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Sobre la traza nuclear de operadores integrales de Fourier
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Abstract: In this paper we characterise the r-nuclearity of Fourier integral operators on
Lebesgue spaces. Fourier integral operators will be considered in #n, the discrete group
#n, the n-dimensional torus and symmetric spaces (compact homogeneous manifolds).
We also give formulae for the nuclear trace of these operators. Explicit examples will be
given on #n, the torus #n, the special unitary group SU(2), and the projective complex
plane ##2. Our main theorems will be applied to the characterization of r-nuclear
pseudo-differential operators defined by the Weyl quantization procedure.
MSC2010: 58J40; 47B10, 47G30, 35S30.
Keywords: Fourier integral operator, nuclear operator, nuclear trace, spectral trace,
compact homogeneous manifold.
Resumen: En esta investigación se caracteriza la r-nuclearidad de operadores integrales
de Fourier en espacios de Lebesgue. Las nociones de traza nuclear y operador nuclear
sobre espacios de Banach son conceptos análogos a aquellas de traza espectral y de
operador de clase traza en espacios de Hilbert. Operadores integrales de Fourier, por otro
lado, surgen para expresar soluciones a problemas de Cauchy hiperbólicos o para estudiar
la función espectral asociada a un operador geométrico sobre una variedad diferenciable.
Los operadores integrales de Fourier se consideran actuando sobre #n, el grupo discreto
#n, el toro de dimensión n y finalmente, espacios simétricos (variedades compactas
homogéneas). Se presentan ejemplos explícitos de tales caracterizaciones sobre #n, el
grupo especial unitario SU(2), y el plano complejo proyectivo ##2. Los resultados
principales de la presente investigación se aplican en la caracterización de operadores
pseudo diferenciales nucleares definidos mediante el proceso de cuantificación de Weyl.
Palabras clave: Operador integral de Fourier, operador nuclear, traza nuclear, traza
espectral, variedad compacta homogénea.

1. Introduction

In this paper we characterise the r-nuclearity of Fourier integral operators
on Lebesgue spaces. Fourier integral operators will be considered in #n,
the discrete group #n, the n-dimensional torus and symmetric spaces
(compact homogeneous manifolds). We also give formulae for the
nuclear trace of these operators. Explicit examples will be given on #n,
the torus #n, the special unitary group SU(2), and the projective complex
plane ##2. Our main theorems will be applied to the characterization of
r-nuclear pseudo-differential operators defined by the Weyl quantization
procedure.
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1.1. Outline of the paper

Let us recall that the Fourier integral operators (FIOs) on #n, are integral
operators of the form

where  is the Fourier transform of f, or in a more general setting,
linear integral operators formally defined by

As it is well known, FIOs are used to express solutions to Cauchy
problems of hyperbolic equations as well as for obtaining asymptotic
formulas for the Weyl eigenvalue function associated to geometric
operators (see Hörmander [32], [33], [34], and Duistermaat and Hörmander
[25]).

According to the theory of FIOs developed by Hörmander [32], the
phase functions ϕ are positively homogeneous of order 1 and they are
considered smooth at ξ ≠ 0, while the symbols are considered satisfying
estimates of the form

for every compact subset K of #2n. Let us observe that L p-properties
for FIOs can be found in the references Hörmander [32], Eskin [26],
Seeger, Sogge and Stein [51], Tao [52], Miyachi [37], Peral [39], Asada and
Fujiwara [2], Fujiwara [28], Kumano-go [35], Coriasco and Ruzhansky
[10], [11], Ruzhansky and Sugimoto [44], [45], [46], [47], Ruzhansky [50], and
Ruzhansky and Wirth [49].

A fundamental problem in the theory of Fourier integral operators is
that of classifying the interplay between the properties of a symbol and
the properties of its associated Fourier integral operator.

