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On the existence of a priori bounds for
positive solutions of elliptic problems, I

Sobre la existencia de cotas a priori para soluciones positivas de
problemas elipticos, I

Rosa Pardo *
Universidad Complutense de Madrid, Spain

Abstract: This paper gives a survey over the existence of uniform L°

a priori bounds for positive solutions of subcritical elliptic equations
(P)y —Ayu=f(u), inQ,  w=0 ond2, widening the known ranges of
subcritical nonlinearities for which positive solutions are a-priori bounded. Our

arguments rely on the moving planes method, a Pohozaev identity, /14 regularity for
q > N, and Morrey's Theorem. In this part I, when p = 2, we show that there exists -
priori bounds for classical, positive solutions of (P), with f (u) = u> "1/[In(e + u)]% with
2*=2N/(N-2),and « > 2/(N - 2). Appealing to the Kelvin transform, we cover non-
convex domains.

In a forthcoming paper containing part II, we extend our results for Hamil-tonian
elliptic systems (see [22]), and for the p-Laplacian (see [10]). We also study the asymptotic
behavior of radially symmetric solutions # o, = % 4 (7) of (P)s as a — 0 (see [24]).
MSC2010: 35B45, 35]92, 35B33, 35J47, 35J60, 35J61.

Keywords: A priori estimates, subcritical nonlinearity, moving planes method,
Pohozaev identity, critical Sobolev hyperbola, biparameter bifurcation.

Resumen: Este articulo proporciona un estudio sobre la existencia de cotas
a priori uniformes para soluciones positivas de problemas elipticos subcriticos
(P)p — Apu = f(u), en £, u = (), sobre (), ampliando el rango conocido de no-
linealudades subcriticas para las que las soluciones positivas estin acotadas a priori.
Nuestros argumentos se apoyan en el método de 'moving planes’, la identidad de

Pohozaev, resultados de regularidad en wld paraq > N, yel Teoremade Morrey. En esta
parte I, cuando p= 2 demostramos que existen cotas 4 priori para soluciones positivas
clasicas de (P)2 con f(u) = u2"=1 /[n(e+u)]*, siendo 2* = 2N/(N-2), y para 2 > 2/(N - 2).
Consideramos también dominios no-convexos, recurriendo a la transformada de Kelvin.
En un siguiente articulo, parte II, extendemos nuestros resultados para sistemas

clipticos Hamiltonianos (ver [221) y al p-Laplacian (ver %), Tambi¢n estudiamos el
comportamiento asintético de las soluciones radialmente simétricas u, = uy, (r) de (P),
cuando 2 > 0 (ver (24)),

Palabras clave: Estimaciones a priori, no-linealidades subcriticas, método de 'moving

planes', ignaldad de Pohozaev, hipérbola critica de Sobolev, bifurcacién biparamétrica.
1. Introduction

We focus our attention on the following question: Under what growth
conditions on f, the nonnegative solutions to the Dirichlet problem will
be uniformly bounded? A priori bounds in the L “-norm of positive
solutions provided a great deal of information, and it is a longstanding
open problem.
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In this paper, we provide sufficient conditions for having a-priori L”
bounds for a classical positive solutions to the boundary value problem

1 0, on J€2, (1)

{ -Au = f(u), in £,
where Q # 2 N, N > 2, is a bounded C? domain, and fis a subcritical
nonlinearity.
For N = 2, Turner proved the following result. Let Q be a simply
connected domain in R? with C ? boundary, let f be a continuous real-
valued function on Q x B, and let us consider

—Aul(x) = flx,u), xefl, u=10 on JL

If there are numbers p, A, B > 0 and C > 0 such that 1 < p < 3, and
AuP < f (x, u) < max(BCP, BuP) for u > 0, then all such solutions are
priori bounded for some constant C = C(Q,p, A, B, C). For 1 < p < 2,
an analogous result holds when A is replaced by a more general elliptic
operator. In case of radial symmetry, an analogous result holds for any p
> 1, if AuP < f (u) for u > C, and f (u) £ max(BDP, BuP) for some D > 0
and all u > 0 (see ¥” and also [11, Theorem 1.1]). Brezis and Turner in
(4] allow a more general nonlinearity: f = f(x. v, Vu) with smaller growth,
f(u) /a1 0 A8 U > 00,

When N > 2, the exponent 2* - 1= ¥ of a nonlinearity f{s) = s > is
critical from the viewpoint of Sobolev embedding; observe that 2+ = 2.
and the embedding /' (Q2) in L' (Q) is not compact. Pohozaev proved
that problem (1) does not have a solution if Q is starshapped (see **)),
and Bahri-Coron, and Ding proved that problem (1) has a solution if Q
has non trivial topology in a certain sens, including some classes of non

star-shaped domains and in particular the case of rings (see 2> 112]),

If

]ill'l_ % = 4o,

then problem (1) is supercritical. Consider

—Au = Af(u), in B, 2)
= 0, on 9B, (£

u

where B is the unit ball, and

flu)=(1+u)9, for ¢ > AeR.

N 42
N-—2

Joseph and Lundgren for balls in R N N >3, provided sufficient
conditions guaranteeing that (2) has an unbounded sequence of positive
solutions (see %), Their results are obtained by a careful analysis
involving phase plane and qualitative arguments.

If
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the problem is of subcritical nature. The discussion given so far suggests
that the subcritical growth of / is a necessary condition for the existence
of a priori bounds for solutions to (1).

Nussbaum obtain 4 priori bounds for positive radial solutions in the
subcritical radial case, when there exist some d > 0, s > 0 such that 2NF(s)
- (N -2)sf(s) = 8sf{s) for s > so. Here r() = J; r512 see 23], Observe that this
hypothesis covers the case when f(s) = A(1 + |s|)7 for some « < ¥22 Consider
fs) =5 ¥ for ¢ > 0. It is well known that problem (1) has a solution

u, (see P. L. Lions 2! and references therein). Atkinson and Peletier for

balls in B >, and Han for the minimum energy solutions in non-spherical

domains, proved that there exists x o # Q and a sequence u, such that
lime o = 0 in CHQ\ {z0}) and lim.—o |Vu.|? = ¢5,, in the sense of distributions,
where 6 is the Dirac distribution, and C depends on N and on the best
Sobolev constant in & N (see 1, 18)),

A-priori bounds for subcritical nonlinearities on general domains
were raised by Gidas and Spruck in (16] 25 well as by Figueiredo, Lions
and Nussbaum in "'V, The blowup method together with Liouville type

theorems for solutions in ® ™ and in the half space ®Y, was introduced
by Gidas and Spruck for nonlinearities essentially of the type /(x, s) =

h(x)s P, with p # (1, 2* - 1) and h(x) continuous and strictly positive.
De Figueiredo, Lions and Nussbaum (1] obrained a similar result using
a different method. In convex domains in particular, it is based on the
monotonicity results by Gidas, Ni and Nirenberg '), obtained by using
the Alexandrov-Serrin moving plane method (26], (which provides a priori
bounds in a neighborhood of the boundary), on the Pohozaev identity [2°!
and on the L P theory for Laplace equations given by Calderén-Zygmund
and Agmon, Douglis and Niremberg estimates (see ")), They extend
some of the results to non-convex smooth domains through the Kelvin
transform.
Their results assume on f the following condition:

AF(s) — \f‘n] -

lim inf >0, for some # € [0,2%).

s—4oo g2 f(s)2/N
They conjecture that this condition is not necessary, but it is essential
in their proof. It can be see n that for fi(s) = s*/In(s + 2)* with 2 > 0,
.. OF(s) —sfi(s) _ . - 10 o
I_“_lﬂlll_\]j W = —00, for any 6 € [0,27),
where Fi(s)= [; . (see [5, Remark 2.3]). We prove the existence of
apriori bounds when f (s) = s*/In(s + 2)* with @ > 2/(N - 2) (sce
Theorem 1.1).
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Next we include several subsections to describe our 4 priori bounds
results on semilinear elliptic equations, and on some non-convex regions.
We leave the proofs for the following sections.

