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Sobre la traza nuclear de operadores integrales de Fourier

Duvén Cardona *
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Abstract: In this paper we characterise the 7-nuclearity of Fourier integral operators on
Lebesgue spaces. Fourier integral operators will be considered in #", the discrete group

#", the n-dimensional torus and symmetric spaces (compact homogeneous manifolds).
We also give formulae for the nuclear trace of these operators. Explicit examples will be

given on #", the torus #", the special unitary group SU(2), and the projective complex

plane ##2. Our main theorems will be applied to the characterization of r-nuclear
pseudo-differential operators defined by the Weyl quantization procedure.

MSC2010: 58]40; 47B10, 47G30, 35530.

Keywords: Fourier integral operator, nuclear operator, nuclear trace, spectral trace,
compact homogeneous manifold.

Resumen: En esta investigacion se caracteriza la r-nuclearidad de operadores integrales
de Fourier en espacios de Lebesgue. Las nociones de traza nuclear y operador nuclear
sobre espacios de Banach son conceptos andlogos a aquellas de traza espectral y de
operador de clase traza en espacios de Hilbert. Operadores integrales de Fourier, por otro
lado, surgen para expresar soluciones a problemas de Cauchy hiperbélicos o para estudiar
la funcién espectral asociada a un operador geométrico sobre una variedad diferenciable.

Los operadores integrales de Fourier se consideran actuando sobre #", el grupo discreto
#", el toro de dimensién 7 y finalmente, espacios simétricos (variedades compactas
homogéneas). Se presentan ejemplos explicitos de tales caracterizaciones sobre #", el

grupo especial unitario SU(2), y el plano complejo proyectivo ##% Los resultados
principales de la presente investigacion se aplican en la caracterizacién de operadores
pseudo diferenciales nucleares definidos mediante el proceso de cuantificacién de Weyl.

Palabras clave: Operador integral de Fourier, operador nuclear, traza nuclear, traza
espectral, variedad compacta homogénea.

1. Introduction

In this paper we characterise the 7-nuclearity of Fourier integral operators
on Lebesgue spaces. Fourier integral operators will be considered in #",

the discrete group #", the n-dimensional torus and symmetric spaces
(compact homogeneous manifolds). We also give formulae for the

nuclear trace of these operators. Explicit examples will be given on #",
the torus #", the special unitary group SU(2), and the projective complex

plane ##2. Our main theorems will be applied to the characterization of
r-nuclear pseudo-differential operators defined by the Weyl quantization
procedure.
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1.1. Outline of the paper

Let us recall that the Fourier integral operators (FIOs) on #", are integral
operators of the form

Ffa)i= / SO oz, €)(F ) (€)de, (1)

where 77 is the Fourier transform of £, or in a more general setting,
linear integral operators formally defined by

Tf(x):= / e RTINS g (2 y, €) f (w)dydé. (2)

As it is well known, FIOs are used to express solutions to Cauchy
problems of hyperbolic equations as well as for obtaining asymptotic
formulas for the Weyl eigenvalue function associated to geometric

(33]. [

operators (see Hérmander (32133} 34 3nd Duistermaat and Hérmander

(2],
According to the theory of FIOs developed by Hérmander P2, the

phase functions ¢ are positively homogeneous of order 1 and they are
considered smooth at § # 0, while the symbols are considered satisfying
estimates of the form

sup [920¢a(x.y. &) £ Cu g k(1 + €))7, (3)
(r.y)eK

for every compact subset K of #°". Let us observe that L P-properties
for FIOs can be found in the references Hormander %, Eskin [2¢),
Seeger, Sogge and Stein (51 Tao B2, Miyachi 37), Peral 1*!, Asada and
Fujiwara 21 Fujiwara (28] Kumano-go 35 Coriasco and Ruzhansky
(10), (1], Ruzhansky and Sugimoto [44]), [45], [46). [47] Ruzhansky (50] and
Ruzhansky and Wirth 4],

A fundamental problem in the theory of Fourier integral operators is
that of classifying the interplay between the properties of a symbol and
the properties of its associated Fourier integral operator.

In this paper our main goal is to give, in terms of symbol criteria
and with simple proofs, characterizations for the 7-nuclearity of Fourier
integral operators on Lebesgue spaces. Let us mention that this problem
has been considered in the case of pseudo-differential operators by several
authors. However, the obtained results belong to one of two possible
approaches. The first ones are sufficient conditions on the symbol trough
of summability conditions with the attempt of studying the distribution
of the spectrum for the corresponding pseudo-differential operators. The
second ones provide, roughly speaking, a decomposition for the symbols
associated to nuclear operators, in terms of the Fourier transform,
where the spatial variables and the momentum variables can be analyzed
separately. Nevertheless, in both cases the results can be applied to obtain
Grothendieck-Lidskii's formulae on the summability of eigenvalues when

the operators are considered acting in L P spaces.
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Necessary conditions for the r-nuclearity of pseudo-differential
operators in the compact setting can be summarized as follows. The
nuclearity and the 2/3-nuclearity of pseudo-differential operators on the
circle #! and on the lattice # can be found in Delgado and Wong [,
Later, the r-nuclearity of pseudo-differential operators was extensively
developed on arbitrary compact Lie groups and on (closed) compact

manifolds by Delgado and Ruzhansky in the works 63173081 90 (211 5 g

by the author in ). other conditions can be found in the works [2°) 22}

23], Finally, the subject was treated for compact manifolds with boundary
by Delgado, Ruzhansky, and Tokmagambetov in 124,

On the other hand, characterizations for nuclear operators in terms
of decomposition of the symbol trough of the Fourier transform were

investigated by Ghaemi, Jamalpour Birgani, and Wong in [29], [30], [3¢]

for #1, #, and also for arbitrary compact and Hausdorff groups. Finally
the subject has been considered for pseudo-multipliers associated to
the harmonic oscillator (which can be qualified as pseudo-differential
operators according to the Ruzhansky-Tokmagambetov calculus when
the reference operators is the quantum harmonic oscillator) in the works

of the author B} 71 18],

1.2. Nuclear Fourier integral operators

In order to present our main result we recall the notion of nuclear
operators. By following the classical reference Grothendieck 31, we recall
that a densely defined linear operator 7': D(T) # E > F (where D(T) is
the domain of T, and E, F are choose to be Banach spaces) extends to a r-
nuclear operator from E into F, if there exist sequences (¢)nex, in E’ (the
dual space of E) and (v.).ev, in F such that, the discrete representation
Tf=Y € (fyn. with Y [lehll5llunlF < . (4)

holds true for all f # D(T). The class of -nuclear operators is usually

endowed with the natural semi-norm

1
ne(T) := inl'{{z le! e llin }} = Z':. _n’hr} X (5)

and,if7=1,7(-) isanorm and we obtain the ideal of nuclear operators.
In addition, when £ = F is a Hilbert space and » = 1 the definition
above agrees with that of trace class operators. For the case of Hilbert
spaces H, the set of r-nuclear operators agrees with the Schatten-von

Neumann class of order 7 (see Pietsch % 1)) In order to characterize
the 7-nuclearity of Fourier integral operators on #", we will use (same as in

the references mentioned above) Delgado's characterization (see !'*)), for
nuclear integral operators on Lebesgue spaces defined in o-finite measure

spaces, which in this case will be applied to L *(#")-spaces. Consequently,
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we will prove that 7-nuclear Fourier integral operators defined as in (1)
have a nuclear trace given by

Tr(F) = [[f""'iJ":-'_"’”"—':ﬂ(.r',{)rf.rrff. (6)

In this paper our main results are the following theorems.