In this paper our main goal is to give, in terms of symbol criteria
and with simple proofs, characterizations for the r-nuclearity of Fourier
integral operators on Lebesgue spaces. Let us mention that this problem
has been considered in the case of pseudo-differential operators by several
authors. However, the obtained results belong to one of two possible
approaches. e first ones are sufficient conditions on the symbol trough
of summability conditions with the attempt of studying the distribution
of the spectrum for the corresponding pseudo-differential operators. e
second ones provide, roughly speaking, a decomposition for the symbols
associated to nuclear operators, in terms of the Fourier transform,
where the spatial variables and the momentum variables can be analyzed
separately. Nevertheless, in both cases the results can be applied to obtain
Grothendieck-Lidskii's formulae on the summability of eigenvalues when
the operators are considered acting in L p spaces.
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Necessary conditions for the r-nuclearity of pseudo-differential
operators in the compact setting can be summarized as follows. e
nuclearity and the 2/3-nuclearity of pseudo-differential operators on the
circle #1 and on the lattice # can be found in Delgado and Wong [14].
Later, the r-nuclearity of pseudo-differential operators was extensively
developed on arbitrary compact Lie groups and on (closed) compact
manifolds by Delgado and Ruzhansky in the works [16], [17], [18], [19], [21], and
by the author in [9]; other conditions can be found in the works [20], [22],

[23]. Finally, the subject was treated for compact manifolds with boundary
by Delgado, Ruzhansky, and Tokmagambetov in [24].

On the other hand, characterizations for nuclear operators in terms
of decomposition of the symbol trough of the Fourier transform were
investigated by Ghaemi, Jamalpour Birgani, and Wong in [29], [30], [36]

for #1, #, and also for arbitrary compact and Hausdorff groups. Finally
the subject has been considered for pseudo-multipliers associated to
the harmonic oscillator (which can be qualified as pseudo-differential
operators according to the Ruzhansky-Tokmagambetov calculus when
the reference operators is the quantum harmonic oscillator) in the works
of the author [3], [7], [8].

1.2. Nuclear Fourier integral operators

In order to present our main result we recall the notion of nuclear
operators. By following the classical reference Grothendieck [31], we recall
that a densely defined linear operator T : D(T) # E → F (where D(T) is
the domain of T, and E, F are choose to be Banach spaces) extends to a r-
nuclear operator from E into F, if there exist sequences  in E’ (the
dual space of E) and  in F such that, the discrete representation

holds true for all f # D(T). e class of r-nuclear operators is usually
endowed with the natural semi-norm

and, if r =1, n 1(·) is a norm and we obtain the ideal of nuclear operators.
In addition, when E = F is a Hilbert space and r = 1 the definition
above agrees with that of trace class operators. For the case of Hilbert
spaces H, the set of r-nuclear operators agrees with the Schatten-von
Neumann class of order r (see Pietsch [40], [41]). In order to characterize
the r-nuclearity of Fourier integral operators on #n, we will use (same as in
the references mentioned above) Delgado's characterization (see [15]), for
nuclear integral operators on Lebesgue spaces defined in σ-finite measure
spaces, which in this case will be applied to L P(#n)-spaces. Consequently,
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we will prove that r-nuclear Fourier integral operators defined as in (1)
have a nuclear trace given by

In this paper our main results are the following theorems.
eorem 1.1. Let 0 < r ≤ 1. Let a(·, ·) be a symbol such that

 Let 2 ≤ p i < ∞, 1 ≤ p 2 < ∞, and let F be the Fourier
integral operator associated to a(·, ·). en, F : L P1 (#n) → L P2 (#n) is r-
nuclear if, and only if, the symbol a(·, ·) admits a decomposition of the form

where  and  are sequences of functions satisfying

eorem 1.2. Let 0 < r ≤ 1, and let us consider a measurable function a(·,
·) on #2n . Let 1 < p 1 ≤ 2, 1 ≤ p 2 < ∞, and F be the Fourier integral operator
associated to a(·, ·). en, F : L P1 (#n) → L P2 (#n) is r-nuclear if the symbol
a(·, ·) admits a decomposition of the form

where  and  are sequences of functions satisfying

is theorem is sharp in the sense that the previous condition is a necessary
and sufficient condition for the r-nuclearity of F when p 1 = 2.

e previous results are analogues of the main results proved in
Ghaemi, Jamalpour Birgani, and Wong [29], [30], Jamalpour Birgani
[36], and Cardona and Barraza [3]. eorem 1.1, can be used for
understanding the properties of the corresponding symbols in Lebesgue
spaces. Moreover, we obtain the following result as a consequence of
eorem 1.1.