1.1. Semilinear elliptic equations

We state the existence of a-priori bounds for classical positive solutions of

elliptic equations (1) when 1 - - with o > 2, and Q # B N isa bounded,

convex C > domain (see Corollary 2.2 in [5]).

Theorem 1.1. Assume that Q # B N is a bounded domain with C >
boundary.
Let us consider the BVP

u N .
—Au = CEELE in €, 3)
w =10, on 08,

witha >2/(N -2).
Then, there exists a uniform constant C, depending only on Q and f, such
that for every classical solution u > 0, ro (3),

L

lu|| L= < C.

This Theorem is in fact a Corollary of Theorem 2.1 (see Subsection 2.3
for a proof of Theorem 2.1; see also [5, Corollary 2.2]). The ideas of the
proof of Theorem 2.1 lie on the following arguments:

Step 1. The moving planes method provides L™ bounds in a
neighborhood of the boundary for classical positive solutions of (1).

Step 2. Pohozaev identity relates some integral defined on Q with some
integral defined on the boundary. This equality, combined with bounds
in a neighborhood of the boundary, give us a uniformly bounded integral
in Q.

Step 3. The bounded integral in Q previously obtained through
Pohozaev identity, help us in lowering some Z 9 (2) bound of f(u()).
Elliptic W9 -regularity with q = %.~) and Sobolev embeddings provide us
JW 4 bounds, with g > N. Through Morrey’s Theorem, we estimate the

radius R of a ball where the function u exceeds half of its . * bound, see

fig. 1.
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lul
fo's
._u.(x).
lul /2
D0
X
o R
Figure 1
A solution u of (1), its Loo norm, and the estimate of the radius R
such that .- = for all x # B(x(,R), where x0 is such that u(z0) = jul|«.

Step 4. We reason by contradiction assuming that there exists an
unbounded sequence of solutions {wfc}. Elliptic W *9 -regularity with
ge (.8 and Sobolev embeddings provide us W4 bounds with q>N,
depending on k.

Step 5. Through Morrey’s Theorem, we estimate the radius Ry of a ball

where the function uy exceeds half of its L™ bound, depending on k.

Step 6. Using this estimate we get alower bound of the above uniformly
bounded integral obtained in Step 2, reaching a contradiction, and
deriving L* bounds for classical positive solutions of (1).

The moving planes method was used earlier by Serrin in 2¢] Gidas,
Ni and Nirenberg characterized regions inside of Q, where a positive
solution cannot have critical points (see 1)), They pose the following
problem (see [14, p. 223]): Suppose u > 0 is a classical solution of (1). Is
there some 8 > 0 only dependent on the geometry of Q (independent of f and
u) such that u has no stationary points in a d-neighborhood of 50 ? This is
true in convex domains, and for N = 2. If f satisfies (H1) de Figueiredo,
Lions and Nussbaum show us that there are some C'and > 0 depending

only on the geometry of Q (independent of f and u) such that

maxu < C maxu (4)
[y (1

where Q5 == {z € Q : d(z.09) > ). (see (117 3nd Theorem A.1 1). Moreover, if
falso satisfies (H4), then there exists a constant C depending only on Q
and f but not on u, such that

maxu < (5)

LEAREE

(see " and Theorem A.12).
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1.2. Ring-like regions

In Theorem 2.1 and Theorem 2.2 it is assumed either the monotonicity
of f (5)/5s ! or the convexity of Q respectively.

What about problems in non-convex domains or with nonlinearities
that do not satisfy the monotonicity of f (5)/s > 2 Building on the 4 priori
estimates previously established, we obtain 4 priori estimates for classical
solutions to elliptic problems with Dirichlet boundary conditions on
regions with convex-starlike boundary. This includes ring-like regions.

We will say that a domain Q has a convex-starlike boundary if
a0 = 'y U Ty with T, c 89, for some convex domain Q; # B ¥, and n(x)
. (x-y) < 0 for some y # B N and for all x # I',. Here n(x) denotes the
outward normal to the boundary 90 , see fig. 2 (a).

(a) (bh)

Figure 2
(a) A convex-starlike boundary. (b) A ring-like domain.

A particular case appears when Q = Q7 | Q , with Q , ¢ Q5, where Qi is
convex, and Q , star-like, that is ny(x) e (x - y) > 0, for some y G RY, and
forall x G dQ ,. Here ny(x) denotes the outward normal to the boundary
dQ . In that case, we will say that Q is a 7ing-like domain, see fig. 2 (b).
Since (1) is invariant under translations, without loss of generality, we
may assume y = 0; in other words, we may assume Q2 to be star-like with
respect to zero.

Theorem 1.2. Assume that Q # & N is a bounded C* domain with convex-
starlike boundary. Let us consider the BVP

Au = u? ! in
T Infe + u)e’ (6)
u =10, on O,

witha > 2/(N -2).
Then, there exists a uniform constant C, depending only on Q and £, such
that for every classical solution u > 0 to (6),

||i‘:|'| L= (Lh) i .

Proof- It is a Corollary of Theorem 3.1 (see also [8, Theorem 2]). For
this particular type of nonlinearities, this result is included in Theorem
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1.1. But in the abstrac setting, Theorem 3.1 is not included in Theorem

2.1, because we do not assume f (5)/s ' to be nonincreasing.
For the proof of Theorem 3.1, we first prove a priori bounds near the

convex part of the boundary going back to !}, Using that the boundary
term in the Pohozaev identity on the boundary of a star-like region does
not change sign, the proof is concluded.

This paper is organized in the following way. In Section 2 we state and
prove our abstract main theorem on 4 priori bounds for semilinear elliptic
equations. In Section 3 we state and prove one abstract theorem on 2
priori bounds in a class of non convex domains.

We also collect some results on the 4 priori bounds in a neighborhood
of the boundary in two Appendices. In Appendix A we describe the
moving planes method, and its consequences when applied to a solution
in a convex domain (see Theorem A.8). In Appendix B we apply the
moving plane methods on the Kelvin transform, and its consequences for
the general case (see Theorem A.12). All those results are essentially well
known (see '), We include them for the sake of completeness and in
order to make precise statements clarifying which hypothesis are needed
in the convex case and in the non-convex case.

2. A priori bounds for semilinear elliptic equations

We provide a-priori L*(€)) bounds for a classical positive solutions to
the boundary value problem (1), where Q # R ™, N > 2, is a bounded C?

domain, and f is a subcritical nonlinearity.

Our main result in this Section are the following two theorems. The

]

first one is on general smooth domains. The proof can be read in 5] we

include it by the sake of completeness.

Theorem 2.1. Assume that Q # R N is a bounded domain with C*
boundary. Assume that the nonlinearity fis locally Lipschitzian and satisfies
the following conditions:

(H1) 2 is nonincreasing for any s > 0.

(H2) There exists a constant C1 > 0 such that ...

(H3) There exists a constant C2 > 0 and a non-increasing function
H -+ — B such that

(H3.1)
INF(s) — (N —2)sf(s)

liminf =
¥ =

s—+ sf(s)H (s)

>Cy >0,

and
(H3.2)
lim f(s)

e g2r 1 [”[-‘»‘]: ~

=0.

(H4) st where )\ is the first eigenvalue of -A acting on 1.
Then, there exists a uniform constant C, depending only on Q and f; such
that for every classical solution u > 0 to (1),

|| ey < C.
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If the domain € is convex, we have the following result:
Theorem 2.2. Assume that Q # 2 N is 2 bounded, convex domain with C

> boundary. Assume that the nonlinearity fis locally Lipschitzian, satisfies
(H2)-(H4), and also the following conditions:

(H1)' There exists a constant C o > 0 such that ..z ..

Then, there exists a uniform constant C, depending only on Q and £, such
that for every classical solution u > 0 ro (1),

| ooy < C.

Our analysis extends previous results, widen the known ranges of
subcritical nonlinearities for which positive solutions are apriori bounded
and also applies to non-convex domains.

All those results are known (see '), We include the proofs for the
sake of completeness. Our proofs of Theorem 2.1 and Theorem 2.2, as in

1] yise moving plane arguments, the Kelvin transform, and a Pohozaev

identity (see [*°!). These ideas are well known but we combine them in a
slightly different way.

