
PDF generated from XML JATS4R by Redalyc
Project academic non-profit, developed under the open access initiative

Revista Integración
ISSN: 0120-419X
Universidad Industrial de Santander

On the existence of a priori bounds for
positive solutions of elliptic problems, I

Pardo, Rosa
On the existence of a priori bounds for positive solutions of elliptic problems, I
Revista Integración, vol. 37, no. 1, 2019
Universidad Industrial de Santander
Available in: http://www.redalyc.org/articulo.oa?id=327062425005
DOI: 10.18273/revint.v37n1-2019005

http://www.redalyc.org/articulo.oa?id=327062425005
http://doi.org/


PDF generated from XML JATS4R by Redalyc
Project academic non-profit, developed under the open access initiative

Revista Integración, vol. 37, no. 1, 2019

Universidad Industrial de Santander

Received: 15 November 2018
Accepted: 20 December 2018

DOI: 10.18273/revint.v37n1-2019005

CC BY

Original articles

On the existence of a priori bounds for
positive solutions of elliptic problems, I

Sobre la existencia de cotas a priori para soluciones positivas de
problemas elípticos, I

Rosa Pardo a*

Universidad Complutense de Madrid, Spain

Abstract: is paper gives a survey over the existence of uniform L°
° a priori bounds for positive solutions of subcritical elliptic equations

 widening the known ranges of
subcritical nonlinearities for which positive solutions are a-priori bounded. Our
arguments rely on the moving planes method, a Pohozaev identity, W 1,q regularity for
q > N, and Morrey's eorem. In this part I, when p = 2, we show that there exists a-
priori bounds for classical, positive solutions of (P)2 with f (u) = u2*-1/[ln(e + u)]α, with
2* = 2N/(N - 2), and α > 2/(N - 2). Appealing to the Kelvin transform, we cover non-
convex domains.
In a forthcoming paper containing part II, we extend our results for Hamil-tonian
elliptic systems (see [22]), and for the p-Laplacian (see [10]). We also study the asymptotic
behavior of radially symmetric solutions u α = u α (r) of  (see [24]).
MSC2010: 35B45, 35J92, 35B33, 35J47, 35J60, 35J61.
Keywords: A priori estimates, subcritical nonlinearity, moving planes method,
Pohozaev identity, critical Sobolev hyperbola, biparameter bifurcation.
Resumen: Este artículo proporciona un estudio sobre la existencia de cotas
a priori uniformes para soluciones positivas de problemas elípticos subcríticos

 ampliando el rango conocido de no-
linealudades subcríticas para las que las soluciones positivas están acotadas a priori.
Nuestros argumentos se apoyan en el método de 'moving planes', la identidad de
Pohozaev, resultados de regularidad en W1,q para q > N, y el Teorema de Morrey. En esta
parte I, cuando p = 2 demostramos que existen cotas a priori para soluciones positivas
clásicas de  siendo 2* = 2N/(N-2), y para α > 2/(N - 2).
Consideramos también dominios no-convexos, recurriendo a la transformada de Kelvin.
En un siguiente artículo, parte II, extendemos nuestros resultados para sistemas
elípticos Hamiltonianos (ver [22]) y al p-Laplacian (ver [10]). También estudiamos el
comportamiento asintótico de las soluciones radialmente simétricas uα = uα (r) de 
cuando α → 0 (ver [24]).
Palabras clave: Estimaciones a priori, no-linealidades subcríticas, método de 'moving
planes', igualdad de Pohozaev, hipérbola crítica de Sobolev, bifurcación biparamétrica.

1. Introduction

We focus our attention on the following question: Under what growth
conditions on f, the nonnegative solutions to the Dirichlet problem will
be uniformly bounded? A priori bounds in the L ∞-norm of positive
solutions provided a great deal of information, and it is a longstanding
open problem.
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In this paper, we provide sufficient conditions for having a-priori L∞

bounds for a classical positive solutions to the boundary value problem

where Ω #  N, N > 2, is a bounded C2 domain, and f is a subcritical
nonlinearity.

For N = 2, Turner proved the following result. Let Ω be a simply
connected domain in R2 with C 2 boundary, let f be a continuous real-
valued function on Ω x  , and let us consider

If there are numbers p, A, B > 0 and C ≥ 0 such that 1 < p < 3, and
Aup ≤ f (x, u) ≤ max(BCp, Bup) for u ≥ 0, then all such solutions are a
priori bounded for some constant C = C(Ω,p, A, B, C). For 1 < p < 2,
an analogous result holds when Δ is replaced by a more general elliptic
operator. In case of radial symmetry, an analogous result holds for any p
> 1, if Aup ≤ f (u) for u ≥ C, and f (u) ≤ max(BDp, Bup) for some D ≥ 0
and all u ≥ 0 (see [27] and also [11, eorem 1.1]). Brezis and Turner in
[4] allow a more general nonlinearity:  with smaller growth,

 as u → ∞.
When N > 2, the exponent  of a nonlinearity f(s) = s 2*-1 is

critical from the viewpoint of Sobolev embedding; observe that 
and the embedding H 1 (Ω) in L* (Ω) is not compact. Pohozaev proved
that problem (1) does not have a solution if Ω is starshapped (see [25]),
and Bahri-Coron, and Ding proved that problem (1) has a solution if Ω
has non trivial topology in a certain sens, including some classes of non
star-shaped domains and in particular the case of rings (see [2], [12]).

If

then problem (1) is supercritical. Consider

where B is the unit ball, and

Joseph and Lundgren for balls in  N, N ≥ 3, provided sufficient
conditions guaranteeing that (2) has an unbounded sequence of positive
solutions (see [19]). eir results are obtained by a careful analysis
involving phase plane and qualitative arguments.

If
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the problem is of subcritical nature. e discussion given so far suggests
that the subcritical growth of / is a necessary condition for the existence
of a priori bounds for solutions to (1).

