

Revista Integración ISSN: 0120-419X Universidad Industrial de Santander

Continuous images of hereditarily indecomposable continua

Bellamy, David P.

Continuous images of hereditarily indecomposable continua
Revista Integración, vol. 37, no. 1, 2019
Universidad Industrial de Santander
Available in: http://www.redalyc.org/articulo.oa?id=327062425007
DOI: 10.18273/revint.v37n1-2019007

Original articles

Continuous images of hereditarily indecomposable continua

Imágenes continuas de continuos hereditariamente indescomponibles

David P. Bellamy ^{a*} bellamy@udel.edu *University of Delaware, USA*

Abstract: The theorem proven here is that every compact metric continuum is a continuous image of some hereditarily indecomposable metric continuum. *MSC2010:* 54F15, 54F45, 54E45, 54C60.

Keywords: Continuous maps, continuum, hereditarily indecomposable.

Resumen: El teorema demostrado es que todo continuo métrico es imagen continua de algún continuo métrico hereditariamente indescomponible.

Palabras clave: Funciones continuas, continuo, hereditariamente indescomponible.

Revista Integración, vol. 37, no. 1, 2019

Universidad Industrial de Santander

Received: 16 November 2018 Accepted: 04 June 2019

DOI: 10.18273/revint.v37n1-2019007

CC BY

1. Introduction

These definitions are needed in what follows and may or may not be familiar to everyone. A *continuum* X is a compact, connected metric space. A continuum X is *indecomposable* provided that whenever A and B are proper subcontinua of X, A # B is a proper subset of X; X is *hereditarily indecomposable* if, and only if, every subcontinuum of X is indecomposable. A *map* is a continuous function. A map A from a continuum A to a continuum A is a continuum, A is the hyperspace of subcontinua of A is and A are points in A with A is the hyperspace of subcontinua of A in A is a continuum only if there is a homeomorphism A is A is A are A is an arc of a great circle in A in A is an arc of a great circle in A in A in A is an arc of a great circle in A is an arc of a great circle in A in A

In ^[4] J. W. Rogers, Jr. asked whether every continuum is a continuous image of some indecomposable continuum. The author ^[1] gave an affirmative answer to this question.

Sometime later, in conversation, Rogers asked whether every continuum is a continuous image of some hereditarily indecomposable continuum. This article provides a proof that the answer to this question is also yes.

The author first announced this result in ^[1] but has not published it previously. It has come to my attention that in ^[4] this result has been extended to the non-metric case, building on the metric result.

2. Necessary Lemmas

Lemma 2.1. Let X and Y be continua. Then $f: X \to Y$ is weakly confluent if, and only if, the hyperspace map induced by f, $C(f): C(X) \to C(Y)$, is surjective.

Proof. This is just a restatement of the definition of weakly confluent.

Lemma 2.2. There exists a hereditarily indecomposable subcontinuum of #4 which separates #4.

Remark on proof. R. H. Bing $^{[2]}$ proved this not just for n = 4, but for every n > 1.

Lemma 2.3. Each homotopically essential map from a continuum X to the three sphere, S^3 , is weakly confluent.

Proof. This was essentially proven, although in a different context, by S. Mazurkiewicz in [5, Theoreme I, p. 328]. This argument gives the necessary details. Let X be a continuum, and suppose g: $X \rightarrow S^3$ be a homotopically essential map. To prove that g is weakly confluent, it suffices to prove that every tame arc in S^3 is equal to g(M) for some continuum M # X. This follows from Lemma 2.1 because the set of tame arcs is dense in $C(S^3)$.

First, set up some machinery and notation, as follows. Let J be a tame arc in S³; let D_n be the closed disk in the complex plane with radius (1/n) centered at 0. Let E_n be the corresponding open disk, and let T_n be the circle $D_n \setminus E_n$. Let C_n be the solid cylinder $D_n \times [0,1]$. Since J is a tame, there exists an embedding h of C into S³ such that h({0} x [0,1]) = J. Consider C_n as a subset of S³ by identifying C_1 with $b(C_1)$, and for each t # [0,1] let t denote the point h(0, t) # J.

Let F_n denote the manifold boundary of C_n , that is, $F_n = (D_n x \{0,1\})$ # $(T_n x [0,1])$. Note that given any n and any a, b # J there is an isotopy H: $C_n x [0,1] \rightarrow C_n$ satisfying the following:

- (i) for each s # [0,1], $H(J x \{s\}) = J$;
- (ii) for each x # F_n and each t # [0,1], H(x,t) = x;
- (iii) for every $x \# C_n$, H(x, 0) = x; and
- (iv) H(b, 1) = a.

By setting H(x, t) = x for every $x \# S^3 \setminus Cn$, and every t # [0, 1], H can be considered to be a function (hence an isotopy) from $S^3 \times [0, 1]$ to S^3 .

Now, suppose X is a continuum and let g: $X \to S^3$ be a homotopically essential map. To prove that g is weakly confluent, it suffices to prove that there exists a continum M # X such that g(M) = J.