The moving planes method was used by Serrin in (26] Gidas, Ni and
Nirenbergin [14] using this moving planes method and the Hopf Lemma,

prove symmetry of positive solutions of elliptic equations vanishing on
the boundary. See also Castro-Shivaji ”), where symmetry of nonnegative
solutions is established for £ (0) < 0. In ') the authors also characterized
regions inside ), next to the convex part of the boundary, where a positive
solution cannot have critical points. Those regions, called maximal caps,
depend only on the local convexity of ), and are independent of f and
u (see the Appendix A.2 for a precise definition of maximal cap). This
non-existence of critical points in a maximal cap, is due to the strict
monotonicity of any positive solution in the normal direction. This is
a key point to reach local & priori bounds in a neighborhood of the
boundary.

The arguments split into two ways, depending on the convexity of
the domain. The reason is the following one. If Q is convex, and the
nonlinearity fsatisfies (H4), then any positive solution is 2 priori bounded
in a neighborhood of the boundary; more precisely, there exists a constant

C depending only on Q and f but not on u, such that (5) holds (see !’
and Theorem A.8).

If Q isa general bounded domain, not necessarily convex, the argument
on the 4 priori bounds in a neighborhood of the boundary relies on the
Kelvin transform. In that case, if the nonlinearity f satisfies (H1) and
(H4), then any positive solution is 4 priori bounded in a neighborhood
of the boundary, in other words, conclusion (5) is reached, (see (1] and
Theorem A.12). We include this Theorems in Appendix A and B in order
to clarify which hypothesis are needed in the convex case and in the non-
convex case respectively. The starting point in the proof of Theorems 2.1
and 2.2 are 4 priori bounds in a neighborhood of the boundary (Theorems
A.12 and A.8, respectively).
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In ! and ") we study the associated bifurcation problem for a
nonlinearity Au+g(u) with g subcritical. We provide sufhicient conditions
guarantying that either for any A < A; there exists at least a positive
solution, or for any continuum (A%, ) of positive solution, there exists a

2* < 0 such thatA* <A <Ajand
|Vup|lp2e0y — o0, as A —= A°

(see [7, Theorem 2]). In case Q is convex, for any A < A; there exists at
least a positive solution (see [6, Theorem 1.2]).

2.3. Proof of Theorems 2.1 and 2.2

Let us start this Subsection with the following remark.

Remark 2.3. By hypothesis, #f : R* — R* is a non-increasing function,
therefore 0 < lim ;. H(s) < oo.

By hypothesis (H3.2) we also conclude that ... 22 -0

Next, we prove Theorem 2.2 (we recall the ideas collected on
Subsection 1.1).

Proof of Theorem 2.2. Step 1. From (5) and de Giorgi-Nash type
Theorems (see [20, Theorem 14.1]),

lulleoaqy,,o\es,6) = O for any o < (0,1),

where @, := {z€Q : d(x.00) > 1}.
From Schauder interior estimates (see [17, Theorem 6.2]),

”“I |'rl]""|5!_~ 1I"._i.:.'-_|_* 1) E C"

Finally, combining L ? estimates with Schauder boundary estimates

(See (3], [17])’

lullwe2ena, . = C. for any p e (1,00).

Consequently, there exists two constants C, 8 > 0 independent of u
such that

||| croe gy < C, for any «a < (0,1).

Step 2. From hypothesis (H3.1), there exists a constant C3 > 0 and a
non-increasing function H such that

2NF(s)— (N —-2)sf(s) = %.@f{.«}h’[x]. for any s > Cs.

Applying this inequality to any positive solution, and integratingon €2,
we obtain that

(&
2.\'/I"itt].rf.r—L\'—E][uf[ul.r!’.ri.‘_)‘—}‘/:aftu]H[u)r!.r—('.l. (M)

for some constant C4 independent of u. From now on, throughout this
proof C denotes several constants independent of u.
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From a slight modification of Pohozaev identity (see [11, Lemma 1.1]
and [25]), if y # & N is a fixed vector, then any positive solution u of (1)

satisfies
.[M["'_ ¥) - n(z) [Vul? dS = 2N /Qmm.a-_ - _2}./9 ufw)de. (8
This, (8) and (7) yield
L uf(u)H(u)dr < C, (9)

for some constant C independent of u. Next we prove that also
[:r|f{r1)|ﬂ{u]fh'i(i (10)
Jo

From hypothesis (H4), there exists a constant C such that if s > C then
f (s) > 0. Therefore, splitting the above integral in the set S = {x # Q : |
u| < C} and its complementary Q \ S, since from (9) fusw/wi@ar=c . then
(10) holds.

Step 3. From hypothesis (H3.2), - Multiplying numerator and
denominator by ()=, we can assert that there exists a constant C'such
that

:f(s)|1+1‘"_f [H(f,]lr"lj < s|f(s)|H(s)+C, for any s> 0.

Applying this inequality to any positive solution, integrating on ), and
using (10) we obtain that

|f{if]|l*§‘;er_H}T;: dr < C.

Consequently, since H is non-increasing,

/;} |f(u(z)|* dz

< %/|f(ut.r]}|“3'|—:-’f[u]ﬁ -f(uf.r}]\q ! j'l—fd.r'
H(lul) ™ o
q-1-5
< ¢ MEOIL _ 1)
H ((lulloe) ™7
forany q > N/2.

Therefore, from elliptic regularity (see [17, Lemma 9.17]),

I () | L5

% (12)
[H (Jull)] ™

[ullw2a@) < CllAu|paay < C

Let us restrict q # (N/2, N). From Sobolev embeddings, for 1/ q* =1/
q- 1/N with q* > N we can write

| NI i
||”||u"-'r'-:sz_| < Cllullwaany £ C U(”{ })“x J .

—_ N

[H ()] ™
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From Morrey's Theorem (see [3, Theorem 9.12 and Corollary 9.14]),
there exists a constant C only dependent on €, q and N such that

u(z1) — u(zs)| < Clay — oM |ltllyrae (), V1,22 € €.
Therefore, for all x # B(x;, R) # Q,

[u(z) — u(a1)| < C B ||ullwaa)- (13)

Step 4. From now on, we shall argue by contradiction. Let {ug}x be a
sequence of classical positive solutions to (1) and assume that

lim |jug|| = 400, where ||ug|| := ||ug||sc-
j.'—r'h:
Let C, 0 > O be asin (5). Let .  0; be such that

uk(Th) = MAX U = MAX uj.

By taking a subsequence if needed, we may assume that there exists

To € E- SUCh

Llim Ty = 29 € S5, and dy = dist(x,d0) = 4§ > 0.
¢—+O0
Let us choose Ry such that B = B(x, Ry) # Q, and
1
up(z) > 5 (| for any =z € B(xy, Ry).

and there exists v € @B(zx, By) such that

1
uk(ye) = 3 [Juxl. (14)
Let us denote by
my =  min  f, M. ;.= max
[l /2, 1 e 1] [0, llul]

Therefore, we obtain

mp < f(ur(z)) ifz € By, flup(z)) < M Yze (15)

Then, reasoning as in (11), we obtain

P p——
41.{1;

/}f(uk}iq dr < C o
Jo T

From elliptic regularity (see (12)) we deduce
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4:‘|.lf . . m
lukllwza@) < C : N

)] ™

Step 5. From Morrey's Theorem (see (13)), for any x # B(x, Ry)

M, T e
[ (e

ug(z) — w(ze)| < C (Ri)> 7

N
IN+2iq

Particularizing x = yk in the above inequality and from (14) we obtain

1
(2% -1)q

M, 1
: x— 2 [uk(yk) — uk(zi)| = Slluxll,

1 )] ™™

—i_
1 -

C [Rk}g_%

which implies

a_ N
[RL]IJ q E .)(_' l_l_ 1 Y
= ] g 2" -11q
...I]rk_
or equivalently
e 1/(2-5)
1 luel) [H ()] ™ _
Ry = °C e p— . (16)
Z A"'[j; 9T -Iig

Step 6. Consequently, taking into account (15), and that H is non-
increasing,

1 PN
/B o uef ) Hu)de 2 gl H (e )m w (RN,
o Bz, Ri) =

where w = wy is the volume of the unit ball in & .
Due to B(x, Ri) # Q , substituting inequality (16), and rearranging
terms, we obtain
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f up f(ug ) H (uy) doe