Nussbaum obtain a priori bounds for positive radial solutions in the
subcritical radial case, when there exist some δ > 0, s 0 > 0 such that 2NF(s)
- (N - 2)sf(s) ≥ δsf(s) for s ≥ s0. Here  see [23]. Observe that this
hypothesis covers the case when  for some  Consider
f(s) = s 2*-1-ε for ε > 0. It is well known that problem (1) has a solution
uε (see P. L. Lions [21] and references therein). Atkinson and Peletier for
balls in  3, and Han for the minimum energy solutions in non-spherical
domains, proved that there exists x 0 # Q and a sequence uε such that

 and  in the sense of distributions,
where 6 is the Dirac distribution, and C depends on N and on the best
Sobolev constant in  N (see [1], [18]).

A-priori bounds for subcritical nonlinearities on general domains
were raised by Gidas and Spruck in [16] as well as by Figueiredo, Lions
and Nussbaum in [11]. e blowup method together with Liouville type
theorems for solutions in  N and in the half space  was introduced
by Gidas and Spruck for nonlinearities essentially of the type /(x, s) =
h(x)s p , with p # (1, 2* - 1) and h(x) continuous and strictly positive.
De Figueiredo, Lions and Nussbaum [11] obtained a similar result using
a different method. In convex domains in particular, it is based on the
monotonicity results by Gidas, Ni and Nirenberg [14], obtained by using
the Alexandrov-Serrin moving plane method [26], (which provides a priori
bounds in a neighborhood of the boundary), on the Pohozaev identity [25]

and on the L p theory for Laplace equations given by Calderón-Zygmund
and Agmon, Douglis and Niremberg estimates (see [17]). ey extend
some of the results to non-convex smooth domains through the Kelvin
transform.

eir results assume on f the following condition:

ey conjecture that this condition is not necessary, but it is essential
in their proof. It can be see n that for f1(s) = s2*-1/ln(s + 2)α with α > 0,

where  (see [5, Remark 2.3]). We prove the existence of
apriori bounds when f (s) = s2*-1/ln(s + 2)α, with α > 2/(N - 2) (see
eorem 1.1).
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Next we include several subsections to describe our a priori bounds
results on semilinear elliptic equations, and on some non-convex regions.
We leave the proofs for the following sections.

1.1. Semilinear elliptic equations

We state the existence of a-priori bounds for classical positive solutions of
elliptic equations (1) when  with  and Ω #  N is a bounded,
convex C 2 domain (see Corollary 2.2 in [5]).

eorem 1.1. Assume that Ω #  N is a bounded domain with C 2

boundary.
Let us consider the BVP

with α > 2/(N - 2).
en, there exists a uniform constant C, depending only on Ω and f, such

that for every classical solution u > 0, to (3),

is eorem is in fact a Corollary of eorem 2.1 (see Subsection 2.3
for a proof of eorem 2.1; see also [5, Corollary 2.2]). e ideas of the
proof of eorem 2.1 lie on the following arguments:

Step 1. e moving planes method provides L∞ bounds in a
neighborhood of the boundary for classical positive solutions of (1).

Step 2. Pohozaev identity relates some integral defined on Ω with some
integral defined on the boundary. is equality, combined with bounds
in a neighborhood of the boundary, give us a uniformly bounded integral
in Ω.

Step 3. e bounded integral in Ω previously obtained through
Pohozaev identity, help us in lowering some L q (Ω) bound of f(u(·)).
Elliptic W 2,q -regularity with  and Sobolev embeddings provide us
W 1,q bounds, with q > N. rough Morrey's eorem, we estimate the
radius R of a ball where the function u exceeds half of its L ∞ bound, see
fig. 1.
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Figure 1
A solution u of (1), its L∞ norm, and the estimate of the radius R
such that  for all x # B(x0,R), where x0 is such that 

Step 4. We reason by contradiction assuming that there exists an
unbounded sequence of solutions {wfc}. Elliptic W 2,q -regularity with

 and Sobolev embeddings provide us W1,q bounds with q > N,
depending on k.

Step 5. rough Morrey's eorem, we estimate the radius Rk of a ball
where the function uk exceeds half of its L∞ bound, depending on k.

Step 6. Using this estimate we get a lower bound of the above uniformly
bounded integral obtained in Step 2, reaching a contradiction, and
deriving L∞ bounds for classical positive solutions of (1).

e moving planes method was used earlier by Serrin in [26]. Gidas,
Ni and Nirenberg characterized regions inside of Ω, where a positive
solution cannot have critical points (see [14], [15]). ey pose the following
problem (see [14, p. 223]): Suppose u > 0 is a classical solution of (1). Is
there some δ > 0 only dependent on the geometry of Ω (independent of f and
u) such that u has no stationary points in a δ-neighborhood of  ? is is
true in convex domains, and for N = 2. If f satisfies (H1) de Figueiredo,
Lions and Nussbaum show us that there are some C and δ > 0 depending
only on the geometry of Ω (independent of f and u) such that

where  (see [11] and eorem A.11). Moreover, if
f also satisfies (H4), then there exists a constant C depending only on Ω
and f but not on u, such that

(see [11] and eorem A.12).
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1.2. Ring-like regions

In eorem 2.1 and eorem 2.2 it is assumed either the monotonicity
of f (s)/s 2*-1 or the convexity of Ω respectively.

What about problems in non-convex domains or with nonlinearities
that do not satisfy the monotonicity of f (s)/s 2*-1? Building on the a priori
estimates previously established, we obtain a priori estimates for classical
solutions to elliptic problems with Dirichlet boundary conditions on
regions with convex-starlike boundary. is includes ring-like regions.

We will say that a domain Ω has a convex-starlike boundary if
 with  for some convex domain Ω1 #  N, and n(x)

· (x - y) < 0 for some y #  N and for all x # Γ2. Here n(x) denotes the
outward normal to the boundary  , see fig. 2 (a).

Figure 2
(a) A convex-starlike boundary. (b) A ring-like domain.