eorem 1.3. Let a(·, ·) be a symbol such that 
Let 2 ≤ p 1 < ∞, 1 ≤ p 2 < ∞, and let F be the Fourier integral
operator associated to a(·, ·). If F : L p1 (#n) → L P2 (#n) is nuclear, then

 this means that

and
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Sufficient conditions in order that pseudo-differential operators in
L2(#n) can be extended to (trace class) nuclear operators are well known.
Let us recall that the Weyl-quantization of a distribution  is the
pseudo-differential operator defined by

As it is well known σ = σ A (·, ·) # L1(#2n), implies that A : L 2 → L
2 is class trace, and A : L2 → L2 is Hilbert-Schmidt if, and only if, σ A #
L2(#2n). In the framework of the Weyl-Hörmander calculus of operators
A associated to symbols σ in the S(m, g)-classes (see [34]), there exist two
remarkable results. e first one, due to Lars Hörmander, which asserts
that σ A # S(m,g) and a σ # L1(#2n), implies that A : L2 → L2 is a trace
class operator. e second one, due to L. Rodino and F. Nicola, expresses
that σ A # S(m, g) and  (the weak-L1 space), and implies that A : L2

→ L2 is Dixmier traceable [43]. Moreover, an open conjecture by Rodino
and Nicola (see [43]) says that  gives an operator A with finite
Dixmier trace. General properties for pseudo-differential operators on
Schatten-von Neumann classes can be found in Buzano and To [6].

As an application of eorem 1.1 to the Weyl quantization we present
the following theorem.

eorem 1.4. Let 0 < r ≤ 1. Let a(·, ·) be a differentiable symbol. Let 2
≤ p 1 < ∞, 1 ≤ p 2 < ∞, and let a w(x, D x) be the Weyl quantization of the
symbol a(·, ·). en, a w (x, Dx) : L P1 (#n) → L P2 (#n) is r-nuclear if, and only
if, the symbol a(·, ·) admits a decomposition of the form

where  and  are sequences of functions satisfying

Remark 1.5. Let us recall that the Wigner transform of two complex
functions h, g on #n, is formally defined as

With a such definition in mind, if 2 ≤ p 1 < ∞, 1 ≤ p2 < ∞, under the
hypothesis of eorem 1.4, a w (x, Dx) : L P1 (#n) → L P2 (#n), is r-nuclear
if, and only if, the symbol a(·, ·) admits a decomposition (defined trough
of the Wigner transform) of the type
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where  and  are sequences of functions satisfying

e proof of our main result (eorem 1.1) will be presented in Section
2 as well as the proof of eorem 1.4. e nuclearity of Fourier integral
operators on the lattice #n and on compact Lie groups will be discussed
in Section 3 as well as some trace formulae for FIOs on the -dimensional
torus #n = #n/#n and the unitary special group SU(2). Finally, in Section
4 we consider the nuclearity of FIOs on arbitrary compact homogeneous
manifolds, and we discuss the case of the complex projective space ##2. In
this setting, we will prove analogues for the theorems 1.1 and 1.3 in every
context mentioned above.

2. Symbol criteria for nuclear Fourier integral operators

2.1. Characterization of nuclear FIOs

In this section we prove our main result for Fourier integral operators F
defined as in (1). Our criteria will be formulated in terms of the symbols
a. First, let us observe that every FIO F has a integral representation with
kernel K(x,y). In fact, straightforward computation shows us that

where

for every  . In order to analyze the r-nuclearity of the Fourier
integral operator F we will study its kernel K, by using as a fundamental
tool the following theorem (see J. Delgado [13], [15]).

eorem 2.1. Let us consider 1 ≤ p 1 , p 2 < ∞, 0 < r ≤ 1 and let  be
such that  Let (X 1 , μ1) and (X 2 , μ2) be σ-finite measure spaces. An
operator T : L p1 (X 1 , μ1) → L P2 (X 2 , μ2) is r-nuclear if, and only if, there
exist sequences (h k)k in L P2 (μ2), and (g k) in  such that

for every f # LP1 (μ1). In this case, if p1 = p2, and μ1 = μ2 , (see Section 3
of [13]) the nuclear trace of T is given by
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Remark 2.2. Given f # L1 (#n), define its Fourier transform by