Theorem 1.1. Let 0 < r < 1. Let a(-, -) be a symbol such that
a(e,) € L, (B"), acw.r e B Let2 < p;< 00,1 < py < 00,and let F be the Fourier
integral operator associated to a(-, ). Then, F: L™ (#7) > L™ (#") is r-
nuclear if; and only if; the symbol a(-, -) admits a decomposition of the form

a(z,£) = 71958 Z hi(2)(F i) (€), aceaw., (x,€), (7)
k=1

where (o} ren and {hi}ren are sequences of functions satisfying

=

E (g, k) =D llgnl” s [1halloe < oc. (8)
k=0
Theorem 1.2. Let 0 < r < 1, and let us consider a measurable function a(.,
Jon#™ . Let 1 < P1<2,1<ps< oo, andF be the Fourier integral operator
associated to a(-, ). Then, F: L™' (#7) > L™ (#") is r-nuclear if the symbol
a(-, +) admits a decomposition of the form

1 ¢ . e
a(z, &) = gl Z hi(x)ge (), a.eaw., (x,£), (9)
k=1

where {a}ven and {h e are sequences of functions satisfying

=0

E(g,h) := Y [lgrll7en || Bkl 7 < o0. (10)

k=0

This theorem is sharp in the sense that the previous condition is a necessary
and suffficient condition for the r-nuclearity of F when p | = 2.

The previous results are analogues of the main results proved in
Ghaemi, Jamalpour Birgani, and Wong [29), (301, Jamalpour Birgani
(3] and Cardona and Barraza B!, Theorem 1.1, can be used for
understanding the properties of the corresponding symbols in Lebesgue
spaces. Moreover, we obtain the following result as a consequence of
Theorem 1.1.

Theorem 1.3. Let a(-, -) be a symbol such that o=, & L}, (7). acw. = e R".
Let 2 < py < oo, 1 <py < oo and let F be the Fourier integral
operator associated to a(-, -). If F : L P (#") > L ¥ (#") is nuclear, then
alw.8) € LELY (R < RY)OLE LR < B): this mmeans that

lla(, )l 22174 iy = ([([ u[.-.{]“"‘rla-) ;!5) < oo, (11)

and
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2 =
||ea(z, £) LPLLP2(Rn xR = ( / (/‘ a(r, &) J"‘j_n‘) rf.r] < 00. (12)

Sufhicient conditions in order that pseudo-differential operators in
L*(#") can be extended to (trace class) nuclear operators are well known.
Let us recall that the Weyl-quantization of a distribution » < .#(&*") is the
pseudo-differential operator defined by

Af(x) = 0% (2. D,) f(z) = /[*o ("'j”.:) F(y)dyds. (13)

As it is well known 7 =7 4 (-, -) # L'(#*"), implies that 4 : L * > L
% is class trace, and A : L> > L? is Hilbert-Schmidt if, and only if, 7 5 #
L*(#™). In the framework of the Weyl-Hoérmander calculus of operators

A associated to symbols & in the S(m, g)-classes (see ), there exist two
remarkable results. The first one, due to Lars Hérmander, which asserts

that 7 o # S(m,g) and 2 7 # L'(#*"), implies that A : L* > L* is a trace
class operator. The second one, due to L. Rodino and F. Nicola, expresses
that 7 o # S(m, g) and m < 1. (the weak-L' space), and implies that A : L?
> L? is Dixmier traceable ). Moreover, an open conjecture by Rodino
and Nicola (see [43]) says that o,  L,(*") gives an operator A with finite
Dixmier trace. General properties for pseudo-differential operators on

Schatten-von Neumann classes can be found in Buzano and Toft (€.

As an application of Theorem 1.1 to the Weyl quantization we present
the following theorem.

Theorem 1.4. Let O < r < 1. Let a(-, -) be a differentiable symbol. Let 2

Spi1<oo,1<p,<oo,andleta™(x, D) be the Weyl quantization of the
symbola(.,-). Then, a™ (x, Dy) : L (#) > LY (#") is r-nuclear if, and only
if, the symbol a(-, -) admits a decomposition of the form

a(z,£) = Z /r —tin= \{frg\- (,4' + ;)) O (.r‘ - %) dz, a.ew., (z.£), (14)
k=1gn - -
where (o} ien and (i en are sequences of functions satisfying

o
D gkl Nelles < oo, (15)
k=D

Remark 1.5. Let us recall that the Wigner transform of two complex

functions 4, g on #", is formally defined as

#(h,g)(x, &) = /f —idmalp (.r + —))7(; - ;;) dz, aeaw., (z,£). (16)

With a such definition in mind, if 2 < p | < 00, 1 < p; < oo, under the
hypothesis of Theorem 1.4, 2™ (x, Dy) : L™ (#7) > L ** (#"), is r-nuclear
if, and only if; the symbol 4(-, -) admits a decomposition (defined trough
of the Wigner transform) of the type
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o0
alz. ) = Z # (he. g )(2.£), aew., (x,£). (17)
k=1

where {g}ren and {hy}ien are sequences of functions satisfying

-

S gkl el < o0 (18)

fe=0

The proof of our main result (Theorem 1.1) will be presented in Section
2 as well as the proof of Theorem 1.4. The nuclearity of Fourier integral

operators on the lattice #" and on compact Lie groups will be discussed
in Section 3 as well as some trace formulae for FIOs on the -dimensional
torus #" = #"/#" and the unitary special group SU(2). Finally, in Section
4 we consider the nuclearity of FIOs on arbitrary compact homogeneous

manifolds, and we discuss the case of the complex projective space ##2. In
this setting, we will prove analogues for the theorems 1.1 and 1.3 in every
context mentioned above.

2. Symbol criteria for nuclear Fourier integral operators
2.1. Characterization of nuclear FIOs

In this section we prove our main result for Fourier integral operators F
defined as in (1). Our criteria will be formulated in terms of the symbols
a. First, let us observe that every FIO F has a integral representation with
kernel K(x,y). In fact, straightforward computation shows us that

F f(x) :=[ Kz, y)f(y)dy, (19)
where

H{.r.,r,r}:z/- et Pl xL)=i2mul g (4 £)dE,

for every f & #(R").. In order to analyze the -nuclearity of the Fourier
integral operator F we will study its kernel K, by using as a fundamental

tool the following theorem (see J. Delgado 13! [15)),

Theorem 2.1. Let us consider 1 <p 1, p 2 < 00,0 <1 < 1 and let v be
such that +++ -1 Let (X 1, w) and (X 5, w) be a-finite measure spaces. An
operator T: L (X, p1) » L™ (X o, wo) is r-nuclear if, and only if. there
exist sequences (b ) in LY (w2), and (g ) in 17 ), such that

Z b || 7o || ok I,.--} < 0o, and T f(z) = [IZfr;,(.4'].r”.(_:,«)}f[y)dp|[_i;)A aew. x, (20)
& %, K

for every f# LY (wy). In this case, if py = p, and p1 = pa, (see Section 3
of U3 the nuclear trace of T is given by
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Tr(T) := /Z ;;L.[_J'}Fak[_r')r}'pl(.r’), [2]]
x, k

Remark 2.2. Given f# L' (#"), define its Fourier transform by

Ff(E) = [ e EL f (), (22)
If we consider a function £ such that £# L' (#") with 5/ = 1'(®"), the
Fourier inversion formula gives

f(z) = [ €275 F F(€)de. (23)

Moreover, the Hausdorft-Young inequality
Ffllr < |Ifllee (with |2 £l = [ fll.2) shows that the Fourier transform is a

well defined operatoron LP, 1 < p < 2.
Proof of Theorem 1.1. Let us assume that F is a Fourier integral operator

as in (1) with associated symbol a. Let us assume that F : L P! (#") > L P2
(#") is r-nuclear.