A particular case appears when Q = Qi \ Q 2 with Q 2 c Qi, where Qi is
convex, and Q 2 star-like, that is n2(x) • (x - y) > 0, for some y G RN, and
for all x G dQ 2 . Here n2(x) denotes the outward normal to the boundary
dQ 2 . In that case, we will say that Q is a ring-like domain, see fig. 2 (b).
Since (1) is invariant under translations, without loss of generality, we
may assume y = 0; in other words, we may assume Q2 to be star-like with
respect to zero.

eorem 1.2. Assume that Ω #  N is a bounded C 2 domain with convex-
starlike boundary. Let us consider the BVP

with α > 2/(N - 2).
en, there exists a uniform constant C, depending only on Ω and f, such

that for every classical solution u > 0 to (6),

Proof. It is a Corollary of eorem 3.1 (see also [8, eorem 2]). For
this particular type of nonlinearities, this result is included in eorem
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1.1. But in the abstrac setting, eorem 3.1 is not included in eorem
2.1, because we do not assume f (s)/s 2*-1 to be nonincreasing.

For the proof of eorem 3.1, we first prove a priori bounds near the
convex part of the boundary going back to [11]. Using that the boundary
term in the Pohozaev identity on the boundary of a star-like region does
not change sign, the proof is concluded.

is paper is organized in the following way. In Section 2 we state and
prove our abstract main theorem on a priori bounds for semilinear elliptic
equations. In Section 3 we state and prove one abstract theorem on a
priori bounds in a class of non convex domains.

We also collect some results on the a priori bounds in a neighborhood
of the boundary in two Appendices. In Appendix A we describe the
moving planes method, and its consequences when applied to a solution
in a convex domain (see eorem A.8). In Appendix B we apply the
moving plane methods on the Kelvin transform, and its consequences for
the general case (see eorem A.12). All those results are essentially well
known (see [11]). We include them for the sake of completeness and in
order to make precise statements clarifying which hypothesis are needed
in the convex case and in the non-convex case.

2. A priori bounds for semilinear elliptic equations

We provide a-priori L∞(Ω) bounds for a classical positive solutions to
the boundary value problem (1), where Ω #  N, N > 2, is a bounded C2

domain, and f is a subcritical nonlinearity.
Our main result in this Section are the following two theorems. e

first one is on general smooth domains. e proof can be read in [5], we
include it by the sake of completeness.

eorem 2.1. Assume that Ω #  N is a bounded domain with C 2

boundary. Assume that the nonlinearity f is locally Lipschitzian and satisfies
the following conditions:

(H1)  is nonincreasing for any s > 0.
(H2) ere exists a constant C1 > 0 such that 
(H3) ere exists a constant C2 > 0 and a non-increasing function

 such that

(H4)  where λ1 is the first eigenvalue of -Δ acting on 
en, there exists a uniform constant C, depending only on Ω and f, such

that for every classical solution u > 0 to (1),
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If the domain Ω is convex, we have the following result:
eorem 2.2. Assume that Ω #  N is a bounded, convex domain with C

2 boundary. Assume that the nonlinearity f is locally Lipschitzian, satisfies
(H2)-(H4), and also the following conditions:

(H1)' ere exists a constant C 0 > 0 such that 
en, there exists a uniform constant C, depending only on Ω and f, such

that for every classical solution u > 0 to (1),

Our analysis extends previous results, widen the known ranges of
subcritical nonlinearities for which positive solutions are apriori bounded
and also applies to non-convex domains.

All those results are known (see [5]). We include the proofs for the
sake of completeness. Our proofs of eorem 2.1 and eorem 2.2, as in
[11], use moving plane arguments, the Kelvin transform, and a Pohozaev
identity (see [25]). ese ideas are well known but we combine them in a
slightly different way.

e moving planes method was used by Serrin in [26]. Gidas, Ni and
Nirenberg in [14], using this moving planes method and the Hopf Lemma,
prove symmetry of positive solutions of elliptic equations vanishing on
the boundary. See also Castro-Shivaji [9], where symmetry of nonnegative
solutions is established for f (0) < 0. In [14] the authors also characterized
regions inside Ω, next to the convex part of the boundary, where a positive
solution cannot have critical points. ose regions, called maximal caps,
depend only on the local convexity of Ω, and are independent of f and
u (see the Appendix A.2 for a precise definition of maximal cap). is
non-existence of critical points in a maximal cap, is due to the strict
monotonicity of any positive solution in the normal direction. is is
a key point to reach local a priori bounds in a neighborhood of the
boundary.

e arguments split into two ways, depending on the convexity of
the domain. e reason is the following one. If Ω is convex, and the
nonlinearity f satisfies (H4), then any positive solution is a priori bounded
in a neighborhood of the boundary; more precisely, there exists a constant
C depending only on Ω and f but not on u, such that (5) holds (see [11]

and eorem A.8).
If Ω is a general bounded domain, not necessarily convex, the argument

on the a priori bounds in a neighborhood of the boundary relies on the
Kelvin transform. In that case, if the nonlinearity f satisfies (H1) and
(H4), then any positive solution is a priori bounded in a neighborhood
of the boundary, in other words, conclusion (5) is reached, (see [11] and
eorem A.12). We include this eorems in Appendix A and B in order
to clarify which hypothesis are needed in the convex case and in the non-
convex case respectively. e starting point in the proof of eorems 2.1
and 2.2 are a priori bounds in a neighborhood of the boundary (eorems
A.12 and A.8, respectively).
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In [6] and [7] we study the associated bifurcation problem for a
nonlinearity λu+g(u) with g subcritical. We provide sufficient conditions
guarantying that either for any λ < λ1 there exists at least a positive
solution, or for any continuum (λ,u λ ) of positive solution, there exists a
λ* < 0 such that λ* < λ < λ1 and

(see [7, eorem 2]). In case Q is convex, for any λ < λ1 there exists at
least a positive solution (see [6, eorem 1.2]).