If we consider a function f, such that f # L1 (#n) with  the
Fourier inversion formula gives

Moreover, the Hausdorff-Young inequality
 shows that the Fourier transform is a

well defined operator on Lp, 1 < p ≤ 2.
Proof of eorem 1.1. Let us assume that F is a Fourier integral operator

as in (1) with associated symbol a. Let us assume that F : L p1 (#n) → L P2

(#n) is r-nuclear.
en there exist sequences h k in LP2 and g kin  satisfying

with

For all z # #n, let us consider the set B(z; r), i.e., the euclidean ball
centered at z with radius r > 0. Let us denote by |B(z; r)| the Lebesgue
measure of B(z; r). Let us choose ξ0 # #n and r > 0. If we define

 where  is the characteristic function of the ball
B(ξ0; r), the condition 2 ≤ p1 < ∞, together with the Hausdorff-Young
inequality gives

So, for every r > 0 and ξ0 # #n, the function  and we
get,

Taking into account that  (see, e.g., Lemma
3.1 of [20]), that  and that (in view of the Lebesgue
Differentiation eorem)
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an application of the Dominated Convergence eorem gives

In fact, for a.e.w. x # #n,

Since K # L1 (#2n), and the function k(x, y) := |K(x, y)| is non-negative
on the product space #2n, by the Fubinni theorem applied to positive
functions, the L1(#2n)-norm of K can be computed from iterated integrals
as

By Tonelly theorem, for a.e.w. x # #n, the function 
Now, by the dominated convergence theorem, we have

Now, from Lemma 3.4-(d) in [20],

On the other hand, if we compute  from the definition (1), we
have

From the hypothesis that  for a.e.w x # #2, the Lebesgue
Differentiation theorem gives
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Consequently, we deduce the identity

which in turn is equivalent to

So, we have proved the first part of the theorem. Now, if we assume
that the symbol a of the FIO F satisfies the decomposition formula (32)
for fixed sequences h k in LP2 and gk in  satisfying (52), then from (1)
we can write (in the sense of distributions)

where in the last line we have used the Fourier inversion formula. So,
by Delgado eorem (eorem 2.1) we finish the proof.

Proof of eorem 1.2. Let us consider the Fourier integral operator F,

associated with the symbol a. e main strategy in the proof will be to
analyze the natural factorization of F in terms of the Fourier transform,

Clearly, if we define the operator with kernel (associated to σ = (ϕ, a)),

then  Taking into account the Hausdorff-Young inequality

the Fourier transform extends to a bounded operator from L P1 (#n)
into  . So, if we prove that the condition (10) assures the r-nuclearity
of K σ from  into L P2 (#n), we can deduce the r-nuclearity of F from
LP1 (#n) into LP2 (#n). Here, we will be using the fact that the class of
r-nuclear operators is a bilateral ideal on the set of bounded operators
between Banach spaces.
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Now,  is r-nuclear if, and only if, there exist
sequences {h k }, {g k } satisfying

Where

for every  Here, we have used the fact that for
 We end the proof by observing that (37) is in

turns equivalent to (9).
Proof of eorem 1.3. Let a(·, ·) be a symbol such that

 Let 2 ≤ p 1 < ∞, 1 ≤ p 2 < ∞, and let F be the
Fourier integral operator associated to a(·, ·). If F : LP1 (#n) → LP2(#n) is
nuclear, then eorem 1.1 guarantees the decomposition

where  and  are sequences of functions satisfying

So, if we take the  we have,

Now, if we use the Hausdorff-Young inequality, we deduce that
 Consequently,

In an analogous way we can prove that
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us, we finish the proof.

