a contained in U # U, then we say that f, g are
equivalent at a. An equivalence class is

said to be a germ ofanalytic functions at a. The set of germs of analytic
functions at a form a local ring denoted by 0x.. or simply ©..

Suppose that Y is a nonempty closed subset of X, a p-adic analytic
manifold as before, and 0 < m < n such that an atlas {(U, ¢ ¢ )} defining
X can be chosen with the following property: If ¢ ¢ (x) = (xy,....Xs) and
U'=Y # U = #, there exist p-adic analytic functions Fi,..., F, on U such
that firstly U’ becomes the set of all x in U satisfying F (x) = ... = F;, (x)
=0, and secondly,
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aF; . . o
det [d_] ~ (a) £ 0 at every a in U".

Then by Corollary 4.4-(ii) the mapping x> (F; (x),..., Fin (X), X 150> Xn)
is a bi-analytic mapping from a neighborhood of a in U to its image in ;-
If we denote by V the intersection of such neighborhood of a an Y, and
put Yv (x) = (Xm+15- » Xn) for every x in V, then {(V, Yv)} gives an atlas
on Y. Therefore Y becomes a p-adic analytic manifold with dim (Y) =n -
m. We call Y a closed submanifold of X of codimension m.

Let p, denote the normalized Haar measure of ¢;. Take X and {(U, ¢
v )} as before. Set a a differential form of degree n on X; then « |y has an
expression of the form

a(z) = fulx) drzy A--- ANdx,,

in which fy is an analytic function on U. If 4 is an open and compact
subset of X contained in U, then we define its measure p o (A) as

Ha (A) = [ fo@)l, pn (Gu(@) =3 p~wn (v (f* (P°Z)NA)). (9
4 e€l

We note that the above series converges because £, (A) is a compact
subset. If (U', ¢ ¢ ) isanother chart and A # U’ then we will have the same
U, (A) relative to that chart. In fact, if ¢0(2) = (#},....2,) = /. then

90
fo(z) det [%] = fu(z), and p,(duw(z)) =

et dat (60 (2))
det | =1 pn (o).
da; P'J t

Actually, the previous equations just give account of the change of
variables rule as x > x, in the integral (9), that is

/:f:-f.rjlp n (G (2)) = [.fr'f{-f'] p Hn ($ur(2)
j.{ 1

(see [31, pg. 112 and Proposition 7.4.1]). Note that if X = < ¢} and

a=dry A Adrx,,

then y, is the normalized Haar measure of ¢;.

Theorem 7.1 (Hironaka). Take f'(X) a nonconstant polynomial in o,
(X15eeXn], and put X = o} Then there exist an n-dimensional p-adic analytic
manifold Y, a finite set T = {E} of closed submanifolds of Y of codimension
1 with a pair of positive integers (N g,V p ) assigned to each E, and a p-
adic analytic proper mapping b : Y > X satisfying the following conditions:
(i) b is the composition of a finite number of monoidal transformations each
one with a smooth center; (ii)

(foh)y ' ()= |JE

EeT

and b induces a p-adic bianalytic map
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Y~ h! (Sings (Qp)) = X ~ Sing; (Q,);

(iii) at every point b of Y, if Er,....Em are all the E in T containing b with
local equationsy | ...,y » around b and (N ; ,v ; )= (Ng,v g )for E
= Ei, then there exist local coordinates of Y around b of the form (y | ,....y
m3) mid s n ) such that

(foh)(y) = 5{;;)1_.[;;;\'.. h* ( /\ d.r,) =1(y) (Hy:wﬂ) /\ dy; (10)
i=1 1<i<n

i=1 1€i<n

on some neighborhood of b, in which ¢ (y), r, (y) are units of the local ring

Owof Y at b. In particular, pcrE has normal crossings.
8. Proof of Theorem 5.4

We want to end this notes by proving Igusa's Theorem about the
meromorphic continuation of Z ; (s, f) (see Theorem 5.4 in Section 5).
We follow the proof given by Igusa in [31, Thm. 8.2.1].

Let ../ denote the measure induced by the differential form
Acicndz on 0, which agrees with the Haar measure of ¢;- Then

Z,(s,f) = [ o (z) [f(z)],

Qp~f-10)

Ni<cicn n’,r“ ,

Pick a resolution of singularities 4 : ¥ > Xi for £ (0) as in Theorem
7.1; we use all the notation introduced there. Then Y\ 4 (£ (0))>X \
£ (0) is a p-adic bianalytic proper map, i.e., a proper analytic coordinate
change; then,

Zy(s.f) = [ e(h)If (h(w); h'(mi,i,.firu){yl'.

Y ~h-1(f-1(0))

At every point b of Y\ » ' (f ' (0)) we can choose a chart (U, (¢
v ) such that (10) holds. Since 5 is proper and the support of ¢, say 4,

is compact, we see that b ' (A4) := B is compact. Then we can cover
B by a finite disjoint union of open compact balls B , such that each
of these balls is contained in some U above. Since ¢ is locally constant,
after subdividing B , we may assume that s, ~<¢0).rwi, <¢o, o), -wo,. and

. Then,

further that ¢v (B.) = c+ 2. for some ¢ = (¢ 5., ¢ , )in @;.and ¢

M

Zo (s, /)= e h®) @I, M), - [] / lyal "+ dys,

1Sisn +p*Zp

with the understanding that N ; = O,v ; = I in the case E ; is not
crossing through b. Finally one has by [31, Lemma 8.2.1] that

1
—p

j.J_' Nistu)e (ﬁ}v—.’) if c e j}' E‘P
Nestoe—l g F
|yil, dy; =
Nis+ug—1

s A PEALE : .. 4 ET
cr+pZp Pt eil, if ¢ ép°L,.
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