2.3. Proof of eorems 2.1 and 2.2
Let us start this Subsection with the following remark.
Remark 2.3. By hypothesis,  is a non-increasing function,

therefore 0 ≤ lim s→∞ H(s) < ∞.
By hypothesis (H3.2) we also conclude that 
Next, we prove eorem 2.2 (we recall the ideas collected on

Subsection 1.1).
Proof of eorem 2.2. Step 1. From (5) and de Giorgi-Nash type

eorems (see [20, eorem 14.1]),

where 
From Schauder interior estimates (see [17, eorem 6.2]),

Finally, combining L p estimates with Schauder boundary estimates
(see [3], [17]),

Consequently, there exists two constants C, δ > 0 independent of u
such that

Step 2. From hypothesis (H3.1), there exists a constant C3 > 0 and a
non-increasing function H such that

Applying this inequality to any positive solution, and integrating on Ω,
we obtain that

for some constant C4 independent of u. From now on, throughout this
proof C denotes several constants independent of u.
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From a slight modification of Pohozaev identity (see [11, Lemma 1.1]
and [25]), if y #  N is a fixed vector, then any positive solution u of (1)
satisfies

is, (8) and (7) yield

for some constant C independent of u. Next we prove that also

From hypothesis (H4), there exists a constant C such that if s > C then
f (s) > 0. erefore, splitting the above integral in the set S = {x # Ω : |
u| ≤ C} and its complementary Ω \ S, since from (9)  then
(10) holds.

Step 3. From hypothesis (H3.2),  Multiplying numerator and
denominator by  we can assert that there exists a constant C such
that

Applying this inequality to any positive solution, integrating on Ω, and
using (10) we obtain that

Consequently, since H is non-increasing,

for any q > N/2.
erefore, from elliptic regularity (see [17, Lemma 9.17]),

Let us restrict q # (N/2, N). From Sobolev embeddings, for 1/q* = 1/
q - 1/N with q* > N we can write
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From Morrey's eorem (see [3, eorem 9.12 and Corollary 9.14]),
there exists a constant C only dependent on Ω, q and N such that

erefore, for all x # B(x1, R) # Ω,

Step 4. From now on, we shall argue by contradiction. Let {uk}k be a
sequence of classical positive solutions to (1) and assume that

Let C, δ > 0 be as in (5). Let  be such that

By taking a subsequence if needed, we may assume that there exists
 such

Let us choose Rk such that B k = B(xk, Rk) # Ω, and

and there exists  such that

Let us denote by

erefore, we obtain

en, reasoning as in (11), we obtain

From elliptic regularity (see (12)) we deduce
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Step 5. From Morrey's eorem (see (13)), for any x # B(xk, Rk)

Particularizing x = yk in the above inequality and from (14) we obtain

which implies

or equivalently

Step 6. Consequently, taking into account (15), and that H is non-
increasing,

where w = wN is the volume of the unit ball in  N.
Due to B(xk, Rk) # Ω , substituting inequality (16), and rearranging

terms, we obtain
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At this moment, let us observe that from hypothesis (H1)' and (H2),

Hence, taking again into account hypothesis (H2), and rearranging
exponents, we can assert that

Finally, we deduce

and from hypothesis (H3.2),

which contradicts (9), ending the proof.
Next, we prove eorem 2.1:
Proof of eorem 2.1. Clearly hypotheses (H1) implies hypotheses

(H1)'.
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For non-convex domains, we use the Kelvin transform to get the a-
priori bounds in a neighborhood of the boundary. Let us observe that
we need additionally hypothesis (H1) (see eorem A.12). All the other
arguments work exactly in the same way as in the above proof.

3. A priori estimates in a class of non-convex regions

In this Section we prove a priori bounds for the positive solutions to the
boundary-value problem

where  is a bounded C2 domains with convex-starlike
boundary, including ring-like regions, and  is a subcritical
nonlinearity.

Let λ1, ϕ 1 stand for the first eigenvalue, first eigenfunction, of the
problem - Δϕ 1 = λ1 ϕ 1 in 

Our main result is:
eorem 3.1. Assume that  is a bounded C 2 domain with convex-

starlike boundary. If the nonlinearity f is locally Lipschitzian and satisfies:
(H1) ere exist contants C 0 > 0, β 0 # (0,1) such that 
(H2) ere exists a constant C 1 > 0 such that 
(H3) ere exists a constant C 2 > 0 and a non-increasing function

 such that

(H4)  where λ1 is the first eigenvalue of -Δ acting on 
en there exists a uniform constant C, depending only on Q and f, such

that for every classical solution u > 0 to (17),

Unlike results in [11] or [8], we do not assume  to be nonincreasing.
e proof can be read in [8], we include it here by the sake of completeness.

Proof of eorem 3.1. Step 1. Due to n(x) · x < 0 for all x # Γ2, we can
choose ε > 0 such that if x # Γ1 and d(x, Γ2) < ε, then n(x) · x < 0. Let us

 and 
From now on, throughout this proof C denotes several constants

independent of u. From 5 and de Giorgi-Nash type eorems (see [20,
eorem 14.1]),
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where wt : = {x # Ω : d(x, Γ’ 1 i) < t}.
From Schauder interior estimates (see [17, eorem 6.2]),

Finally, combining L p estimates with Schauder boundary estimates
(see [3], [17]),

Consequently, there exists two constants C, δ > 0 independent of u,
such that

Step 2. Any classical solutions to (17) satisfies the following identity,
known as Pohozaev identity (see [25]):

where n(x) is the outward normal vector to the boundary at 
Since u vanishes on  , for any tangential vector t(x) we have

Moreover, since  is a convex-starlike boundary, for each
 we have

and T(x) is tangential to  . In particular, (20) holds for any x # Γ'2.
Since  and (20),

Substituting F(u(x)) = 0 for all  and (20)-(21) in (19) we have

Also, since s(x) ≤ 0 for all x # Γ’2, from (22), and (18),

Next we prove that also
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From hypothesis (H4), there exists a constant C such that if s > C, then
f (s) > 0. From hypothesis (H3.1), in particular, there exists a constant
C such that if s > C, then 2NF(s) - (N - 2)sf (s) > 0. Splitting the above
integral in the set S = {x # Ω : |u| ≤ C} and its complement Ω\S, since
from (23)  then (24) holds.