2.2. e nuclear trace for FIOs on #n

If we choose a r-nuclear operator T : E → E, 0 < r ≤ 1, with the
Banach space E satisfying the Grothendieck approximation property (see
Grothendieck [31]), then there exist (a nuclear decomposition) sequences

 in E’ (the dual space of E) and  in E satisfying

and

In this case the nuclear trace of T is (a well-defined functional) given by
 because Lp-spaces have the Grothendieck approximation

property and, as consequence, we can compute the nuclear trace of every
r-nuclear pseudo-multipliers. We will compute it from Delgado eorem
(eorem 2.1). For doing so, let us consider a r-nuclear Fourier integral
operator F : Lp(#n) → Lp(#n), 2 ≤ p < ∞. If a is the

symbol associated to F, in view of (9), we have (in the sense of
distributions)

So, we obtain the trace formula

Now, in order to determinate a relation with the eigenvalues of F, we
recall that the nuclear trace of an r-nuclear operator on a Banach space
coincides with the spectral trace, provided that  We recall
the following result (see [42]).

eorem 2.3. Let T : L P(μ) -> L P(μ) be a r-nuclear operator as in (40).
if  then
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where λ n(T), n # # is the sequence of eigenvalues of T with multiplicities
taken into account.

As an immediate consequence of the preceding theorem, if the FIO F :
Lp(#n) → Lp(#n) is r-nuclear, the relation  implies

where λ n(T), n # # is the sequence of eigenvalues of F with multiplicities
taken into account.

2.3. Characterization of nuclear pseudo-differential operators defined by the
Weyl quantization

As it was mentioned in the introduction, the Weyl-quantization of a
distribution  is the pseudo-differential operator defined by

ere exist relations between pseudo-differential operators associated
to the classical quantization

or in a more general setting, τ-quantizations defined for every 0 < τ ≤
1, by the integral expression

(with  corresponding to the Hörmander quantization), as it can be
viewed in the following proposition (see Delgado [12]).

Proposition 2.4. Let  en,  if, and only if,

provided that 0 < τ,τ’ ≤ 1.
eorem 2.5. Let 0 < r ≤ 1. Let a(·, ·) be a differentiable symbol. Let 2

≤ p 1 < ∞,
1 ≤ p2 < ∞, and let a w(x, D x) be the Weyl quantization of the symbol

a(·, ·). en, a w (x, D x): L p1 (#n) → L P2 (#n) is r-nuclear if, and only if, the
symbol a(·, ·) admits a decomposition of the form

where  and  are sequences of functions satisfying
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Proof. Let us assume that aτ(x, D x) is r-nuclear from L p1(#n) into L P2

(#n). By Proposition 2.4, aτ(x, D x) = b(x, D x), where

By eorem 1.1 applied to  and taking into account that
b(x, D x) is r-nuclear, there exist sequences h k in L P2 and g k in  satisfying

with

So, we have

Since

we have (in the sense of distributions)

So, we have proved the first part of the characterization. On the other
hand, if we assume (49), then

where b(x, ξ) is defined as in (51). So, from eorem 1.1 we deduce that
b(x, D x) is r-nuclear, and from the equality aτ(x, Dx) = b(x, Dx) we deduce
the r-nuclearity of aτ(x, Dx). e proof is complete.

Remark 2.6. Let us observe that from eorem 2.5 with τ = 1/2, we
deduce the eorem 1.4 mentioned in the introduction.
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3. Characterizations of Fourier integral operators on #n and
arbitrary compact Lie groups

3.1. FIOs on #n

In this subsection we characterize those Fourier integral operators on
#n (the set of points in #n with integral coordinates) admitting nuclear
extensions on Lebesgue spaces. Now we define pseudo-differential
operators and discrete Fourier integral operators on #n. e discrete
Fourier transform of  is defined by

e Fourier inversion formula gives

In this setting pseudo-differential operators on #n are defined by the
integral form

ese operators were introduced by Molahajloo in [38]. However, the
fundamental work of Botchway L., Kibiti G., Ruzhansky M. [5] provides a
symbolic calculus and other properties for these operators on  In
particular, Fourier integral operators on #n were defined in such reference
as integral operators of the form

Our main tool in the characterization of nuclear FIOs on #n is the
following result, due to Jamalpour Birgani [36].

eorem 3.1. Let 0 < r ≤ 1, 1 ≤ p 1 < ∞, 1 ≤ p2 < ∞, and let tm

be the pseudo-differential operator associated to the symbol m(·, ·). en,
 is r-nuclear if, and only if, the symbol m(·, ·) admits a

decomposition of the form

where  and  are sequences of functions satisfying

As a consequence of the previous result, we give a simple proof for our
characterization.