Then there exist sequences 4 | in L*? and ¢ in 7 satisfyin
q g g

Ff(z) = / (Z r'*a-{-*'}.fu-lu}) Fly)dy, fe L™, (24)
TR A k=1
with

o0
D Nkl hkllzes < oo (25)

k=0

For all z # #", let us consider the set B(z; r), i.e., the euclidean ball
centered at z with radius r > 0. Let us denote by |B(z; r)| the Lebesgue
measure of B(z; r). Let us choose § # #" and r > 0. If we define
0%, = [B(&: )|~ s, Where 1, is the characteristic function of the ball
B(%; r), the condition 2 < p; < oo, together with the Hausdorff-Young
inequality gives

IF@8%)lers = 1F B2, wir < 165,

L &ollp»i

=1 (26)

So, for every r > 0 and &, # #", the function 55z, = L7(2") = Dom(r). and we

get,
I"f-'ﬁ_le’ﬁ'g“}[.r'_] = [ (Z F:;‘.{.r');,r;,-[_u}) :F“':‘Ié’”{;,r]:f.r,r.
JEY N\ j=1

Taking into account that K(.y) =S5, hilxla() < L'(*) (see, e.g., Lemma
3.1 of [20]), that 1551~ < |50 = 1. and that (in view of the Lebesgue
Differentiation Theorem)

1 I .
lim #F'8 (x) = lim ———— e T TESGE = gt o (27)
r—0+ ek r=o+ |B(&p, )| . Bl£or) .
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an application of the Dominated Convergence Theorem gives

‘1L|‘1'| F(F7'8 ) (x) = f (; f'A-(-"]!JA-l.'J)) et gy = Z hi(x)(F g (&) (28)

k=1

In fact, for a.e.w. x # #,

(z hk-(-i')!my)) (F N )(w)| =
k=1

e 1 2y
R )agne(ur) - [ e Rdg
(Z * ) [B(&o. )| B

k=1
Z hi(z)gx ()| = | K (. y)].
Since K # L' (#°"), and the function £(x, y) := |K(x, y)| is non-negative

on the product space #2n, by the Fubinni theorem applied to positive

functions, the L'(#*")-norm of K can be computed from iterated integrals
as

//U\'(.a'. y)|dy. dx = [(/H\'(.r. g,-)|a'_u) dx = /([ f\'(.r._a,r]|rf.r) dy. (29)

By Tonelly theorem, for a.e.w. x # #", the function s(z.-) = [K(x.-)| € L'(B").
Now, by the dominated convergence theorem, we have

lim F(F7'6% ) (x)

v Lo

= lim f Kz, y)F~ 5\0 u}u’u—/ K(x,y) llru 5?..“”“‘-‘-‘

r—0+

:[ Kz, y)e E2TUE0 gy — Imlf I\'(J'.y}-r."k”‘“u'y
3 lyl<e

E—oc

= Jm / (; hﬂ-{-i‘)rn-(u}) -2 1<y dy.
. =1

Now, from Lemma 3.4-(d) in (201,
Jim ﬁ (;\Z !’L-(J-'}‘ru-{y)) LT 1y <aydy
R =1
m
= lim / (Z hi(2)gr(y ) . ei27yko 'lll_r:IE!ldy

fom—oo

m

= lim Z hi(a / ar(y) - €70 1gy1<eydy

£oam—oc

m

= lim hu grly) - €™ ¥eod,
, Jim Z ik e i (v) y

= Z .Tu,.{,r)(ﬁ'l_fn.-)(rfn)‘
k=1

On the other hand, if we compute 75 's,) from the definition (1), we
have

1

F(F7'8 ) (= = 1Bl
(- w’] J'J | (E(] ’)l B(&y.r

r "G["‘f'a{‘r. £)dE.

From the hypothesis that a(z.)  L},.(®") for a.e.w x # #2, the Lebesgue
Differentiation theorem gives
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lim F(F7'6;) = " )a(z, &). (30)

r=0*

Consequently, we deduce the identity

s
e t)g(z, &) = Z b (2)(F i) (o), (31)
k=1

which in turn is equivalent to

B
alx, &) = e~ i#lmdo) Z hi(x)(F g ) (o). (32)
k=1

So, we have proved the first part of the theorem. Now, if we assume
that the symbol a of the FIO F satisfies the decomposition formula (32)

for fixed sequences 4 i in L** and g in 1 satisfying (52), then from (1)
we can write (in the sense of distributions)

Fi@) = [ 9@ F 1€ = [ 3 mla)(Fa)OF D)
Jrr
- 1
= [ S [ g e
Jan o1 Jan

= [ (Z r'fx—(-*‘)m(_u}) ([ ff"”’“:teffJ{Eifff) dy
JR™ \poy JEn
= [ (Z r’u\(-rlm(y)) flu)dy,
R Ne=1
where in the last line we have used the Fourier inversion formula. So,

by Delgado Theorem (Theorem 2.1) we finish the proof.
Proof of Theorem 1.2. Let us consider the Fourier integral operator F,

Ff(x):= / e Oa(z, £) F(€)dE, (33)

associated with the symbol 2. The main strategy in the proof will be to
analyze the natural factorization of F in terms of the Fourier transform,

(F 1)) = ["_'2“"Eft.-r-)d.r-. (34)

Clearly, if we define the operator with kernel (associated to o= (g, a)),

-

Kog(z) = [f*'-"“-f"u(ra-.emfs;‘ g€ S (R"), K, (x.§)=e*"%(z,8), (35)

then F = K, - #. Taking into account the Hausdorfl-Young inequality

1Z 11|t gy < [1F 0 (36)

the Fourier transform extends to a bounded operator from Z ™ (#")
into #i (2" . So, if we prove that the condition (10) assures the 7-nuclearity
of K, from 1@ into L ** (#"), we can deduce the 7-nuclearity of F from
L' (#") into L (#"). Here, we will be using the fact that the class of
r-nuclear operators is a bilateral ideal on the set of bounded operators
between Banach spaces.
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Now, &, : ri@) » =@ is r-nuclear if, and only if, there exist

sequences {h  }, {g« } satisfying

K, (x,&) = e?=8q(z,£) = Z Ry (a) gy (). (37)
-

Where

Z |hiel| e |l k|| e < 00, and K, flz) = [(Z he(z)gi(€))g(€)dE, aew. x,  (38)
P EA

for every seri@). Here, we have used the fact that for
1< m <2 @ = 1(r"). We end the proof by observing that (37) is in
turns equivalent to (9).