All other arguments work as in eorems 2.1, 2.2 (see also [8]).
A. Appendix I: e moving planes method, the Kelvin transform, and a

priori bounds in a neighborhood of the boundary
In this Appendix, we collect some well-known results on the

moving planes method: eorem A.1 and eorem A.4. Next, we
state results concerning a-priori bounds in a neighborhood of the
boundary: eorems A.8, and A.12. e remaining theorems indicates
the arguments through the Kelvin transform, eorem A.9 fix regions
where a Kelvin transform of the solution has no critical points, and
eorems A.10, A.11 translate those results to the solution. All those
results are essentially well known (see [11]); we include it here in order
to clarify which hypotheses are used in the convex case and in the non-
convex case.

A.J. e Kelvin transform
Let us recall that every C2 domain Ω satisfies the following condition,

known as the uniform exterior sphere condition:

Figure 3
(a) e exterior tangent ball and the inversion of the boundary into the unit
ball. (b) A maximal cap  in the transformed domain h(Ω). (c) e set h -1 (

 ) (i.e., the inverse image of the maximal cap  ) in the original domain Ω.

(P) there exists a p > 0 such that for every  there exists a ball
 such that 

Let  and let  be the closure of a ball intersecting  only at the
point x0. Let us assume x 0 = (1, 0, … , 0), and B is the unit ball with center
at the origin. e inversion mapping
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is an homeomorphism from  into itself; observe that h(h(x)) =
x. We perform an inversion from Q into the unit ball B, in terms of the
inversion map h|Ω (see fig. 3

(a)).
Let u solve (1). e Kelvin transform of u at the point  is defined

in the transformed domain  by

A.2. e moving planes method
We move planes in the x1-direction to fix ideas. Let us first define some

concepts and notations.

- e moving plane is defined in the following way: 
- the cap: 
- the reflected point: 

Figure 4
(a) A cap Σλ and its reflected cap  in the ei direction. (b) A cap Σλ (-e1)

and its reflected cap  (-e1) (in the -e1 direction). (c) A maximal cap Σ (-e1).

- the reflected cap: : = {xλ: x # Σλ (see fig. 4(a));
- the minimum value for λ or starting value: 
- the maximum value for 
- the maximal cap: .

e following eorem is eorem 2.1 in [14].
eorem A.1. Assume that f is locally Lipschitz, that Ω is bounded and

that  and Σ are as above. If  satisfies (1) and u > 0 in
Ω, then for any λ # (λ0, λ*)

Furthermore, if  at some point in Ω # Tλ* , then u is symmetric with
respect to the the plane Tλ* , and 

Proof. See [14, eorem 2.1 and Remark 1, p.219] for f # C 1 and locally
Lipschitzian respectively.

Remark A.2. Set  (see fig. 4(a)). Let us observe that by
definition of A0, TAo is the tangent plane to the graph of the boundary
at x0, and the inward normal at x0, is ni(x0) = e1. e above eorem says
that the partial derivative following the direction given by the inward
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normal at the tangency point is strictly positive in the whole maximal cap.
Consequently, there are no critical points in the maximal cap.

Now, we apply the above eorem in any direction. According to
the above eorem, any positive solution of (1) satisfying (H1) has no
stationary point in any maximal cap moving planes in any direction. is
is the statement of the following Corollary. First, let us fix the notation
for a general  with |v | = 1. We set

- the moving plane defined as: 
- the cap: Σλ(V) = {x # Ω : x · v < λ};
- the reflected point: x λ (v) = x + 2(λ - x · v)v;
- the reflected cap:
- the minimum value of 
- the maximum value of λ: λ*(z/) = max{λ : Ti' (v) C Ω for all /x < λ};
- and the maximal cap: 

Finally, let us also define the optimal cap set

Applying eorem A.1 in any direction, we can assert that there are
not critical points in the union of all the maximal caps following any
direction. e set  is the union of the maximal caps in any direction,
and in particular, the maximum of a positive solution is attained in the
complement of  . us we have:

Corollary A.3. Assume that f is locally Lipschitzian, that Ω is bounded,
and that  is the optimal cap set defined as above.

If  is a boundary neighborhood of  in  , as it happens in convex
domains, then there is e > 0 depending only on the geometry of Ω
(independent of f and u) such that u has no stationary points in a ε-
neighborhood of  . Next we study the case in which  is not a
neighborhood of  in Ω.

We prove that the maximum of u in the whole domain Ω can be
bounded above by a constant multiplied by the maximum of u in some
open set strongly contained in Ω (see eorem A.11 below).

To achieve this result, we will need the moving plane method for
a nonlinearity f = f(x, u). Next we study this method on nonlinear
equations in a more general setting. Let us consider the nonlinear
equation
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where  is a real function, F = F{x, s,p, r) and
 e operator F is assumed to be elliptic, i.e., for positive constants

m, M,

On the function F we will assume:
(F1) F is continuous and differentiable with respect to the variables s,p

i ,r i,j , for all values of its arguments 
(F2) For all  satisfies either

(F3) F satisfies

e following theorem is eorem 2.1' in [14].
eorem A.4. Assume that Ω is bounded and that  and

Σ are as above. Let F satisfies conditions (F1), (F2) and (F3).
If  satisfies (27) and u > 0 in Ω, then for any λ # (λ0, λ*)

Furthermore, if  at some point Ω # Tλ* en necessarily u is symmetric
in the plane Tλ*, and 

As an immediate corollary in the semilinear situation we have the
following one.