1 el [H ||cu||)] T
> Sl H (el @ | o T

L |\ b 'F[
. 73 llu [H ||“k||)]
=¢ " [”t”‘l ”H{HEU‘ ”}] |——_ |-.‘-_|.’7
1+2—1 3--2_\Z°T
~ g %77 H (JJug][ )~ D7 ) ¥
= Cmp . .
‘.l”rk'_?_:z- Tiq
i 2 2 _ 2 —r!:c
—C My ||'II;CH'+T_%H{I|H;¢H]Y TNF+5g T q
M ‘Ukl’;*-.c'l;.q ’

At this moment, let us observe that from hypothesis (H1)" and (H2),

MES >C, for all k big enough.
Uj,

Hence, taking again into account hypothesis (H2), and rearranging
exponents, we can assert that

fp wp f(up)H (ug) de

2

2 L N
e |45 [ B (s )]
- H'L—%—ﬁ
Ly er

_ 2
W+zg \ ™7

2 2
el [H Q)] T

)T[vlv—m‘rm] 3

N 1__ 1
sl (T

=]
c ] ) —

|7l

Finally, we deduce

Y )
S(ug)H () de = C
) ) > ( 7 ()

and from hypothesis (H3.2),

&

R ]

g | [ H (Jas]) | T
7 (lusl)

— o0 as k — oo,

which contradicts (9), ending the proof.

Next, we prove Theorem 2.1:
Proof of Theorem 2.1. Clearly hypotheses (H1) implies hypotheses

(H1).
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For non-convex domains, we use the Kelvin transform to get the a-
priori bounds in a neighborhood of the boundary. Let us observe that
we need additionally hypothesis (H1) (see Theorem A.12). All the other
arguments work exactly in the same way as in the above proof.

3. A priori estimates in a class of NON-CONVEX Yegions

In this Section we prove 4 priori bounds for the positive solutions to the

boundary-value problem
—Au = f(u), in €1, .
. (17)
nw = 0, on 911,
where ac»¥ N =2 is a bounded C?> domains with convex-starlike
boundary, including ring-like regions, and f:B*—R* is a subcritical
nonlinearity.

Let Ay, ¢ 1 stand for the first eigenvalue, first eigenfunction, of the
problem - Ag¢ 1 =41 ¢ 1in ©, ¢, =0 on Q.

Our main result is:

Theorem 3.1. Assume that « c &~ is a bounded C* domain with convex-
starlike boundary. If the nonlinearity fis locally Lipschitzian and satisfies:

(H1) There exist contants C o > 0, B o # (0,1) such that ...

(H2) There exists a constant C | > 0 such that ..

(H3) There exists a constant C , > 0 and a non-increasing function
H B+ = Bt such that

(H3.1)

. J2NF(s) — (N —2)sf(s) _

ljl_{l_&l\l:f STOHE) =0y >0,

and
(H3.2)
lim L =0.
=+ g1 [H(s)] T2
(H4) w2 where'\y is the first eigenvalue of -A acting on 1} ().

Then there exists a uniform constant C, depending only on Q and f, such
that for every classical solution u > 0 to (17),

lull Loy < C.

Unlike resultsin ' or ¥, we do not assume 7s)/+%4 to be nonincreasing,
The proof can be read in (8] weinclude it here by the sake of completeness.

Proof of Theorem 3.1. Step 1. Due to n(x) - x < 0 for all x # I'5, we can
choose ¢ > 0 such that if x # T'; and d(x, ;) < ¢, then n(x) - x < 0. Let us
[y =T\ {2 €00 :d(x,T2) < <}, and T := 02\ I}

From now on, throughout this proof C denotes several constants

independent of u. From 5 and de Giorgi-Nash type Theorems (see [20,
Theorem 14.1]),

lullco.afwng s\ws ss) < C, for any a € (0,1),
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wherew,: ={x# Q:d(x, ;i) < t}.

From Schauder interior estimates (see [17, Theorem 6.2]),
|| “||[’I1I"q':~¥1;_'|.'- '-lx'.“"lﬁ_ 1 :| «: (_'.
Finally, combining L ? estimates with Schauder boundary estimates
(see BH17))

llul|w2r(ws,.) < C, for any p € (1,00).

Consequently, there exists two constants C, 8 > 0 independent of u,
such that

lullcrows < C, for any a e (0,1). (18)

Step 2. Any classical solutions to (17) satisfies the following identity,

known as Pohozaev identity (see *):

- i
f_\'F[r!] - A 5 “uf(u) = / (‘1‘ Vu % . {Fm)—%nﬁq“] T 'Jr)rfﬂ. (19)

where n(x) is the outward normal vector to the boundary at » = 99.
Since u vanishes on 90 , for any tangential vector t(x) we have

t(z) - Vu(z) = 0, for all » € 9().
Moreover, since 92 =TT} is a convex-starlike boundary, for each
r €T, we have
r = s(x)n(z) + 7(z), where s(z) <0, (20)

and T(x) is tangential to 90 . In particular, (20) holds for any x # I',.
Since Zu(x) := Vu(z) - n(z) and (20),

|Vu(z)]? = (tm)k. and (21)

an
. du .
r-Vu(z) = s(z)n(z) - Vu(z) = s(x) a(}) for any » T,

Substituting F(u(x)) = 0 for all » 92, and (20)-(21) in (19) we have

. N-2 du 1 g
[. (_\F(fr)— - uf[u))n’_z = /[:' [.l -Vu W—E\VUI (z-n)

I

do

2
+ [ {r Vu u 1 [Vu)? (2 - n)} do
Jre

an 2
[ [rve e b ] “2’
[ 5 ()
Also, since s(x) < 0 for all x # I'’;, from (22), and (18),
[' (;\"F(u} _ N_T_Quf{n)) dz < C. (23)

Next we prove that also



Rosa Pardo. On the existence of a priori bounds for positive solutions of elliptic problems, I

J

From hypothesis (H4), there exists a constant C such thatif s > C, then
f(s) > 0. From hypothesis (H3.1), in particular, there exists a constant
C such that if s > C, then 2NF(s) - (N - 2)sf (s) > 0. Splitting the above
integral in the set S = {x # Q : |u| < C} and its complement QS, since
from (23) o, (VF@ - %2ur) @ = ¢, then (24) holds.

All other arguments work as in Theorems 2.1, 2.2 (see also [8]).

A. Appendix I: The moving planes method, the Kelvin transform, and a
priovi bounds in a neighborhood of the boundary

In this Appendix, we collect some well-known results on the
moving planes method: Theorem A.1 and Theorem A.4. Next, we
state results concerning a-priori bounds in a neighborhood of the
boundary: Theorems A.8, and A.12. The remaining theorems indicates
the arguments through the Kelvin transform, Theorem A.9 fix regions
where a Kelvin transform of the solution has no critical points, and
Theorems A.10, A.11 translate those results to the solution. All those

N -2
NF(u) — 5 wf(u)

dr < C. (24)

results are essentially well known (see 1); we include it here in order
to clarify which hypotheses are used in the convex case and in the non-
convex case.

A.J. The Kelvin transform

Let us recall that every C? domain Q satisfies the following condition,
known as the uniform exterior sphere condition:

h 1[i:'

(a) (b) (c)
Figure 3
(a) The exterior tangent ball and the inversion of the boundary into the unit

ball. (b) A maximal cap 5 in the transformed domain h(Q). (c) The set b (

$ ) (i.e., the inverse image of the maximal cap ) in the original domain Q.

(P) there exists a p > 0 such that for every » = 90 there exists a ball
B = B,(y) « ¥\ o such that 4B 80 = 2.

Let x, 90, and let B be the closure of a ball intersecting 1 only at the
point x. Let us assume x g = (1, 0, ..., 0), and B is the unit ball with center
at the origin. The inversion mapping

r— h(x) = = (25)

|2
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is an homeomorphism from ¥\ {0} into itself; observe that »(h(x)) =
x. We perform an inversion from Q into the unit ball B, in terms of the
inversion map h|Q (see fig. 3

(a)).