eorem 3.2. Let 0 < r ≤ 1, 1 ≤ p 1 < ∞, 1 ≤ p2 < ∞, and let  be
the Fourier integral operator associated to the phase function 4> and to the
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symbol a(·, ·). en,  is r-nuclear if, and only if, the symbol a(·,
·) admits a decomposition of the form

where  and  are sequences of functions satisfying

Proof. Let us write the operator  as

where  So, the discrete Fourier integral operator
 coincides with the discrete pseudo-differential operator tm with

symbol m. By using eorem 3.5, the operator  is r-
nuclear if, and only if, the symbol m(·, ·) admits a decomposition of the
form

where  and  are sequences of functions satisfying

Let us note that from the definition of m we have

which, in turn, is equivalent to

us, the proof is complete.
Remark 3.3. e nuclear trace of a nuclear discrete pseudo-differential

operator on  can be computed according to the
formula

From the proof of the previous criterion, we have that  where
 and, consequently, if  is

r-nuclear, its nuclear trace is given by
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Now, we present an application of the previous result.
eorem 3.4. Let 2 ≤ p1 < ∞, and 1 ≤ p2 < ∞. If  is

nuclear, then  this means that

and

e proof is only an adaptation of the proof that we have done for
eorem 1.3. We only need to use a discrete Hausdorff-Young inequality.
In this case, we use

3.2. FIOs on compact Lie groups

In this subsection we characterize nuclear Fourier integral operators on
compact Lie groups. Although the results presented are valid for arbitrary
Hausdorff and compact groups, we restrict our attention to Lie groups
taking into account their differentiable structure, which in our case could
give potential applications of our results to the understanding on the
spectrum of certain operators associated to differential problems.

Let us consider a compact Lie group G with Lie algebra  We will equip
G with the Haar measure μG. e following identities follow from the
Fourier transform on G:

and the Peter-Weyl eorem on G implies the Plancherel identity on
L 2(G),

Notice that, since  the term within the sum is the Hilbert-
Schmidt norm of the matrix  Any linear operator A on G mapping
C ∞(G) into D'(G) gives rise to a matrix-valued global (or full) symbol

 given by

which can be understood from the distributional viewpoint. en it
can be shown that the operator A can be expressed in terms of such a
symbol as [48],
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So, if  is a measurable function (the phase function), and
 is a distribution on  the Fourier integral operator F =

FΦ,a associated to the symbol a(·, ·) and to the phase function $ is defined
by the Fourier series operator

In order to present our main result for Fourier integral operators, we
recall the following criterion (see Ghaemi, Jamalpour Birgani, Wong [30]).

eorem 3.5. Let 0 < r ≤ 1, 1 < p1 < ∞, 1 ≤ p2 < ∞, and let A be the
pseudo-differential operator associated to the symbol σ A(·, ·). en, A : L
P1 (G) → L P2 (G) is r-nuclear if, and only if, the symbol σ A(·, ·) admits a
decomposition of the form

where  and  are sequences of functions satisfying

As a consequence of the previous criterion, we give a simple proof for
our characterization.

eorem 3.6. Let Let 0 < r ≤ 1, 1 < p1 < ∞, 1 ≤ p2 < ∞, and let F be
the Fourier integral operator associated to the phase function Φ and to the
symbol a (·, ·). en, F : LP1 (G) → LP2 (G) is r-nuclear if, and only if, the
symbol a(·, ·) admits a decomposition of the form

where  and  are sequences of functions satisfying

Remark 3.7. For the proof we use the characterization of r-nuclear
pseudo-differential operators mentioned above. However, this result will
be generalized in the next section to arbitrary compact homogeneous
manifolds.

Proof. Let us observe that the Fourier integral operator F, can be written
as

where  So, the Fourier integral operator F
coincides with the pseudo-differential operator A with symbol σA. In view
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of eorem 3.5, the operator F = A : LP1 (G) → LP2 (G) is r-nuclear if, and
only if, the symbol σA(·, ·) admits a decomposition of the form

where  and  are sequences of functions satisfying

Let us note that from the definition of σA we have

which is equivalent to

us, we finish the proof.
Remark 3.8. e nuclear trace of a r-nuclear pseudo-differential

operator on G, A : L P(G) → Lp(G), 1 ≤ p < ∞, can be computed according
to the formula