Proceed by contradiction; assume there is no such M. Then no component of $g^{-1}(J)$ intersects both $g^{-1}(0)$ and $g^{-1}(1)$. By compactness, there is a separation, $R_0 \# R_1$ of $g^{-1}(J)$ satisfying $g^{-1}(0) \# R_0$ and $g^{-1}(1) \# R_1$. Since R_0 and R_1 are disjoint closed sets in X, there exist open subsets S_0 and S_1 of X such that $R_0 \# S_0$ and $R_1 \# S_1$ and $Cl(S_0) \# Cl(S_1) = \#$. There exists n such that $g^{-1}(Cn) \# S_0 \# S_1$. Let $p = \inf g(R_1)$ and let $q = \sup g(R_0)$, and let $q = \sup g(R_0)$, and let $q = \sup g(R_0)$, then $q = \sup g(R_0)$.

surjective and hence not essential, so $0 < a < p \le q < b < 1$. #sing the number n and the points a and b just chosen, let $H: S^3 \times [0, 1] \to S^3$ be the isotopy described above. Define a homotopy $G: X \times [0,1] \to S^3$ by G(x, t) = g(x) if $x \# X \setminus S_0$ and G(x,t) = H(g(x),t) if $x \# Cl(S_0)$. Define $f: X \to S^3$ by f(x) = G(x, 1).

Then, note that if y # J and a < y < p, then there does not exist z # X such that f(z) = y, so f is nonsurjective. Hence, f is inessential. Since g is homotopic to f, g is inessential also, a contradiction, which completes the proof.

Lemma 2.4. A continuum $X \# R^4$ admits a homotopically essential map onto S^3 if, and only if, $R^4 X$ is not connected S^3 .

Remark on Proof. This is a special case of the Borsuk separation theorem. I do not have a reference to the original proof, but a proof can be found in almost any advanced topology or algebraic topology book.

Lemma 2.5. Given any continuum Y, there is a continuum $X \# S^3$ that admits a continuous surjection $f: X \to Y$.

Proof. Let Y be a continuum and let C and D be Cantor sets in \mathbb{R}^3 such that C and D lie on lines skew to each other. Then, whenever a, p # C and b, q # D, and a, p, b, and q are all different, the line segments [a, b] and [p, q] are disjoint. Let g: C # D \rightarrow Y be a map such that g|C: C \rightarrow Y and g|D: D \rightarrow Y are both onto. Such a g exists since a Cantor set can be mapped onto every compact metric space. Define $X = \bigcup \{[a,b] : a \in C; b \in D \text{ and } g(a) = g(b)\}$. Then X is a continuum in \mathbb{R}^3 . For each x # X, let [a(x), b(x)] be a segment in X satisfying a(x) # C; b(x) # D, and x # [a(x), b(x)]. (This segment is unique unless x = a(x) or x = b(x).) Define f: X \rightarrow Y by f (x) = g(a(x)) = g(b(x)). It is straightforward to verify that f: X \rightarrow Y is continuous and onto. Since for any point p # S³, S³ \ {p} is a copy of \mathbb{R}^3 , X can be treated as a subcontinuum of S³.

3. Main Result

Theorem 3.1. Let Y be an arbitrary continuum. There exists a hereditarily indecomposable continuum K that admits a surjective map $f: K \to Y$.

Proof. Let Y be a continuum. By Lemma 2.5, there is a continuum T # S^3 and an onto map $g: T \to Y$. By Lemma 2.2, there exists a hereditarily indecomposable continuum L # R^4 that separates R^4 . Thus by Lemma 2.4, there is a homotopically essential map $h: L \to S^3$. By Lemma 2.3, h is weakly confluent, so there exists a continuum K C L such that h(K) = T. Let f = g o (h|K). Then $f: K \to Y$ is the desired map; K is hereditarily indecomposable since it is a subcontinuum of L.

References

[1] Bellamy D.P., "Continuous mappings between continua", in Topology Conference Guilford College, 1979, Guilford College (1980), 101-112.

- [2] Bellamy D.P., "Mappings of indecomposable continua", Proc. Amer. Math. Soc. 30 (1971), 179-180.
- [3] Bing R.H., "Higher-dimensional hereditarily indecomposable continua", Trans. Amer. Math. Soc. 71 (1951), 267-273.
- [4] Hart K.P., van Mill J. and Pol R., "Remarks on hereditarily indecomposable continua", https://arXiv.org/pdf/math/0010234.pdf
- [5] Mazurkiewicz S., "Sur l'existence des continus indécomposables", Fund. Math. 25 (1935), No. 1, 327-328.
- [6] Rogers J.W.Jr., "Continuous mappings on continua", Proc. Auburn Topology Conference, Auburn University, Auburn, USA, 1969, 94-97.

Notes

To cite this article: D.P. Bellamy, Continuous Images of Hereditarily Indecomposable Continua, Rev. Integr. temas mat. 37 (2019), No. 1, 149-152. doi: 10.18273/revint.v37n1-2019007.

Author notes

Creative Commons License:

E-mail: bellamy@udel.edu