Let u solve (1). The Kelvin transform of u at the point =, = a0, is defined
in the transformed domain @ = n) by

1\ V-2 B
v(y) 1= (—) u (i,) s fory € €. (26)
[yl yl?

A.2. The moving planes method
We move planes in the x;-direction to fix ideas. Let us first define some
concepts and notations.

- The moving plane is defined in the following way: 7. := (r e 2¥: 2, = 3);
- thC cap: Thi={r=(2,2) e RxBN1nQ : 2, <A}
- the reflected point: »* = 23— 2,.2):

.:'_J//

\
.

(a) (b) (e)
Figure 4
(a) A cap ) and its reflected cap =4 in the ei direction. (b) A cap = (-el)
and its reflected cap = (-el) (in the -el direction). (c) A maximal cap = (-el).

- the reflected cap: 1 = f(z,u.Vu): = {x": x # 3, (see fig. 4(a));
- the minimum value for A or starting value: ;... /.4 o

- the maximum value for 2 - 1= 222

- the maximal cap:» = 5.

The following Theorem is Theorem 2.1 in [14].

Theorem A.1. Assume that fis locally Lipschitz, that Q) is bounded and
that T.»* 3. X, 2.5, and 3 are as above. If u ¢ (@) satisfies (1) and u > 0 in
Q, then for any N # (ho, \*)

hu -
u(x) < u(zt) and ('i“ (z) >0 forall xe X,
o

Furthermore, zf——(l =0 at some point in Q# T, then uis symmetric with
respect to the the plane Ty:, and @ = U U (T NQ).

Proof- See [14, Theorem 2.1 and Remark 1, p.219] for f# C ' and locally
Lipschitzian respectively.

Remark A.2. Set 20 € 920 T), (see fig. 4(a)). Let us observe that by
definition of Ao, T, is the tangent plane to the graph of the boundary
at x¢, and the inward normal at xq, is n;(xg) = e;. The above Theorem says
that the partial derivative following the direction given by the inward
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normal at the tangency point is strictly positive in the whole maximal cap.
Consequently, there are no critical points in the maximal cap.

Now, we apply the above Theorem in any direction. According to
the above Theorem, any positive solution of (1) satisfying (H1) has no
stationary point in any maximal cap moving planes in any direction. This
is the statement of the following Corollary. First, let us fix the notation
for a general , e Y with |[v | = 1. We set

- the moving plane defined as: i 2 -~

-thecap: (V) ={x# Q:x-v<A}

- the reflected point: x (v) x+ 2(7\ X-V)V;

- the reflected cap:( = - v ui,

- the minimum value of -t o B R

- the maximum value of A: A*(z/) = max{} : Ti' (v) C Q forall /x <\};

- and the maximal cap: 5 22 -

Finally, let us also define the optimal cap set

O* — U ().

{sz_':.x.|tf =1[t

Applying Theorem A.1 in any direction, we can assert that there are
not critical points in the union of all the maximal caps following any
direction. The set o* is the union of the maximal caps in any direction,
and in particular, the maximum of a positive solution is attained in the
complement of o* . Thus we have:

Corollary A.3. Assume that fis locally Lipschitzian, that Q) is bounded,
and that ox is the optimal cap set defined as above.

If w e C%(Q) satisfies (1) and u > 0 in Q, then

maxu = 1ax u.
Q 2\O*

If o* is a boundary neighborhood of a9 in ©,, as it happens in convex
domains, then there is ¢ > 0 depending only on the geometry of Q
(independent of f and #) such that # has no stationary points in a &-
neighborhood of 90 . Next we study the case in which ox is not a
neighborhood of 90 in Q.

We prove that the maximum of u in the whole domain Q can be
bounded above by a constant multiplied by the maximum of u in some
open set strongly contained in Q (see Theorem A.11 below).

To achieve this result, we will need the moving plane method for
a nonlinearity f = f(x, u). Next we study this method on nonlinear
equations in a more general setting. Let us consider the nonlinear
equation

F (,z'.u.\?u. (), .y \_) =0, (27)
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where .0 xR xRV « RV*N is a real function, F = F{x, sp, ) and
au= 2+ The operator F is assumed to be elliptic, i.e., for positive constants

m, M,

12 oF 2 N
Mg E;E&QEMIH : YEeRY,

On the function F we will assume:

(F1) Fis continuous and differentiable with respect to the variables s,p
i»71j, for all values of its arguments (,«.p.) € @« B x BY « RV<V,

(F2) For all = € a1 {z1 < A*}, F(«,0,0,0) satisfies either

F(z,0,0,0) =0 or F(z,0,0,0) < 0.

(F3) F satisfies
F(a A s, (—p1,9'),#) = F(z,s,p,7r),

forall A € [Ag, A*), = € E(A) and (s,p,7) € Rx BN xRY*N with s > 0 and p; < 0,
-
ra1 Th

where p = (p1,p') € R x BN f= . N cand 7, i= (ri,- - N ), for
N1 T

i=1,---,N.

The following theorem is Theorem 2.1" in [14]

Theorem A.4. Assume that ) is bounded and that T.. 2>, xo. ¥, ¥, ¥4, and
X are as above. Let ¥ satisfies conditions (F1), (F2) and (F3).
If e c2@) satisfies (27) and » > 0 in Q, then for any X # (o, A*)

u(z) < n(.r’\) and (:;—il(:} >0 for all =€ ¥,.

Furthermore, if i) - 0 at some point Q # Ty en necessarily u is symmetric
in the plane Ty:, and Q= ¥ U U (Th. N Q).

As an immediate corollary in the semilinear situation we have the
following one.

Corollary A.5. Suppose v < ¢*@) s a positive solution of

—Au= f(z,u), inQ, u=0, ond. (28)

Assume = f{x, 5) and its first derivative f'; are continuous, for (».s) < 0 < R.
Assume that

fla™,s) > f(x,s) for all = X(A"), Jor all s >0,
Then for any A # (h o, )

Ju ,
u(x) < E({.E"\) and ;L[.r) >0 for all z & X,.

o |

Furthermore, if %) =0 at some point in Q # Ty- , then necessarily u is
symmetric in the plane Ty, and © = £ UY U (Ty. N Q).

Set o € 90T, The above Theorem says that the partial derivative
following the direction given by the inward normal, n;(x), at the tangency
point xy, is strictly positive in the whole maximal cap = = X (n;(x));
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consequently, the function g(t) := u(xo + tn;(xo)) is non-decreasing for t
# [0,to] for some £ o = to(x) > O.

Now consider a neighborhood of x denoted by B3 ¢(xp). We can
observe that for any = e 90 By, (2,) 0%, also the function g(t) := u(x +
tn;(xo)) is non-decreasing for t # [0, to] for some ty = to(xo, x) > 0. By
choosing points x such that dist(x, Ty (ni(x0))) > 3, we see that the
function g(t) := u(x + tni(xo)) is non-decreasing for t # [0, 8] for any
e INNE(ni(zo)) : dist(z, T (ni(z0))) > 4. .

Now, let us move to a different cap, in a neighborhood of xo. We apply
theidea, to their corresponding maximal caps =, with their corresponding
vectors v. Then, choosing points in the intersection of the maximal caps,
such that dist(x, T5(v)) > 8, also the function g(t) := u(x + tv) is increasing
for t # [0, 8]. This is the statement of the following two corollaries, whose
ideas are contained in [11].

Corollary A6,  Assume that Q is  bounded and that
T, 2 w), dalw), X ), 2200350, and 2(v) are as above.

Suppose u ¢ ¢*@) is a positive solution of (28). Assume f'= f(x,5) and its
first derivative [ are continuous, for (z.5) €T xR,

Let o € 99 such that > = 2(ny(xq)) # #. Assume also that there exists a
w > 0such that

f(zMv),s) > flz,8) foralzeX(v)= Yo (v), for all s >0,
wherev # #Y is such that |v| = 1, and v - ni(x) 2 p.
Then, there exists 6 > 0 depending only on the geometry of Q, independent

of tand v, such that the following holds:
the function

g(t) ;= u(z 4+ tv) is non decreasing  for any t € [0, 48],

Sor any v ##, such that |v| = 1,v - ni(x0) 2 w, and for any » < 5O such
that

I‘T ‘I

(| {E(w):dist(zo, Tr-(v)) > }.

veng(To) 2

For each point in a 3 /2 neighborhood of the boundary, there exists a
cone K depending on the point, such that the function at that point is
less or equal than the function at any point of the cone K. Now, we can

choose a subset K! # K depending on the point, but whose measure can
be made independent of the point; remember that the function at that
point is still less or equal than the function at any point of the subset K.