From the proof of the previous theorem, we have that F = A, where
 and, consequently, if F : Lp(G) → L p(G), 1 ≤ p <

∞,, is r-nuclear, its nuclear trace is given by

Now, we illustrate the results above with some examples.
Example 3.9. (e torus). Let us consider the n-dimensional torus G =

#n: = #n/#n and its unitary dual  By following
Ruzhansky and Turunen [48] , a Fourier integral operator F associated to
the phase function  and to the symbol  is defined
according to the rule

where  is the Fourier transform of f at  If we identify
 with #n, and we define  and  we give the more

familiar expression for F,
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Now, by using eorem 3.6, F is r-nuclear, 0 < r ≤ 1 if, and only if, the
symbol a(·, ·) admits a decomposition ohe form

where  and  are sequences of functions satisfying

e last condition have been proved for pseudo-differential operators in
[29] . In this case, the nuclear trace of F can be written as

Example 3.10. (e group SU(2)). Let us consider the group 
consinting of those orthogonal matrices A in #2x2, with det(A) = 1. We recall
that the unitary dual of SU(2) (see [48]) can be identified as

ere are explicit formulae for t l as functions of Euler angles in terms of the
so-called Legendre-Jacobi polynomials, see [48] . A Fourier integral operator
F associated to the phase function  and to the symbol

 is defined as

where

is the Fourier transform of f at tl. As in the case of the n-dimensional torus,
if we identify  with  and we define  we can
write

Now, by using eorem 3.6, F is r-nuclear, 0 < r ≤ 1 if, and only if, the
symbol a (·, ·) admits a decomposition of the form

where  and  are sequences of functions satisfying
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e last condition have been proved for pseudo-differential operators in
[30] on arbitrary Hausdorff and compact groups. In this case, in an analogous
expression to the one presented above for #n, #n, and #n, the nuclear trace of
F can be written as

By using the diffeomorphism  defined by

we have

where  and dσ(x)
denotes the surface measure on #3 . If we consider the parametrization of S3

defined by  where

then  and

4. Nuclear Fourier integral operators on compact homogeneous
manifolds

e main goal in this section is to provide a characterization for
the nuclearity of Fourier integral operators on compact homogeneous
manifolds  Taking into account that the Peter-Weyl
decompositions of L 2(M) and L2(#) (where # is a Hausdorff and compact
group) have an analogue structure, we classify the nuclearity of FIOs on
compact homogeneous manifolds by adapting to our case the proof of
eorem 2.2 in [30], where those nuclear pseudo-differential operators in
Lp(#)-spaces were classified.

4.1. Global FIOs on compact homogeneous manifolds

In order to present our definition for Fourier integral operators on
compact homogeneous spaces, we recall some definitions on the subject.
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Compact homogeneous manifolds can be obtained if we consider the
quotient space of a compact Lie groups G with one of its closed
subgroups K (there exists an unique differential structure for the quotient
M := G/K). Examples of compact homogeneous spaces are spheres

 real
projective spaces ##n # SO(n + 1)/O(n), complex projective spaces ##n

# SU(n + 1)/SU(1) x SU(n), and, more generally, Grassmannians Gr(r,
n) # O(n)/O(n - r) x O(r).

Let us denote by  the subset of  of representations in G that are of
class I with respect to the subgroup K. is means that  if there exists
at least one non trivial invariant vector a with respect to K, i.e., π(h)a = a
for every h # K. Let us denote by B π to the vector space of these invariant
vectors, and k π = dim B π . Now we follow the notion of Multipliers as
in [1]. Let us consider the class of symbols Σ(M), for M = G/K, consisting
of those matrix-valued functions

Following [1], a Fourier multiplier A on M is a bounded operator on L
2(M) such that for some σ A # Σ(M) it satisfies

where  denotes the Fourier transform of the liing  of f to G,
given by 

Remark 4.1. For every symbol of a Fourier multiplier A on M, only the
upper-le block in σ A (π) of the size k π x k π cannot be the trivial matrix
zero.