Proof of Theorem 1.3. Let a(-, -) be a symbol such that
a(e.) € L, (B").acaw. ek Let 2 £ p 1 < 00, 1 < p, < oo, and let F be the

Fourier integral operator associated to (-, -). If F : L™ (#7) » LP2(#") is
nuclear, then Theorem 1.1 guarantees the decomposition

(x,8) = e~ ¢80 Z hie(2)(FLgr)(6), aeaw., (x,€),
k=1

where {g¢}eer and {h}ren are sequences of functions satisfying

o0
> llgill g bl o2 < oo, (39)

k=0
So, if we take the L7-norm, we have,

B
la(z, &) gr2 = |[e™ =D " hy(2)(F ' gr) (€)

k=1 LE®

“gi) ()

50
k=1 j'f.'ﬂ
o

|n,‘||u (Fgr)(£)].

|

Now, if we use the Hausdorff-Young inequality, we deduce that
17 gl = llael,.- Consequently,

1
2L T
<

/ / la(z, &)|P*dx d¢

[hic|| o= | (F " gr) (€]

(4]

|.0'[~T‘-€)||L' LY1(Rm xRn),

1A

Lo

1kl Lo || =" giel| s

MH

o
Il

1

||h5|f' ||(.”~||;r| o0

,.
Il

‘P’]*

1

In an analogous way we can prove that
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=
|(}(i:‘:li| LPLLP2(Rn wRD) < Z jlj_ ”;1 2 t‘},t.l LFY < 00,
k=1

Thus, we finish the proof.
2.2. The nuclear trace for FIOs on #n

If we choose a r-nuclear operator 7" : E > E, 0 < r < 1, with the
Banach space E satisfying the Grothendieck approximation property (see
Grothendieck BY), then there exist (a nuclear decomposition) sequences

(¢})nen, in E” (the dual space of E) and (u,),.ex, in E satisfying

Tf= ) enlf)un. fEE (40)

neMy
and

> el llumllF < oo (41)
neM
In this case the nuclear trace of T is (a well-defined functional) given by
() = ¥, ). because LP-spaces have the Grothendieck approximation
property and, as consequence, we can compute the nuclear trace of every
r-nuclear pseudo-multipliers. We will compute it from Delgado Theorem
(Theorem 2.1). For doing so, let us consider a 7-nuclear Fourier integral
operator F: LP(#") > LP(#"),2 < p < c0. If 2 is the
symbol associated to F, in view of (9), we have (in the sense of

distributions)
=
[ ) =dmiz “u(l £)dEdr = [[ = -_J:“-:F'-IIJ[J‘EI.ZIik(J'H.}‘q*_}(—s]!f{{F.F'
k=1

[zhk{’)/ —2mirl(F g, )(£)dE dn
= /Z}(A-{.i‘)qk (z)dz = Te(F).
o k=1

So, we obtain the trace formula

//- mirg, 1(x, £)dE dz. (42)

Now, in order to determinate a relation with the eigenvalues of F, we
recall that the nuclear trace of an r-nuclear operator on a Banach space
coincides with the spectral trace, provided thato<r< 3. ror 3 < <1. We recall
the following result (see ?1).

Theorem 2.3. Let T: L* (1) -> L " () be a r-nuclear operator as in (40).

ift = 1+1t- 4. then
T(T):= Y eh(fa) =D Aa(T), (43)

neNg n
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where ) o(T), n # # is the sequence of eigenvalues of T with multiplicities
taken into account.
As an immediate consequence of the preceding theorem, if the FIO F :

LP(#") » LP(#") is r-nuclear, the relation + -1+ 2 - 2 implies

[I{-IF] — [ [r’ ig(x . L)—27ix 5(}[_1-_ EJ"'PE dr = Z ,\”{T}‘ (44 ]

where (7)), n## is the sequence of eigenvalues of Fwith multiplicities
taken into account.

2.3. Characterization of nuclear pseudo-differential operators defined by the
Weyl quantization

As it was mentioned in the introduction, the Weyl-quantization of a
distribution » € #z* is the pseudo-differential operator defined by

o (z, Dg) f(x) = [ [ el Ly (’%”g) F(y)dyde. (45)

There exist relations between pseudo-differential operators associated
to the classical quantization

e, D) f(a) = [ [ 2N € (3, €) F(y)dydS = [ 2 (1, €) (Ff)E)E,  (46)

or in a more general setting, T-quantizations defined for every 0 < 7 <
1, by the integral expression

o (x, D) flz) = / /:-"—’“‘--"-‘*"5(:(.—.,-—(1 — ). &) f(y)dyde (47)

(with - = { corresponding to the Hormander quantization), as it can be

viewed in the following proposition (see Delgado '),
Proposition 2.4. Let a.b < #/®2"). Then, o («.D,) = v (x. D.) if, and only if,

a(z, &) = / /r =g 4 (7 — 7)z, n)dzdn, (48)

provided that 0 < 7,7 < 1.

Theorem 2.5. Let 0 < r < 1. Let a(-, -) be a differentiable symbol. Let 2
Sp1<oo,

1 < pa < o0, and let a™(x, D y) be the Weyl quantization of the symbol
als-). Then, a™ (x, D 5): LP' (#7) > L™ (#") is r-nuclear if, and only if; the
symbol a(-, -) admits a decomposition of the form

~
alz, &) = Z /-r —ilmz ‘:h;.{.r + (1 =71)2)gelz — 72)dz, a.cav., (x.£), (49)
k=13

where (airen and (htwen are sequences of functions satisfying

0
D gl 1kl Era < oc. (50)

k=0
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Proof- Let us assume that a*(x, D ;) is r-nuclear from L P 1(#") into L 2
(#"). By Proposition 2.4, a°(x, D ;) = b(x, D ), where

a(z,§) = [/r'_ifrts_'I}QfJ(.f' + (1 — 7))z, n)dzdn.

By Theorem 1.1 applied to ¢(z,¢) = 272 - ¢, and taking into account that

b(x, D) isr-nuclear, there exist sequences / in L P2 and £ in 7 satisfying

bz, &) = e~ 12708 Z hi () (F L)), aeaw., (x.€). (51)
k=1
with
-
D Ngrll  lkl7en < oo (52)
k=0
So, we have
-
a(z, &) = [ /t";g"[s"”"'d” =+H(1=r)z)n (Z h(z+ (1 - TJ:J(?'H;;.)(J}]) dzdy.
=1
Since

—27(E — )z —2m(z+ (1 —7)2) -
=—i2nf-z4+2mp-z—i2mx-p—2w(l —7)z -9

=—i2af -z — i2mx -+ 207z -0,

we have (in the sense of distributions)

a(z,£) = Z / [1 _’275'1_52”"”'"2:7:'”hk(‘r +(1-— T):}[.ﬁ'_'m)[u)rr’:ﬂ'q
k=lgn gn

k=1

= Z [('_"2"'5'3}‘:;,.(.:' +(1-7)2) fr'_‘gr‘ 2T F = gy ) () dndz
k=lg Rn
= Z /.r-_m“ Shi(z + (1 — 7)2)gr(z — 72)d=.