This is the statement of the following corollary, whose ideas, as we already

said, are included in M,

Corollary A.7. Assume that Q is bounded and that
zo. v, Ta), 2\ (0), M), M) 5a0) S0). and 2(v) are as above. Assume all the
hypothesis of Corollary A.6 holds. Let & > 0 be as described in Corollary A.6.

Then, for any x | = x +t 1 v with 0 <t | < 0 /2, the function
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glt) :=ulzy +tv) is non decreasing  for any t € [0,4/2],

Sforany v # #N . such that [v| = 1, v ni(x0) 2 , and for any » e 9 such
that

TE ﬂ {E(v) : dist(xp,Tx-(v)) > 6}.

venglxp) 2 p

Moreover, there exists a positive number y (depending only on the
geometry of Q, and independent of fand u), such that:

Sfor any x 1 = x + ty v with 0 < t; < 0 /2, there exists a cone with vertex

K = K@) {r et < disi(zo.00) < 0). and a piece of that cone K'= K'(x 1 ) such that
(i) meas(K'(xy)) =~ = 0;
(ii) K'(zy) C |z € :6/2 < dist(xy, ) < 6};
(iii) wu(xy) < u(z), for any re K.

A.3. A priori bounds in a neighborhood of the boundary

From now on, the arguments split into two ways, depending on the
convexity of the domain. If Q is convex, we observe that, reasoning as
in 1 specifically, using Corollary A.6 and Corollary A.7, any positive
solution # is locally increasing in the maximal cap following directions
close to the normal direction, which provides L™ bounds locally in a
neighborhood of the boundary. This is the statement of the following
Theorem.

Theorem A.8. Assume that Q # #N is a bounded, convex domain with C
> boundary. Assume that the nonlinearity fsatisfy (H4).

If u = c2(@) satisfies (1) and u > 0 in C, then there exists a constant 3 > 0
depending only on QO and not on for u, and a constant C depending only on
Q and fbut not on u, such that

maxu < C, (29)

where Qs = {z € Q : d(z,80) > 6}

Proof. As observed in ¥, [11, p. 44], > 7] under hypothesis (H4),

there exists a constant C | > 0 such that

/ ud < Cy / flu)d < Cy, (307

for any # solving (1).

Next, we will use Corollary 3.7. Let us fix an arbitrary », 99 and let
n i (x o) be the inward normal at the boundary point x o. Choose any v
##Nsuch that |v| =1L andv-n; (x,) 2 p for some ¢ > 0 fixed. From
Corollary 3.6, there exists a & > 0 depending only on the geometry of ),
and independent of fand #, such that the function ¢g(z) := #(x + tv) is non
decreasingforany ##/0,0/, and forany x, & 90 in a certain neighborhood
of x o. The neighborhood of x ¢ depends only on the convexity of Q, and
it is independent of fand u.
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Taking into account that all the hypotheses of the mentioned
Corollary 3.7 hold, and using specifically Corollary 3.7 (iii), we deduce
that for any x; = x+t; v # Q, with 0 <t; < 8/2, there exists a cone

with vertex =, K =K(r,) ¢ {ye Q:t, < d(y.09) < 5} and a piece ot that cone
K'= K'(2)) € {y € K(2) :6/2 < d(y.59) < 5} such that [K'| >y > 0, and
u(zy) < u(z), for any =z e K" (31)

Taking into account (30), (31), and Corollary 3.7 (i), we deduce that

Cy= | udy = ugy > ulxy) @ = u(x)y ming,.
Jo JK JK! Bs2

Consequently, there exists a constant C only dependent on f'and on
the geometry of Q such that
u(zy) < C for all =, € 2\ Q0.
Then there exists a constant § > 0, depending only on Q and not on
for u, and a constant C depending only on Q and f'but not on u, such
that (29) holds. 0
Next, we go through the non-convex case, reasoning on the Kelvin
transform. First, in Theorem A.9, we fix regions where a Kelvin transform
of the solution has no critical points. This is the statement of the following

theorem, whose ideas are contained in "', Let us fix some notation. For

any z, € 9. let 7i,(zo) be the inward normal at x ¢ in the transformed domain
o= o). where b is defined in (25), and let &= %) be its maximal cap (see
fig. 3(b)).

Theorem A.9. Assume that Q # #N is a bounded domain with C *
boundary. Assume that the nonlinearity fsatisfies (H1).

Ifuu e 2@satisfies (1) andu > 0in Q, then for any v, € 99 its maximal
cap in the transformed domain s is nonempty, and its Kelvin transform v,
defined by (26), has no critical point in the maximal cap s .

Consequently, for any v, e 90, there exists a 8 > 0 only dependent of Q)
and x o, and independent of fand u, such that its Kelvin transform v has no
critical point in the set Bs(xo) # h(Q).

Proof- Since Q is a C > domain, it satisfies a uniform exterior sphere
condition (P). Let 2, & a0, and let B be the closure of a ball intersecting
77 only at the point xo. For convenience, by scaling, translating and
rotating the axes, we may assume that xg = (1, 0, ..., 0), and B is the unit
ball with center at the origin.

We perform an inversion 4 from € into the unit ball B, by using the
inversion map = - h(x) = Z=. Due to Bn% = {x}, and to the boundedness of
Q, there exists some R> 0 such that

1<zl <R for any €, (32)

and the image

Q=h(Q) = {y:m.r-}ez-" Cr= e!!} C B\ By/g.
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Note that 0 ¢ 1(©) (see fig. 3(a)). Moreover, € is strictly convex near xg
and the maximal cap £ - £(n.(x)) contains a full neighborhood of x¢ in @
where 1;(xo) is the normal inward at x (see lemma B.1 in the Appendix;
see also fig. 3(b)). Observe that, by construction fi(xo) = -¢ 1.

Next, we consider the Kelvin transform of the solution defined by (26).
The function v is well defined on /(Q)), and writing r = I « = 5 and A, for

the Laplace-Beltrami operator on B, the function v satisfies

o 1 & N1 8 L
Av(r,w) = |:,-_\'—l ar ( df) 2 ]
B 1 0 ( ~nad LN
P o) T A
3 1 a o= 1 9 AT L w !
ar or (T) “{?'*]] i

[ [\—)]u—»}——rr,.{— ]+—A u

v(r,w)

J‘ ':h

(N -
= [ = u + ii.r + Lu.-.-] + L_A‘.u
2 N

F..\'—'I

1 N-1 | 1
_ e [u,.,. + ?n + ﬁ_\ﬁ u] = ,._\'.2‘3‘“[%"“"}'
Therefore, v > 0 in @, satisfies
—Av(y) = TG —=wazd (| YN 2 y)), in a, v="0, on .
From hypothesis (H1), we see that the function
1 N—2. a:
gly,s) = |U__\___2f{|_:;|' s) (33)

satisfies the hypothesis of Corollary A.5. By construction, it is

straightforward that |y*| < |y| forally # £ (see fig. 3 (a) and (b), and remain
that the origin is at the center of the ball B). By (H1),

i~

aly*,s) = g(y, s) for all y e X,

where ¢ is the maximal cap in the transformed domain (see fig. 3(b)).
Therefore, the hypotheses of Corollary A.5 are fulfilled, and hence v
has no critical point in the maximal cap & , which completes the proof
choosing ¢ such that B nn@ <=

We are now ready to state the following theorem, essentially contained

1 This result is composed of two theorems: the first one, Theorem
A.10 below, is the local version in a neighborhood of a boundary point;
the second one, Theorem A.11, is the global version.

Theorem A.10. Assume that Q # # is a bounded domain with C *
boundary. Assume that the nonlinearity fsatisfies (H1).