Corollary A.5. Suppose  ¿s a positive solution of

Assume f = f(x, s) and its first derivative f s are continuous, for 
Assume that

en for any λ # (λ 0, λ*)

Furthermore, if  at some point in Ω # Tλ* , then necessarily u is
symmetric in the plane Tλ*, and 

Set  e above eorem says that the partial derivative
following the direction given by the inward normal, ni(x0), at the tangency
point x0, is strictly positive in the whole maximal cap Σ = Σ (ni(x0));
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consequently, the function g(t) := u(x0 + tn¡(x0)) is non-decreasing for t
# [0,t0] for some t 0 = t0(x0) > 0.

Now consider a neighborhood of x0 denoted by Bδ 0(x0). We can
observe that for any  also the function g(t) := u(x +
tni(x0)) is non-decreasing for t # [0, t0] for some t0 = t0(x0, x) > 0. By
choosing points x such that dist(x, Tλ* (ni(x0))) > δ, we see that the
function g(t) := u(x + tni(x0)) is non-decreasing for t # [0, δ] for any

 .
Now, let us move to a different cap, in a neighborhood of x0. We apply

the idea, to their corresponding maximal caps Σ, with their corresponding
vectors v. en, choosing points in the intersection of the maximal caps,
such that dist(x,Tλ(v)) > δ, also the function g(t) := u(x + tv) is increasing
for t # [0, δ]. is is the statement of the following two corollaries, whose
ideas are contained in [11].

Corollary A.6. Assume that Ω is bounded and that
 and Σ(v) are as above.

Suppose  is a positive solution of (28). Assume f = f(x,s) and its
first derivative f s are continuous, for 

Let  such that Σ = Σ(ni(x0)) ≠ #. Assume also that there exists a
μ > 0 such that

where v # #N is such that |v| = 1, and v · ni(x0) ≥ μ.
en, there exists δ > 0 depending only on the geometry of Ω, independent

of f and u, such that the following holds:
the function

for any v # #N , such that |v| = 1, v · ni(x0) ≥ μ, and for any  such
that

For each point in a δ /2 neighborhood of the boundary, there exists a
cone K depending on the point, such that the function at that point is
less or equal than the function at any point of the cone K. Now, we can
choose a subset K1 # K depending on the point, but whose measure can
be made independent of the point; remember that the function at that
point is still less or equal than the function at any point of the subset K’.
is is the statement of the following corollary, whose ideas, as we already
said, are included in [11].

Corollary A.7. Assume that Ω is bounded and that
 and Σ(v) are as above. Assume all the

hypothesis of Corollary A.6 holds. Let δ > 0 be as described in Corollary A.6.
en, for any x 1 = x +t 1 v with 0 <t 1 < δ /2, the function
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for any v # #N , such that |v| = 1, v · ni(x0) ≥ μ, and for any  such
that

Moreover, there exists a positive number γ (depending only on the
geometry of Ω, and independent of f and u), such that:

for any x 1 = x + t1 v with 0 < t1 < δ /2, there exists a cone with vertex
 and a piece of that cone K' = K'(x 1 ) such that

A.3. A priori bounds in a neighborhood of the boundary
From now on, the arguments split into two ways, depending on the

convexity of the domain. If Ω is convex, we observe that, reasoning as
in [11], specifically, using Corollary A.6 and Corollary A.7, any positive
solution u is locally increasing in the maximal cap following directions
close to the normal direction, which provides L∞ bounds locally in a
neighborhood of the boundary. is is the statement of the following
eorem.

eorem A.8. Assume that Ω # #N is a bounded, convex domain with C
2 boundary. Assume that the nonlinearity f satisfy (H4).

If  satisfies (1) and u > 0 in Ω, then there exists a constant δ > 0
depending only on Ω and not on f or u, and a constant C depending only on
Ω and f but not on u, such that

Proof. As observed in [4], [11, p. 44], [23], [27], under hypothesis (H4),
there exists a constant C 1 > 0 such that

for any u solving (1).
Next, we will use Corollary 3.7. Let us fix an arbitrary  and let

n i (x 0 ) be the inward normal at the boundary point x 0 . Choose any v
# #N such that |v | = 1, and v · n i (x n ) ≥ μ for some μ > 0 fixed. From
Corollary 3.6, there exists a δ > 0 depending only on the geometry of Ω,
and independent of f and u, such that the function g(t) := u(x + tv) is non
decreasing for any t # [0,δ], and for any  in a certain neighborhood
of x 0. e neighborhood of x 0 depends only on the convexity of Ω, and
it is independent of f and u.
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Taking into account that all the hypotheses of the mentioned
Corollary 3.7 hold, and using specifically Corollary 3.7 (iii), we deduce
that for any x1 = x+t1 v # Ω, with 0 <t1 < δ/2, there exists a cone
with vertex  and a piece ot that cone

 such that |K'| ≥ γ > 0, and

Taking into account (30), (31), and Corollary 3.7 (i), we deduce that

Consequently, there exists a constant C only dependent on f and on
the geometry of Ω such that

en there exists a constant δ > 0, depending only on Ω and not on
f or u, and a constant C depending only on Ω and f but not on u, such
that (29) holds. 0

Next, we go through the non-convex case, reasoning on the Kelvin
transform. First, in eorem A.9, we fix regions where a Kelvin transform
of the solution has no critical points. is is the statement of the following
theorem, whose ideas are contained in [11]. Let us fix some notation. For
any  be the inward normal at x 0 in the transformed domain

 where h is defined in (25), and let  be its maximal cap (see
fig. 3(b)).

eorem A.9. Assume that Ω # #N is a bounded domain with C 2

boundary. Assume that the nonlinearity f satisfies (H1).
If u  satisfies (1) and u > 0 in Ω, then for any  its maximal

cap in the transformed domain  is nonempty, and its Kelvin transform v,
defined by (26), has no critical point in the maximal cap  .