So, we have proved the first part of the characterization. On the other

hand, if we assume (49), then

alz,§) = [ /-f'_uﬂs_'”zb(,i' + (1 — 1)z, n)dzdn,

where b(x, §) is defined asin (51). So, from Theorem 1.1 we deduce that
b(x, D) is r-nuclear, and from the equality a"(x, Dy) = b(x, D) we deduce
the 7-nuclearity of a*(x, D). The proof is complete.

Remark 2.6. Let us observe that from Theorem 2.5 with T = 1/2, we
deduce the Theorem 1.4 mentioned in the introduction.
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3. Characterizations of Fourier integml operators on # and
arbz’tmry compact Lie groups

3.1. FIOs on #"

In this subsection we characterize those Fourier integral operators on
#" (the set of points in #" with integral coordinates) admitting nuclear
extensions on Lebesgue spaces. Now we define pseudo-differential

operators and discrete Fourier integral operators on #" The discrete
Fourier transform of s < '(z) is defined by

(Fzn f)E) = D ™™ Ef(m), £ [0,1]". (53)

meLn

The Fourier inversion formula gives

f(m) = [ el &, f&)de, me Z". (54)
Joa)n

In this setting pseudo-differential operators on #" are defined by the
integral form

to f(0') 1= / 27 S (0! €)(Fn £)(E)dE, f € €YZM), ' € T (55)
“ [rl.l:”

These operators were introduced by Molahajloo in 138, However, the
fundamental work of Botchway L., Kibiti G., Ruzhansky M. (5] providesa
symbolic calculus and other properties for these operators on -spaces. In
particular, Fourier integral operators on #" were defined in such reference
as integral operators of the form

f.J,_.f(u’J‘=/ e Da(n’ ) (Fan ))(E)dE, fe NI, n' €T (56)
Jo,1)"

Our main tool in the characterization of nuclear FIOs on #" is the
following result, due to Jamalpour Birgani (36],

Theorem 3.1. Let 0 < r < 1,1 < pj < 0o, 1 < py < 00, and let ty,
be the pseudo-differential operator associated rto the symbol m(-, -). Then,
b = (P1(Z0) — 02(Z") 15 P-nuclear if, and only if, the symbol m(., -) admits a

decomposition of the form

min', &) = ¢ —iZan’g Z h,‘.[ra'}[.}‘:;-gg—][—f]. a.eaw., (n',£), (57)
k=1
where {ayren and {hven are sequences of functions satisfying

oC
D lgwlly, hklfee < o0 (58)

k=0

As a consequence of the previous result, we give a simple proof for our
characterization.

Theorem 3.2. Ler 0 <r < 1,1 <py < oo, 1 < p, < oo, and let fu.. be
the Fourier integral operator associated to the phase function 4> and to the
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symbola(-,-). Then, ioo: @) @) is r-nuclear if, and only if; the symbol a(.,
-) admits a decomposition of the form

a(n',£) = e~i(n".8) Z hi(z)(Fongr)(—£), aew., (n', ), (59)
k=1

where (airen and (htwen arve sequences of functions satisfying

o

> llgkll”, llhilfes < oo (60)

k=0
Proof. Let us write the operator fa. as

o f(2) = (! ) Fgn £)(€)dE = L (0! €)(Fan F)(€)dE,
fosd( ‘/‘;0‘1,. (Fan 1) _[U]“ (0, )(Fz F)(E) -
where m.¢) = e#to-2m'<a( ). So, the discrete Fourier integral operator
fas coincides with the discrete pseudo-differential operator t, with
symbol 72. By using Theorem 3.5, the operator f... = t,. : ¢ (z) — ¢72(z") is 1-
nuclear if, and only if, the symbol m(-, -) admits a decomposition of the
form

2
m(n',€) = e ES hy (0)(Fongi) (=€), aeav., (n,€), (62)
k=1
where {g¢}er and {h}ren are sequences of functions satisfying

0
> llgrllf; kllzes < oc. (63)

k=0
Let us note that from the definition of 7 we have

x

il r o o r —i2%n’- -

gl ) =i2an" Lyt £y = gmi2An"E E hi (") (Fzngi)(=E), a.eaw., (n',E),
k=1

which, in turn, is equivalent to

a(n'.§) = e N T hy (n')(Fzn 1) (—6)- (64)
k=1
Thus, the proof is complete.
Remark 3.3. The nuclear trace of a nuclear discrete pseudo-differential
Operator on z.t, : 7(z) - *(z"). 1 < p < =. can be computed according to the
formula

Tr(t,.) = Z [m(n'..f)df. (65)

n'eLn" [0.1)m

From the proof of the previous criterion, we have that j., = ... where
mln'.€) = et a-emeyy o) and, consequently, if foo - (27 — #(ZY). 1 < p < . s
r-nuclear, its nuclear trace is given by

Trlfae) = Y / et &)=i2an'Sg(n! £)dg, (66)

nEL" g q]n
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Now, we present an application of the previous result.
Theorem 3.4. Let 2 < p; < oo, and 1 < py < oo, Iffu, (@) — 02(20) is
nuclear, then aw'.) e 202 @ < T n L 2@ = T); this means that

lla(n', )ll¢rz 121 (g serpm), = ([(Z Iﬂ(u'né}”-’) -n’{) < 00, (67)

and

la(n’, €)ll 2 72z srmy, = (Z (/.'f[-'-fl"'da) ) < o< (68)

The proof is only an adaptation of the proof that we have done for
Theorem 1.3. We only need to use a discrete Hausdorff-Young inequality.
In this case, we use

|#zn gk [l s (zny < gkl oy - (69)

3.2. FIOs on compact Lie groups

In this subsection we characterize nuclear Fourier integral operators on
compact Lie groups. Although the results presented are valid for arbitrary
Hausdorff and compact groups, we restrict our attention to Lie groups
taking into account their differentiable structure, which in our case could
give potential applications of our results to the understanding on the
spectrum of certain operators associated to differential problems.

Let us consider a compact Lie group G with Lie algebra g. We will equip
G with the Haar measure pg. The following identities follow from the
Fourier transform on G:

(Fap)&)

PlE) = [ plx)é(x) dx, wlr) = Z de Tr(&(x)@(£));
Je

[eleé

and the Peter-Weyl Theorem on G implies the Plancherel identity on
L*G),

lellexe = | 3 de™r(@©)2©)) | = l18ll,2)-

[€1eG

Notice that, since | 4|45 = Ti(44%). the term within the sum is the Hilbert-
Schmidt norm of the matrix #(¢). Any linear operator 4 on G mapping
C *(G) into D'(G) gives rise to a matrix-valued global (or full) symbol

oa(2,€) € %% given by

aalz, &) =&(z)"(AE)(x), (70)

which can be understood from the distributional viewpoint. Then it

can be shown that the operator A can be expressed in terms of such a

symbol as 48],
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Af(@) =Y deTr[(z)oa(z. )F(E)]. (71)

G

So,if @@« v, .01 is a measurable function (the phase function), and
w: GxG = oo s a distribution on ¢ « ¢, the Fourier integral operator F'=
Fg,, associated to the symbol a(-, -) and to the phase function $ is defined
by the Fourier series operator

Ff(x)= Y deTr[d(x,)a(x.€)f(E))- (72)

[EleG

In order to present our main result for Fourier integral operators, we
recall the following criterion (see Ghaemi, Jamalpour Birgani, Wong 300y,

Theorem 3.5. Lez 0 < r < 1,1 < py < o0, 1 < pp < o0, and let A be the
pseudo-differential operator associated to the symbol o A(-, -). Then, A : L
PY(G) » L™ (G) is r-nuclear if; and only if;, the symbol & (-, -) admits a
decomposition of the form

<
oz, €) = E(x)* Z hi(@)(Feg )(€)". aea., (x.£), (73)
k=1

where {aven and (i lven are sequences of functions satisfying

0
> lgrll? i Ikl zee < oo, (74)

k=0

As a consequence of the previous criterion, we give a simple proof for
our characterization.