Ifu e c2@)satisfies (1) and u > 0 in Q, then for any x, e 99 there exists
a 9> 0 only dependent of QO and x o, and independent of fand u such that

maxu < ' max u.
0 O\ Bs(za)

The constant C depends on Q but not on x o, for u.
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Proof. Let z, € aQ ; if there exists a § > 0 such that Biz)noco*. (as
it happens in convex sets), the proof follows from Theorem A.9. We
concentrate our attention in the complementary set.

Let 2, € 89, and let 77 be the closure of a ball intersecting {7 only at the
pointxo. Let vbeasdefined in (26) for y = & - n). By a direct application of
Theorem A.9, v has no critical point in the maximal cap Z, and therefore

maxv(y) = maxv(y).
0 mE

From definition of v, see (26), we obtain that

r|'*‘_:u[.1'] = max_ A _Eu{.i‘].

MAE-1{E)

I

IMAX
{1

where #-'(®) is the inverse image of the maximal cap (see fig 3(b)-(c)).
Due to the boundedness of Q (see (32)), we deduce

" e I"._'_-_J- . Y
maxu(z) < R max_ u(x),
i (Mh—1(E)

which concludes the proof choosing C = RN2and § such that p) - 1),
and therefore o\ 1% c 0\ By(z).

The following Theorem is just a compactification process of the above
result.

Theorem A.11. Assume that Q # #Y is a bounded domain with C*
boundary. Assume that the nonlinearity fsatisfies (H1).

If v e @) satisfies (1) and u > 0 in Q, then there exists two constants C
and 0 depending only on Q) and not on £ or u such that

maxu < C' maxu,
LY {15

where Qs = {2z - d(x,89) > §).

Proof. Since Q is a C* domain, it satisfies a uniform exterior sphere
condition (P). Thanks to that property, we can choose a constant C = (R/
) N7 satistying the above inequality.

Moreover, let us note that from Theorems A.9 and A.10, the constant
S only depends on geometric properties of the domain Q.

(1] on the Kelvin transform,

Finally, we observe that, reasoning as in
specifically using Corollary A.6 and Corollary A.7, the Kelvin transform
of uat =, € 90 is locally increasing in the maximal cap of the transformed
domain, which provides Leo bounds for the Kelvin transform locally. By
a compactification process, we then translate this into L* bounds in a
neighborhood of the boundary for any solution of the elliptic equation.
This is the statement of the following theorem.

Theorem A.12. Assume that Q C RN is a bounded domain with C*

boundary. Assume that the nonlinearity fsatisfies (H1) and (H4).
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If w = c2() satisfies (1) and u > 0 in Q, then there exists a constant 0 > 0
depending only on QO and not on f or v, and a constants C depending only
on Q and t but not on , such that

max u < C, (34)

where Qs = {zxecQ : dx,09) > §).

Proof. We shall reason as in the proof of Theorem A.8. As observed in
M, (11, p. 44], 3, 7] under hypothesis (H4), there exists a constant C;
> 0 such that

[ ugy < Cy [f{u}r_u] < (Y, (35)
Jo Jo

for any u solving (1).

Let us fix an arbitrary =, € 90 and consider the Kelvin transform of u at
the point #, € 90, denoted by v = v(x).

Next, we use Corollary A.7 on the Kelvin transform. We only need to
note that, by construction, it is straightforward that there exists a /i > 0
such that for any v # #" such that |v| = 1 and v-#u(z0) = i, (observe that

fii(x0) = ne(x0)), the following holds:

)<yl forall ye () Ew)

eng(xzn) 20

(see fig. 3 (a) and (b), and remember that the origin is at the center of
the ball E); then, by (H1), and taking into account the definition of g (see
(33)), we obtain

gy (), s) > gy, s) for all y € ﬂ £(v), foralls>0.

veig(zo)2fi

Therefore, all the hypothesis of Corollary A.7 hold. Now, using
Corollary A.7 (iii), we deduce that there exist 5 -0 only dependents
on the geometry of Q, such that for any u <dnSa@) with
d(y.50) < 5/2. there exists a cone & = K(x) and a subset - & such that

YK 2v>0,h Y (K)c{zeQ: §/2<d(xd0) <d), and
v(yy) < v(y), for any ye K'.

From definition of v, there exists a constant C only dependent on the
geometry of Q such that

u(xy) € Cu(x), forany xeh” 1{."-\_"). (36)

where x; = h'(y;), x = h'(y).
Taking into account (35), (36), and Corollary A.7 (i), we deduce that

1 v .
C = / ug > [ ugp = =ulxy) o = —u(r)) min¢;.
0 Jh-1RKn C Jh-1(Kn) C S50
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Consequently, there exists a constant C only dependent on f and on
the geometry of Q such that

u(zy) < C for all a2y € h! ({Q \Q5,0) N S (#1i(zo ])).

Now we move =z, €40 and consider their corresponding Kelvin
transforms. By a compactification process, there exists a constant 6 > 0
depending only on Q and not on for u, and a constants C depending only
on Q and f but not on u, such that (34) holds.

B. On the maximal cap in the transformed domain through the inversion
map

In this Appendix we show that for any boundary point of a C* domain,
the maximal cap in the transformed domain is nonempty. This is a known
result, but we include it here by the shake of completeness.

This result could see m surprising in presence of highly oscillatory
boundaries. For example, assume that the boundary of Q includes
Ta = (o)) + fe) = 1+ a%in (1), 2 < [oon000} (to visualize the scale, see in fig.
5(b) { (z,2%sin (1)), 2 € [-0.01,0.01]}).

Let h(T;) be the image through the inversion map into the
unit ball B, and let I's be the arc of the boundary aB given by
Ty = {(z.9(2)) : g(z) == VI— 7, 2 e [-001.001]) (see fig. 5(c)). At this scale, the
oscillations are not appreciable. We plot in 5(d) the derivative of the
"vertical" distance between the boundary I'; and the ball, concretely we
plot f'(x) - ¢'(x) forx # [-0.01,0.01]. We plot in 5(e) the second derivative
of the "vertical" distance between the boundary and the ball, which is f
"(x) - g"(x) for x # [-5 - 10, 5 . 10™]. Let us observe that this second
derivative is strictly positive, and that £"(0) - g"(0) = 1. Consequently, the
first derivative is strictly increasing, and therefore the "vertical” distance
f(x) - g(x) does not oscillate.
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(AR | ———
El <
i | F =
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b ,

x10

(h)

Figure 5
(a) An inflection point at the boundary I'; joint with the inversion h(I'), and the unit

circumference; (b) A degenerated critical point at the boundary I'; (c) I’ joint with its
inversion into the unit ball, 5(T, ), and the arc of circumference, I's ; (d) /' (x) - g'(x)
for x # [-0.01,0.01]; (e) f'(x) - g(x) for x # [-5 - 10,5 - 10"*]; (f) Second coordinate
of the difference A(T, ) - h(x, 1), where h(x, 1) is the image of the straight line y =1;
(g) azoom of the same graphic; (h) Second coordinate of the difference h(I';) - h(T’3).

Moreover, let us consider the image through the inversion map of the
straight liney = 1, i.e. h(x, 1) = h ({(x, 1), x # [-0.01, 0.01]}). In fig. 5(f)-
(g) we plot the second coordinate of the difference h(I';) - h(x, 1). The
oscillation phenomena is present here. In fig. 5(h) we plot the second
coordinate of the difference h(I';) - h( 9B ). This difference does not
oscillate.

In fig. 5(a) we draw the inversion of the boundary into the unit ball
at an inflexion point; more precisely we set r. = (.7t sr) = 2 <1, 2 & [=a/a7/a]).
which has an inflexion point at x = 0.

Let h denote the inversion map defined in (25), and let @ - uo)
denote the image through the inversion map into the ball B. For any
o € 89, let ,(x,) ) be the normal inward at x in the transformed domain o,
and let $ - £(1,(z)) ) be its maximal cap (see fig. 3(b)).

LemmaB.1. I[f Q) # #N is 4 bounded domain with C* boundary, then for
any = € 0., there exists a maximal cap T =Su(x)) nOR EMPEY.