Consequently, for any  , there exists a δ > 0 only dependent of Ω
and x 0 , and independent of f and u, such that its Kelvin transform v has no
critical point in the set Bδ(x0) # h(Ω).

Proof. Since Ω is a C 2 domain, it satisfies a uniform exterior sphere
condition (P). Let  , and let  be the closure of a ball intersecting

 only at the point x0. For convenience, by scaling, translating and
rotating the axes, we may assume that x0 = (1 , 0, … , 0), and B is the unit
ball with center at the origin.

We perform an inversion h from Ω into the unit ball B, by using the
inversion map  Due to  and to the boundedness of
Ω, there exists some R> 0 such that

and the image
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Note that  (see fig. 3(a)). Moreover, Ω is strictly convex near x0

and the maximal cap  contains a full neighborhood of x0 in 
where ñi(x0) is the normal inward at x0 (see lemma B.1 in the Appendix;
see also fig. 3(b)). Observe that, by construction ñi(x0) = -e 1 .

Next, we consider the Kelvin transform of the solution defined by (26).
e function v is well defined on h(Ω), and writing  and Δw for
the Laplace-Beltrami operator on  the function v satisfies

erefore, v > 0 in  satisfies

From hypothesis (H1), we see that the function

satisfies the hypothesis of Corollary A.5. By construction, it is
straightforward that |yλ| < |y| for all y #  (see fig. 3 (a) and (b), and remain
that the origin is at the center of the ball B). By (H1),

where  is the maximal cap in the transformed domain (see fig. 3(b)).
erefore, the hypotheses of Corollary A.5 are fulfilled, and hence v
has no critical point in the maximal cap  , which completes the proof
choosing δ such that 

We are now ready to state the following theorem, essentially contained
in [11]. is result is composed of two theorems: the first one, eorem
A.10 below, is the local version in a neighborhood of a boundary point;
the second one, eorem A.11, is the global version.

eorem A.10. Assume that Ω # #N is a bounded domain with C 2

boundary. Assume that the nonlinearity f satisfies (H1).
If u  satisfies (1) and u > 0 in Ω, then for any  there exists

a δ > 0 only dependent of Ω and x 0 , and independent of f and u such that

e constant C depends on Ω but not on x 0 , f or u.



Rosa Pardo. On the existence of a priori bounds for positive solutions of elliptic problems, I

PDF generated from XML JATS4R by Redalyc
Project academic non-profit, developed under the open access initiative

Proof. Let  ; if there exists a δ > 0 such that  (as
it happens in convex sets), the proof follows from eorem A.9. We
concentrate our attention in the complementary set.

Let  , and let  be the closure of a ball intersecting  only at the
point x0 . Let v be as defined in (26) for  By a direct application of
eorem A.9, v has no critical point in the maximal cap Σ, and therefore

From definition of v, see (26), we obtain that

where  is the inverse image of the maximal cap (see fig 3(b)-(c)).
Due to the boundedness of Ω (see (32)), we deduce

which concludes the proof choosing C = RN-2 and δ such that 
and therefore 

e following eorem is just a compactification process of the above
result.

eorem A.11. Assume that Ω # #N is a bounded domain with C 2

boundary. Assume that the nonlinearity f satisfies (H1).
If  satisfies (1) and u > 0 in Ω, then there exists two constants C

and δ depending only on Ω and not on f or u such that

where 
Proof. Since Ω is a C2 domain, it satisfies a uniform exterior sphere

condition (P). anks to that property, we can choose a constant C = (R/
p) N-2 satisfying the above inequality.

Moreover, let us note that from eorems A.9 and A.10, the constant
S only depends on geometric properties of the domain Ω.

Finally, we observe that, reasoning as in [11] on the Kelvin transform,
specifically using Corollary A.6 and Corollary A.7, the Kelvin transform
of u at  is locally increasing in the maximal cap of the transformed
domain, which provides L∞ bounds for the Kelvin transform locally. By
a compactification process, we then translate this into L°° bounds in a
neighborhood of the boundary for any solution of the elliptic equation.
is is the statement of the following theorem.

eorem A.12. Assume that Ω C RN is a bounded domain with C 2

boundary. Assume that the nonlinearity f satisfies (H1) and (H4).
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If  satisfies (1) and u > 0 in Ω, then there exists a constant δ > 0
depending only on Ω and not on f or u, and a constants C depending only
on Ω and f but not on u, such that

where 
Proof. We shall reason as in the proof of eorem A.8. As observed in

[4], [11, p. 44], [23], [27], under hypothesis (H4), there exists a constant C1

> 0 such that

for any u solving (1).
Let us fix an arbitrary  and consider the Kelvin transform of u at

the point  , denoted by v = v(x0).
Next, we use Corollary A.7 on the Kelvin transform. We only need to

note that, by construction, it is straightforward that there exists a 
such that for any v # #N such that |v| = 1 and  (observe that
ñi(x0) = ne(x0)), the following holds:

(see fig. 3 (a) and (b), and remember that the origin is at the center of
the ball E); then, by (H1), and taking into account the definition of g (see
(33)), we obtain

erefore, all the hypothesis of Corollary A.7 hold. Now, using
Corollary A.7 (iii), we deduce that there exist  only dependents
on the geometry of Ω, such that for any  with

 there exists a cone  and a subset  such that
 and

From definition of v, there exists a constant C only dependent on the
geometry of Ω such that

where x1 = h-1(y1), x = h-1(y).
Taking into account (35), (36), and Corollary A.7 (i), we deduce that



Rosa Pardo. On the existence of a priori bounds for positive solutions of elliptic problems, I

PDF generated from XML JATS4R by Redalyc
Project academic non-profit, developed under the open access initiative

Consequently, there exists a constant C only dependent on f and on
the geometry of Ω such that

Now we move  and consider their corresponding Kelvin
transforms. By a compactification process, there exists a constant δ > 0
depending only on Ω and not on f or u, and a constants C depending only
on Ω and f but not on u, such that (34) holds.