Theorem 3.6. Let Let 0 <r < 1,1 < py < 00, 1 < py < 00, and let F be
the Fourier integral operator associated to the phase function © and to the
symbol a (-, -). Then, F : L (G) » L (G) is r-nuclear if, and only if; the
symbol a(-, ) admits a decomposition of the form

o0
alx, &) = §(x,)7! zf:;.(.r'][.ﬁ{,-ﬁk]{f}'. a.ca., (x,£), (75)
k=1
where {ayven and (i lven are sequences of functions satisfying

o0
D lgrll? o IhklZee < oo (76)

k=0

Remark 3.7. For the proof we use the characterization of r-nuclear
pseudo-differential operators mentioned above. However, this result will
be generalized in the next section to arbitrary compact homogeneous
manifolds.

Proof. Let us observe that the Fourier integral operator F, can be written
as

Ff(x) =Y deTe[®(x,Oa(e, ) f(€)] = Y deTrlE(z)oa(z.£)F ()], (77)
[ele& [gled

where oa(2.€) = £(2)"®(x.€)a(2.€). So, the Fourier integral operator F

coincides with the pseudo-differential operator A with symbol oa. In view
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of Theorem 3.5, the operator F = A : L*! (G) » L** (G) is r-nuclear if, and

only if, the symbol g (-, -) admits a decomposition of the form

oalz, &) = &(x)* Z hi(z)(Fag.)(8)", a.cw., (x,£), (78)

k=1

where {ayven and {hn)ven are sequences of functions satisfying

O
> Mgkl hsl7ee < oo (79)

k=0

Let us note that from the definition of o5 we have

E(x) (. E)a(x,§) = £(@)" > he(2)(FT)(©)", aew, (2,),
k=1

which is equivalent to

a(z,£) = ®(x,£)7! Z hp(z)(Fea ), acuw., (x,8). (80)
k=1

Thus, we finish the proof.

Remark 3.8. The nuclear trace of a r-nuclear pseudo-differential

operatoron G, 4: L*(G) > LP(G), 1 < p < oo, can be computed according
to the formula

Tr(A) = [ Z deTr[o g (x, &) da. (81)
o [€le€
From the proof of the previous theorem, we have that F' = 4, where

oalz,€) = E(2) @(r,&)alz.€) and, consequently, if F : LP(G) » L P(G), I < p <
oo,, is 7-nuclear, its nuclear trace is given by

Tr(F) = / Z deTr[é(z)" ®(x, &)a(z, §)]d. (82)

G [§eG

Now, we illustrate the results above with some examples.
Example 3.9. (The torus). Let us consider the n-dimensional torus G =

#% = #"/#" and its unitary dual v - o, .1 <20y (o) = 0o e By following
Ruzhansky and Turunen "8, 4 Fourier integral operator F associated to
the phase function ¢t .t ~c. and to the symbol ..t % ¢, is defined
according to the rule
I‘.T:(J‘J — Z eldlz.ee :Iﬂ'(.i‘.t y Jr"}("i ] xreT", (83)

where #(e) = [.. fiwe=)dz is the Fourier transform of f at €;.1f we identify
t with #%, and we define a(z.0) == a(w.cr). and G(¢) := G(er). we give the more
familiar expression for F,

Folz) =Y e*“a(z, 0)(t), = T". (84)
¥ AL
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Now, by using Theorem 3.6, F is r-nuclear, 0 < r < 1 if, and only if, the
symbol a(-, -) admits a decomposition ofthe form

a(z, f) = e~ “Zh; f;,‘][f a.eaw., (x,f), (85)

where {ayren and {h)ven are sequences of functions satisfying

> llgwll? IRl zen < oo. (86)
k=0 )
The last condition have been proved for pseudo-differential operators in
V. In this case, the nuclear trace of F can be written as

'1‘1-(1-‘)=[ Z A0 =i2r0Ly (0 )z, (87)

Example 3.10. (The group SU(2)). Lez us consider the group su() = s*
consinting of those orthogonal matrices A in #°2, with det(A) = 1. Werecall
that the unitary dual of SU(2) (see "8 can be identified as

SU2) = {[t)] : 2 € M, d; = dim #; = (20 + 1)}. (88)

There are explicit formulae for tas functions of Euler angles in terms of the

so-called Legendre-Jacobi polynomials, see (48] 4 Fourier integral operator
F associated to the phase function o-sve «soe) - v e, and to the symbol
@£ SUQ) % SUQ) — ey, €00, 45 dlefined as

Fe(z) = Z (26 + 1)Tx[P(z. te)a(z, te)P(te)], = € SU(2), (89)

[te]e5T(2)

where

-~ 2641 % (204 L.
pleg) = / f{.!‘]f{[.l']rf.l' g CLHLx(2641) ¢ ¢ ;P“.[]
sSU(2)

is the Fourier transform of f at v. As in the case of the n-dimensional torus,
if we identify sve) with i¥e. and we define a(z,0) = a(xt0), and 3(0) = E(t0), we can
write

Fo(z) = 3 20+ 1)Tx[®(w, Oa(x, )F(6)], = € SU). (90)

£ g

Now, by using Theorem 3.6, F is r-nuclear, 0 < r < 1 if, and only if; the
symbol a (-, -) admits a decomposition of the form

ale,f) = ®(x, £)” ZM r,Jkab a.ecaw., (x,f), (91)

where {ayren and {hven are sequences of functions satisfying

.
D lawll g sl o < oo. (92)

k=0
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The last condition have been proved for pseudo-differential operators in

LR arbitrary Hausdorff and compact groups. In this case, in an analogous

expression to the one presented above for #°, #", and #", the nuclear trace of
F can be written as

Te(F) = [ Z (20 4+ 1)Ta[te(A)" ®(A, £)a(A, £)]dA. (93)

“ =1lm
su(2) fEzNo

By using the diffeomorphism o su(2) - s*. defined by

. o ) T +ira Ta+iry
o(A) = & = (ry, 22, 23,24), for A= |:—.r;; timg @ — !.r__’:| (94)
we have
Te(F) = / Z (20 + 1)Tr[te(A)* B(A, £)a(A, £)]dA
sti(2) fE4M0
= / Z (2F + ll‘.l.I.T:f,r{g_l[J'.‘.l-’. 'I'{y_l{.r]_ f .’IJ‘.!’_J_I (), (}:rfa'{.r-}
aa £ElNg
= / Z (20 + 1)Tx[te () D, O)a(x, £)]do(x),
g3 fEdNo
L()}]E}"E te(o~Yx)) =: te(x), Plo~Yz), £) =: B(x,£), a(o™ z), ) =: alx, ), and da—(x)

denotes the surface measure on #. If we consider the parametrization of S3
dqﬁned by o) = cos(}), mp 1=, 73 == (sin®(£) - p2)% cos(s), 24 = (sin®(L) — v?)% sin(s), w}je}’e