Proof For convenience, we assume xo = (O, e 5 0, l),
and B is the unit ball with center at the origin such that
9B N9 = xo. Let {(2/,0("); ]|l < a}, a > 0,denote a parametrization of 90 ina
neighborhood of xo. Hence,
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U(0") =1, and Vy_,¥(0) =0 (37)

Let h(Q) stand for the image through the inversion map into the unit
ball. From definition, #9920 B(x)) is given by

h(.? J U (a J) = P+ o@)E for ' eN.

Sety = h(x, ¥(x")) for 2 ¢ A and with y = (y', yn). Since

1
|| + P(2)?’

, z e)

= . Yy = . =
|J.r|2 4 L'(J").‘: LA |j.f|2 + {.{J.a]z

y and |y'|* + v} =
for 2 € &7, then »= ¢ for v e N7, where v e A7 if, and only if, v = =i
for some »' = A" . Therefore,

r
" N
U (| T )
¥ Y

Yy = =y for yF € ,"'-'”.

r

las? 12 o iy y -
v L (||,."|'-+u-'_-\-)

and

h(EQN B(zo)) = {4 yn) e RN ' x R: F(y',yn) =0, ¥ €N},

where

, 2 v\ v -
F(y',yn) =y~ || "+’-'(ﬁ) _L'(ﬂ)- (38)
v} = lvl WE+u% v+ %

Differentiating (38) with respect to yn we obtain

) ,

5 y' ° a 2 Y :
V*P 4+ | ——— +yn— |V + ¥ | ———
vl ( Y2+ y:{-) N Gy Wl [y +v%

ap y' 9 Yi
Ay \|y' P +ux / Oyn \lw' PP +ux /)

Substituting at (y, yN) = (0, 1) and taking into account (37),

N-1

ar v ) H ( v ) a ( v )
— (0 1) = 1420 ——F -— s | 57— ]
Syx ©.1 ¢ (_,u’\- + Uy, Z By \ w2 +ux ) Bunw \v']? + v

= l(wt wa)=107,1)

=1 0.

Therefore, by the Implicit Function Theorem there exists an

open neighborhood of 0 , Bs(0") # #N1 and a unique function
o1 Bs(0) = R. 6 e C?(By(0)). such that ¢(0") = 1, and

Fly',o(y)=0 for all 3" € Bs(0'). (39)

Differentiating (39) with respect to ¥j»j =1, ..., N - 1, using the chain

rule and substituting at the point (0, 1), we obtain
oF oF

— (0, 1) +

ao -
— (0, 1)=—(0) =0, for j=1,---N-1 40
dy; U.ﬂn‘( }U.UJ[ ) / )

On the other hand, differentiating (38) with respect to y¢ and using the
chain rule we obtain
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-]
W2+ %
Sa (—)i (7%)
— 9y \|[V*+v& ) 0y \IvP+4’& )
Substituting at (y;y n) = (0, 1) and taking into account (37),

N-1
v i y J ( v )l
—(0°,1) = —s — g a5 = 5
"f-' A ( v+ vy ) ; A, (Mr’P + Ui ) dy, \lwPP+ui /|,

(v N )=(0,1)

OF 1 )
By, s YN U\

=0,
Consequently, by (40)
Va_10(0") =10". (41)
Let us define
N Y () o
gly') =1 (W) and G(y') == m for y" & Bs(0').

By (37),g(0") = 1, and G(0") = 1. Moreover,

{.yn) eRY"' xR: yy = G(Y). ¥ € Bs(0)} < h(RQ) N B(xo),
And

{(,yv) e RN U xR gy < GY), ¥ € Bs(0')} € h(Q) N B(za).
Let us see that there exists 0 < 9" < J'such that

U:={(y,yn) e RN xR: yy < G(y'), ¥ € Bs(0')}

is a convex set. To achieve this, we use a characterization of convexity in
the twice continuously differentiable case (see [13, p. 87-88]). The set U'is

aconvexset if, and only if, D* G(y') is negative semidefinite for ally'# B 5(0").
In fact, we will prove that D 2G(0)is negative definite and by continuity,

there exists some 8' > 0 such that D > G(») is negative semidefinite for all
y' # By (0"). Differentiating,

-5 ) ()
dm dy; \ WP +oly)? ) oy; \lv>+ew))’

And

G _ d;g _ 29(v) (y; + 9959)
9 WP+ (WP +e)?)’

for j=1,---N—=1,

where 2¢- . Substituting at 3" = 0', and taking into account (37), we

deduce

Vn-19(0) =0, and Vy_G(0)=0" (42)

Taking second derivatives fork = 1, ... N - 1, we obtain



Rosa Pardo. On the existence of a priori bounds for positive solutions of elliptic problems, I

5 - 2B b4 i)
ody; = Oy 0w \|y' PP +0(y)? )] oy \ Iy P +o(y')?
B (srtare) s 25)
— Ay \|y'? +é(y')? ) omdy; \|ly']> +6(y)? )’
And
PG _ G0 2059(y) (yk + 9Okg)
Aykdy; W' +9)? (v +ew)?)’

_28xg(y') (y; +99;9) + 29(y') % (y; + 99;9)
(I[P +9()?)
+45'(y') (y; +9%9) (yr + gohg)
(1 +9(v)?)’* '

where # - 5%, Substituting at y'= 0, and taking into account (37), we

deduce

o= 3 o 1 (rn) o ()
aydy; Ay |y \ [P +o(y)? /| dy; \Jy']> + o(y')?

i=1 ¥'=0

Substitutingat y’ = 0’, and taking into account (42), we deduce

CASHT 09 _ 20(¥)0 (y; + 9959)
Y9y, WP +9W)? (P +9w)?)

y' =0
= O;9(0") = 2(8;% + 9F,9(0")) = =25, — D;9(0).

Due to

o ( Ui ) _ dij _ 2ui(y +99;9)
Oy; \ly'P+o(y)?) WP +eW) () +90)?)

where ¢ ij is the Kronecker's delta, substituting at y ' = 0, and taking
into account (41), we can write

=5y (43)

Y =0

9 ( i )

dy; \ |y'|* + oly')?
Moreover,

i["_‘(y—)] _Nf 524 ( v )i( Y )

yi Lo \ w12+ ()2 )] 2= OumOy \|[VI* +u3 /) Ou \|W'|* +3% )"
substitutingaty’ = 0’ and taking into account (43), we can write

e (o (w7
Oy Loy \|y']* + o(y')?

Let Fu) = ft1as. then,

_ 62'{5"
y' =0 - ﬂykijy;

r

(9,9000),,_y .y = A and (F,60)),, o =—(CIv-1+4),

where Iy is the identity matrix.
From hypothesis 9B n a0 = z,. Therefore the 'vertical' distance
(distance in the x 5 coordinate) between 90 and 9B is strictly positive, i.c.,
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V(') > /1= |z/|2 for all 2’ e N\ 0" with z = (2", 2x5) € Q1 B(xp),

or equivalently

[b(2)])? + |2’ > 1forall ' € N\ O with = = (2, 2x) € QN B(xp).

Set i) = ) + 2 for o’ € N witha = (+/,25) € Q1 B(ao). Then H(0') = 1,
and from the above inequality the pointx' = 0'is an strict minimum of the
function H. Due to (37) every derivative of H evaluated at 0' is zero, and
necessarily the Hessian matrix of H must be semi-positive definite, i.e.,

(U;;L-ajt-+a-aﬁja--a-m._,) o = A+ In-1,
k=1 N=1|_,_p,

is a semi-positive definite matrix. Hence the matrix -(4 + 21 n1 ) is
negative definite, and y' = 0' is a strict maximum of the function G. As a
consequence, there exists a8’ > 0 such that the matrix (i¢v),... .  is negative
definite for all y’ # By (0”). Consequently, the set U is a convex set.

Le us now choose v =max{G(y') | v € 8Bs(0')}. Due to yv = 0' is a strict
maximum of the function G, and that G(0') = 1, then y < 1. The cap
S -ev) and its reflection %, .-« are non empty sets contained in h(Q).
Hence the maximal cap § contains £._,.(-ev). which is nonempty, and
concludes that the maximal cap 5 is a nonempty set.
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