B. On the maximal cap in the transformed domain through the inversion
map

In this Appendix we show that for any boundary point of a C2 domain,
the maximal cap in the transformed domain is nonempty. is is a known
result, but we include it here by the shake of completeness.

is result could see m surprising in presence of highly oscillatory
boundaries. For example, assume that the boundary of Ω includes

 (to visualize the scale, see in fig.

Let h(Γ2) be the image through the inversion map into the
unit ball B, and let Γ3 be the arc of the boundary  given by

 (see fig. 5(c)). At this scale, the
oscillations are not appreciable. We plot in 5(d) the derivative of the
"vertical" distance between the boundary Γ2 and the ball, concretely we
plot f'(x) - g'(x) for x # [-0.01,0.01]. We plot in 5(e) the second derivative
of the "vertical" distance between the boundary and the ball, which is f
''(x) - g''(x) for x # [-5 · 10-4, 5 · 10-4]. Let us observe that this second
derivative is strictly positive, and that f ''(0) - g''(0) = 1. Consequently, the
first derivative is strictly increasing, and therefore the "vertical" distance
f(x) - g(x) does not oscillate.
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Figure 5
(a) An inflection point at the boundary Γ1 joint with the inversion h(Γ), and the unit

circumference; (b) A degenerated critical point at the boundary Γ2; (c) Γ2 joint with its
inversion into the unit ball, h(Γ2 ), and the arc of circumference, Γ3 ; (d) f ' (x) - g'(x)
for x # [-0.01, 0.01]; (e) f''(x) - g''(x) for x # [-5 · 10-4, 5 · 10-4]; (f) Second coordinate
of the difference h(Γ2 ) - h(x, 1), where h(x, 1) is the image of the straight line y =1;

(g) a zoom of the same graphic; (h) Second coordinate of the difference h(Γ2) - h(Γ3).

Moreover, let us consider the image through the inversion map of the
straight line y = 1, i.e. h(x, 1) = h ({(x, 1), x # [-0.01, 0.01]}). In fig. 5(f)-
(g) we plot the second coordinate of the difference h(Γ2) - h(x, 1). e
oscillation phenomena is present here. In fig. 5(h) we plot the second
coordinate of the difference h(Γ2) - h(  ). is difference does not
oscillate.

In fig. 5(a) we draw the inversion of the boundary into the unit ball
at an inflexion point; more precisely we set 
which has an inflexion point at x = 0.

Let h denote the inversion map defined in (25), and let 
denote the image through the inversion map into the ball B. For any

 ) be the normal inward at x0 in the transformed domain 
and let  ) be its maximal cap (see fig. 3(b)).

Lemma B.1. If Ω # #N is a bounded domain with C2 boundary, then for
any  , there exists a maximal cap  non empty.

Proof. For convenience, we assume x0 = (0, … , 0, 1),
and B is the unit ball with center at the origin such that

 denote a parametrization of  in a
neighborhood of x0. Hence,
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Let h(Ω) stand for the image through the inversion map into the unit
ball. From definition,  is given by

Set y = h(x', ψ(x')) for  and with y = (y', yN). Since

for  , then  for  where  if, and only if, 
for some  . erefore,

and

where

Differentiating (38) with respect to yN we obtain

Substituting at (y , yN) = (0 , 1) and taking into account (37),

erefore, by the Implicit Function eorem there exists an
open neighborhood of 0 , Bδ(0') # #N-1, and a unique function

 such that ϕ(0') = 1, and

Differentiating (39) with respect to yj, j = 1, … , N - 1, using the chain
rule and substituting at the point (0 , 1), we obtain

On the other hand, differentiating (38) with respect to y¿ and using the
chain rule we obtain
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Substituting at (y',y N) = (0', 1) and taking into account (37),

Consequently, by (40)

Let us define

By (37), g(0') = 1, and G(0') = 1. Moreover,

And

Let us see that there exists 0 < δ' ≤ δ such that

is a convex set. To achieve this, we use a characterization of convexity in
the twice continuously differentiable case (see [13, p. 87-88]). e set U is
a convex set if, and only if, D 2 G(y') is negative semidefinite for all y' # B δ (0').
In fact, we will prove that D 2 G(0') is negative definite and by continuity,
there exists some δ' > 0 such that D 2 G(y') is negative semidefinite for all
y' # Bδ' (0'). Differentiating,

And

where  Substituting at y' = 0', and taking into account (37), we
deduce

Taking second derivatives for k = 1, … N - 1, we obtain
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And

where  Substituting at y' = 0', and taking into account (37), we
deduce

Substituting at y’ = 0’ , and taking into account (42), we deduce

Due to

where δ ij is the Kronecker's delta, substituting at y ' = 0 ', and taking
into account (41), we can write

Moreover,

substituting at y’ = 0’ , and taking into account (43), we can write

Let  then,

where IN-1 is the identity matrix.
From hypothesis  erefore the 'vertical' distance

(distance in the x N coordinate) between  and  is strictly positive, i.e.,
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or equivalently

Set  for  with  en H(0') = 1,
and from the above inequality the point x' = 0' is an strict minimum of the
function H. Due to (37) every derivative of H evaluated at 0' is zero, and
necessarily the Hessian matrix of H must be semi-positive definite, i.e.,

is a semi-positive definite matrix. Hence the matrix -(A + 2I N-1 ) is
negative definite, and y' = 0' is a strict maximum of the function G. As a
consequence, there exists a δ’ > 0 such that the matrix  is negative
definite for all y’ # Bδ’ (0’). Consequently, the set U is a convex set.

Le us now choose  Due to y' = 0' is a strict
maximum of the function G, and that G(0') = 1, then γ < 1. e cap

 and its reflection  are non empty sets contained in h(Ω).
Hence the maximal cap  contains  which is nonempty, and
concludes that the maximal cap  is a nonempty set.
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