Now, if we consider a phase function  and a
distribution  the Fourier integral operator associated to Φ
and to a (·, ·) is given by

We additionally require the condition σ(x,π)ij = 0 for i,j > k π for the
distributional symbols considered above. Now, if we want to characterize
those r-nuclear FIOs we only need to follow the proof of eorem
2.2 in [30], where the nuclearity of pseudo-differential operators was
characterized on compact and Hausdorff groups. Since the set

provides an orthonormal basis of L 2(M), we have the relation
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If we assume that F : L P1 (M) → L P2 (M) is r-nuclear, then we have a
nuclear decomposition for its kernel, i.e., there exist sequences h k in LP2

and g k in  satisfying

with

So, we have with 1 ≤ n,m ≤ k π ,

Consequently, if B t denotes the transpose of a matrix B, we obtain

and by considering that Φ(x,π) # GL(dπ) for every x # M, we deduce
the equivalent condition,

On the other hand, if we assume that the symbol a(·, ·) satisfies the
condition (102) with  from the definition of Fourier
integral operator we can write, for φ # L P1(M),

Again, by Delgado's eorem we obtain the r-nuclearity of F. So, our
adaptation of the proof of eorem 2.2 in [30] to our case of FIOs on
compact manifolds leads to the following result.

eorem 4.2. Let us assume M = G/K be a homogeneous manifold, 0 < r
≤ 1, 1 ≤ p1, p2 < ∞, and let F be a Fourier integral operator as in (97). en,
F : L P1 (M) → L P2 (M) is r-nuclear if, and only if, there exist sequences h k
in L P2 and g k in  satisfying

with
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Now, we will prove that the previous (abstract) characterization can be
applied in order to measure the decaying of symbols in the momentum
variables. So, we will use the following formulation of Lebesgue spaces on

 :

for 1 ≤ p < ∞.
eorem 4.3. Let us assume M # G/K be a homogeneous manifold, 2 ≤ p

1 < ∞, 1 ≤ p 2 < ∞, and let F be a Fourier integral operator as in (97) .If F :
L P1 (M) → L P2 (M) is nuclear, then  this means that

provided that

Proof. Let 2 ≤ p 1 < ∞, 1 ≤ p 2 < ∞, and let F be the Fourier integral
operator associated to a(·, ·). If F : L P1 (M) → L P2 (M) is nuclear, then
eorem 4.2 guarantees the decomposition

with

So, if we take the  we have,

By the definition of  we have
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Consequently,

Now, if we use the Hausdorff-Young inequality, we deduce,
 Consequently,

us, we finish the proof.
Remark 4.4. If K = {e G } and M = G is a compact Lie group, the

condition

arises naturally in the context of pseudo-differential operators. Indeed,
if we take Φ(x,ξ = ξ (x), then Φ(x, ξ)-1 = ξ (x)*, and

Remark 4.5. As a consequence of Delgado's theorem, if F : L p(M) - L
p(M), M # G/K, 1 ≤ p < ∞, is r-nuclear, its nuclear trace is given by

Example 4.6 (e complex projective plane ##2). A point 
(the n-dimensional complex projective space) is a complex line through the
origin in #n+1. For every n, ##n # SU(n +1)/SU(1) x SU(n). We will use
the representation theory of SU(3) in order to describe the nuclear trace of
Fourier integral operators on ##2 # SU(3)/SU(1) x SU(2). e Lie group
SU(3) (see [27]) has dimension 8, and 3 positive square roots a, 3 and p with
the property
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We define the weights

With the notations above the unitary dual of SU(3) can be identified with

SU(3) = {A := \(a, b) = aa + br : a,b # N0, }. (116)
In fact, every representation π = πλ(a,b) has highest weight λ = λ(a, b) for

some (a, b) #  In this case  For G = SU(3)
and K = SU(1) x SU(2), let us define

Now, let us consider a phase function  a
distribution  and the Fourier integral operator F
associated to Φ and to a (·, ·) :

where φ # C∞ (##2). We additionally require the condition
 and  for those distributional symbols

considered above. As a consequence of Remark 4.5, if F : Lp(##2) → Lp(##2),
1 ≤ p < ∞, is r-nuclear, its nuclear trace is given by

If  is a diffeomorphism and K = SU(1) x SU(2),
then

where we have denoted  and
 If we consider the parametrization of SU(3) (see, e.g.,

Bronzan [4]),

where  and
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then, the group measure is the determinant given by

and we have the trace formula
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