. t
(t.v.s)e D:={(t.v,s)eR*: |v| < sin(;}. 0<t.s<2w}.

then da(z) = .\i]][%]rfﬁf!uh&. and

Tr(F)

ax 2 sin(t/2)

]

0 0 —sin(t/2)

. ..t
3 @0+ UTfte(t. v, 5) B((t 1. 5). Oal(t.v. ). £)] sin(5 )duedtds.
fELh -

4. Nuclmr Fourier integml 0P€7”df07'5 on compact homogmeous

manifolds

The main goal in this section is to provide a characterization for
the nuclearity of Fourier integral operators on compact homogeneous
manifolds m=c/k. Taking into account that the Peter-Weyl

decompositions of L (M) and L*(#) (where # is a Hausdorff and compact
group) have an analogue structure, we classify the nuclearity of FIOs on
compact homogeneous manifolds by adapting to our case the proof of

Theorem 2.2 in 2% where those nuclear pseudo-differential operators in

LP(#)-spaces were classified.
4.1. Global FIOs on compact homogeneous manifolds

In order to present our definition for Fourier integral operators on
compact homogeneous spaces, we recall some definitions on the subject.
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Compact homogeneous manifolds can be obtained if we consider the
quotient space of a compact Lie groups G with one of its closed
subgroups K (there exists an unique differential structure for the quotient
M := G/K). Examples of compact homogenecous spaces are spheres
5" = SO(n + 1)/S0(n), real

projective spaces ##" # SO(n + 1)/O(n), complex projective spaces ##"
#SU(n + 1)/SU(1) x SU(n), and, more generally, Grassmannians Gr(r,
n) # O(n)/O(n - r) x O(x).

Let us denote by , the subset of ¢ of representations in G that are of
class I with respect to the subgroup K. This means that - < &, if there exists
at least one non trivial invariant vector 2 with respect to K, i.e., 7(h)a = a
for every b # K. Let us denote by B . to the vector space of these invariant
vectors, and £ , = dim B . Now we follow the notion of Multipliers as

in [, Let us consider the class of symbols =(M), for M = G/K, consisting
of those matrix-valued functions

o
oGy — U C™*" such that o(w)i; = 0 for all i, > k-. (95)

n=1

Following (113 Fourier multiplier 4 on M is a bounded operator on L
%(M) such that for some o 5 # (M) it satisfies

Af(a) = Z d. Tr(n(z)e 4 (7) (7)), for feC=(M), (96)

el

where 7 denotes the Fourier transform of the lifting 7 = c~@) of fto G,
given by j() = k). 2 < 6.

Remark 4.1. For every symbol of a Fourier multiplier 4 on M, only the
upper-left block in & 4 (7) of the size £ . x k . cannot be the trivial matrix
zero.

Now, if we consider a phase function @:m-é v, o). and a
distribution «: 1 - .o, e, the Fourier integral operator associated to @
and to 4 (-, -) is given by

Folx) = Z d_Tr(®(x, w)ale, 7)3(7)), for ¢ C*(M) (97)

=eGo

We additionally require the condition o(x,7);; = 0 for 4,j > k - for the
distributional symbols considered above. Now, if we want to characterize
those 7-nuclear FIOs we only need to follow the proof of Theorem

2.2 in % where the nuclearity of pseudo-differential operators was
characterized on compact and Hausdorff groups. Since the set

provides an orthonormal basis of Z *(M), we have the relation

/ Tm ()52 (x)de = Lrirzﬁ,”ﬁ,,u_ [m]. [] € G. (98)
M ' drx o )
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If we assume that F : L' (M) » L ** (M) is r-nuclear, then we have a
nuclear decomposition for its kernel, i.e., there exist sequences 4 | in L
and g in 1 satisfying

Ff(x)= / (Z lhk[-"}."fk{.”]) fly)dy, fe L™ (M), (99)
I \i5
with
o
Z|_r;k 'f']_-I | Fege || Lpe < oo (100)
k=0 ’

So,we havewith I <nm <k,

Fopm(z)

= (®(z, T)a(z, T))pm = / (E h;\‘(_r)_(,.‘,(;;g Taml(z)de = Z .iu.(.r‘jy;k(':r)"m.
M k=1 k=1

Consequently, if B “ denotes the transpose of a matrix B, we obtain

= — ¢ o0 -
B(z, malze, 7) = Z hy(z)ge(m) = Z By () g (m)", (101)
k=1

k=1

and by considering that ®(x,7) # GL(d,) for every x # M, we deduce
the equivalent condition,

a(z,m) = b(@, 7)Y he(z)Ge(m)" (102)

k=1

On the other hand, if we assume that the symbol 4(-, -) satisfies the
condition (102) with Sitlal;, imii. <~ from the definition of Fourier

integral operator we can write, for ¢ # L P 1(]\4),

Fo(z) =Y dTe(®(z,malz.m)3(x) = Y dTr(> hp(x)ar(n) 3(r))
k=1

TEGH TEGH

= E dr l'r(Z hi () /\r ar(y)m(y)dys(m))
k=1 i

redo

- [ S @) 3 deTe(r(n)(m))dy
Ja ) reGo

:f Zh;.-(-rl_fn.-(m;(.u}r?.u-

M 21

Again, by Delgado's Theorem we obtain the 7-nuclearity of F. So, our

adaptation of the proof of Theorem 2.2 in B9 to our case of FIOs on
compact manifolds leads to the following result.

Theorem 4.2. Let us assume M = G/K be a homogeneous manifold, 0 < r
< 1,1 < py, pa < oo, and let F be a Fourier integral operator asin (97). Then,

F: L™ (M) > LY (M) is r-nuclear if, and only if; there exist sequences b i
in L% and g in v satisfying

alx,m) = ‘N.r.ﬂ}“'Zfrk[.r}ﬁ{ﬂ)‘, reG,[r] e 6'[]. (103)

k=1

with



Revista Integracién, 2019, 37(2), Jul-Dec, ISSN: 0120-419X

o

> llaw Lot Pl Lea < oc. (104)
k=0

Now, we will prove that the previous (abstract) characterization can be
applied in order to measure the decaying of symbols in the momentum
variables. So, we will use the following formulation of Lebesgue spaces on
Go:

- a L—.J " '] ’ -
Me (P(Go) = M5, = ( 3 Ak ”I-wmn:ﬁ) s 1

IrleGs

for1<p < oo,
Theorem 4.3. Let us assume M # G/K be a homogeneous manifold, 2 < p
| <00, 1 <py < oo, andlet F be a Fourier integral operator as in (97) If F :

L (M) > L (M) is nuclear, then a(e.x) ¢ o 10001 « Gy); this means that

\
= vz
“[u -4 P1 " 3
lla(a, m)llgos os arsxdy) = 3 deky lla(z,m)|}s | dx| <oo, (106)
A \Ixledo

provided that

|~ := sup |P(x,7) " |op < 0. (107)
(z.[7])eM =G0
Proof. Let 2 < py < 0o, I < p, < oo, and let F be the Fourier integral

operator associated to a(-, -). If F: L™ (M) > L ** (M) is nuclear, then
Theorem 4.2 guarantees the decomposition

a(z,7) = (z,7) Zm 2)gr(7)". x € G, [x] € G, (108)
with

oo

> gl sl 7 < oo (109)

k=0

So, if we take the #2'-norm, we have,

-
la(z, )|z = ||@(2, 7)™ he(2)ge(n)”
— '];]
= Zh;, fb{u.‘r} .',i_a,
k= Lh
-
{:Zlhg ||(I"‘ r, ) _](j—j‘ | ”ng'L.

k=

By the deﬁnition Off{_,”-nurm. we have
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a1
1
i . 1 (- —4) -1 *[1P1
@G, 7)™ G () w50 = ( 3 kT B w) " Ga) ||Iua-)
[xleGo
17— %) - P
< ( Z fi,."v{—\‘ ! J\ (x, 7) " opllTr(m) ||;[:;)
[xleGo
L pr(t—4) ~ oo "
< D7 ( Z doky 7 @) 11‘5)
e

L
1

_ (—d) - o\
=187 e ( 3 dekx T Gw(m) ’n's) .

[*leCo
Consequently,

la(@, w)llezs < 197 Moo D ra (@) Gl - (110)

k=1

Now, if we use the Hausdorft-Young inequality, we deduce,
e < lal,, Consequently,

P2 L
11 i "
Pilar—3),
llalz, )l ges 22 ar Gy = / Z dobz 70 a(z, )| dz
i \I=leGo

D k(@) 1GR() | g

k=1

.
<3 hllrzllgell, v < .
k=1

<87 o

Lre

Thus, we finish the proof.
Remark 4.4. If K = {e ¢ } and M = G is a compact Lie group, the
condition

P M= sup  [PlaT) M op=  sup [ (2,€) 7 fop < ox (111)

(= [=])EM =&,y (=\[f])eGx=G

arises naturally in the context of pseudo-differential operators. Indeed,

if we take O(x, = £ (x), then O(x, §)! = £ (x)*, and

sup [[€(2)"|op = 1. (112)
(x.[E)eCxE

Remark 4.5. As a consequence of Delgado's theorem, if F: L (M) - L
P(M), M # G/K, 1 < p < oo, is r-nuclear, its nuclear trace is given by

Tr(F) = / Z d; Tr[m(z)* d(x, 7)a(x, 7)|dz. (113)

M [7leGo

Example 4.6 (The complex projective plane ##%). A point { & CP"
(the n-dimensional complex projective space) is a complex line through the
origin in #°*. For every n, ##™ # SU(n +1)/SU(1) x SU(n). We will use
the representation theory of SU(3) in order to describe the nuclear trace of
Fourier integral operators on ##> # SU(3)/SU(1) x SU(2). The Lie group
SU(3) (see *™) bas dimension 8, and 3 positive square roots a, 3 and p with
the property
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1
p=gla+5+p) (114)
We define the weights
2 9 i
o= 5(1—.—_..'3. T = Eﬂ—'}j' (115)

With the notations above the unitary dual of SU(3) can be identified with

(116)

Eﬁj{i}) = {N:= Ma,b) =ac + br :a,be Ny, }.

SUB)={A:=\(a b) =aa+ br:ab#N,,}.(116)
In fact, every representation T = ) bas highest weight . ='\(a, b) for

some (a, b) # 13, In this case ix.s = du.., = o+ 106+ 1@ +b+2. For G =SU(3)
and K = SU(1) x SU(2), let us define
(117)

N2, := {(a,b) € No x No : maa) € Go = SU(3)o}.
% W25 = Ulnp)etiontioGL(dr@as)). 4

. P2

Now, let us consider a phase function @ -
distribution o:C¥ <, = UnenaCLlidy.y). and the Fourier integral operator F

associated to ® andtoa (-,-) :
N 1 . - \
Fp(f) = Z ;(n+1)[h}— 1){a + b+ 2)Te(P(£, (a,b))a(l, (a,b))F(Taanm)). (118)

(@.b)ENZ,

where @ # C™ (##°). We additionally require the condition
and i.j > ke, for those distributional symbols

{ e CP2,

S

o(t,(a,b)); =0 for
considered above. As a consequence of Remark 4.5, if F : LP(##7) > LP(##%),

1 < p < oo, is r-nuclear, its nuclear trace is given by
P . - df
Iv(F) = /- Z (a+1)(b+1)(a+b+2)Tr[man () BL, (a. b))all, (a, M)JT' (119)

Cpa (ab)ENG,

Ifv . cr2 = SU@)/SU(1) = SU2) is a diffeomorphism and K= SU(1) x SU(2),

then
df
I3

[ ST (a+ Db+ 1)@+ b+ 2)Tr[map (6 (L, (a,b))a(l, (a, b))

cra (ab)ENd,

Y e+ Db+)a+b+2)

SU(3)/SU(1)xsU(2) (BbIENG,
T -1 - -1 -1 .dg
Ir[m gy (0 ()" 2 (0 (g). (a, b))a(v (r;]A[nAb}l‘T

Z (a+1)(b+1){a+b+2)

su@)/suxsu(z) (a8)elg,
- - ]
Tr[m o) ()" (g (a, b))a(g, (a. b))] =

Z (a+1)(b+1)a+b+2)

dpsus)(g)
—

sU(3) (ab)
e[y o py (9K) B K, (a,b)Jal(g K, (a.b))]

where we have denoted w..(0) = (07 @), . (a.0) == D0 (g).(a.t)) and
(97" (0). (a.5)). If we consider the parametrization of SU(3) (see, e.g.,

=a

a(g, (a,b)) =

Bronzan [4]),
g = g(()l.“-_;.ﬂ_';.(_T)I.GE.G;;.GI.O;,J = {”-Ej:]d.j=].'2.:i‘

where0<0,<2.0< 6 <. and
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® uy = cosfy cosfae'?t;

® uyp = sinf e,

® uy3 = cos ) sin fae'®;
—igg—idy JAg tiga—ida.

m 1y = sin#) sinfye — sin #) cos fly cos Oy¢

B gy = cos ) cosfge’?;
m oy = — cosf) sinfge T 795 _ gin @) sin By cos BaeiPr Tidation,

ida—ighy.

® 13, = — sinfy cos s sin fzei® TiPatids _ gin 0, cosfze”

® gy = COS 0] sin g:;(_;r:._v_:

—ig) —igz

m Ugy = cosfly cosflye — sin# sin s sin f4e Patips

then, the group measure is the determinant given by

1, P .
55 sind cos® )y sin By cos ) sin By cos Oydf dydbydd ddadidddydebs,
- (120)

dpgyy(ay(9) =

and we have the trace formula

Tr(F) = [ / / ///[/ 3 (atbtabt 1)@t b+ 2)Telms o (9(0, 6)K)"
i 0 (a )N,

o 0o 0o 00000l

P(g(0, H)K. (a, b))al(g(d, &) K, (a, b))

X 11_} sin @y cos” By sin B cos B3 sin B3 cos fadfy dfadfadpy dpaddadpsdis,

with (0, ¢) = (61,0a,03, 01, G2, P, D, B5).
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