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Abstract: We gather some classical results and examples that show strict inclusion
between the families of unital rings, rings with enough idempotents, rings with sets of
local units, locally unital rings, s-unital rings and idempotent rings.
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Resumen: Recopilamos algunos resultados clásicos y ejemplos que muestran una
inclusión estricta entre las familias de anillos unitarios, anillos con suficientes
idempotentes, anillos con conjuntos de unidades locales, anillos localmente unitarios,
anillos s-unitarios y anillos idempotentes.
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idempotente.

1. Introduction

In many presentations of ring theory, authors make the assumption that
all rings are unital, that is that they possess a multiplicative identity
element. ere are, however, lots of natural constructions in ring theory
which share all properties of unital rings except the property of having
a multiplicative identity. Such constructions include ideals, infinite
direct sums of rings, and linear transformations of finite rank of an
infinite dimensional vector space. For many examples of rings lacking
a multiplicative identity there still exist weaker versions of identity
elements. e purpose of the present article is to gather some classical
results and examples of rings having different degrees of weak forms of
identity elements, ordered in hierarchy. To be more precise, we wish to
show the following strict inclusions of families of rings:

In our presentation, we will begin with the class of rings and narrow
down our results and examples until we reach the class of unital rings.
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2. Idempotent and s-unital rings

Definition 2.1. roughout this article, R denotes an associative ring. We
do not assume that R has a multiplicative identity. Let # denote the set of
integers and let # denote the set of positive integers.

Definition 2.2. e ring R is called idempotent if R2 = R. Here R2

denotes the set of all finite sums of elements of the form rs for r, s # R.
Example 2.3. It is easy to construct rings which are not idempotent. In fact,

let A be any non-zero abelian group. Define a multiplication on A by saying
that ab = 0 for all a, b # A. en A 2 = {0} ≠ A.

Another generic class of examples is constructed in the following way. If R
is a ring and I is a two-sided ideal of R, with I 2 # I, then I is a ring which is
not idempotent. is holds for many rings R, for instance when R = # and
I is any non-trivial ideal of R.

e next definition was introduced by Tominaga in 10 and 11.
Definition 2.4. Let M be a le (right) R-module. We say that M is s-

unital if for every m # M the relation m # Rm (m # mR) holds. If M is
an R-bimodule, then we say that M is s-unital if it is s-unital both as a le
R-module and as a right R-module. e ring R is said to be le (right) s-
unital if it is le (right) s-unital as a le (right) module over itself. e ring
R is said to be s-unital if it is s-unital as a bimodule over itself.

Example 2.5. e following example shows that there exist idempotent
rings that are neither le nor right s-unital. Let G = {e, g} denote the
associative semigroup defined by the relations e · e = e and e · g = g · e = g · g =
g. Let K denote a field and put v = (1,0) and v = (0,1) in K x K. Let R denote
the twisted semigroup ring (K x K)[G] where the multiplication is defined by

for x i , x 2 , y 1 , y 2 # K x K. en R is associative. Indeed, take

A straightforward calculation shows that

and

Also R is neither le nor right s-unital. In fact, take x 1 , y 2 # K x K. If g(x
1 + x 2 g) = g, then e 1 x 1 g = g, so that e 1 x 1 = (1, 1) in K x K which is a
contradiction. In the same way (x 1 + x 2 g)g = g leads to x 1 e 2 = (1,1) in
K x K which is a contradiction. However, R is idempotent since for all (k, l)
G K x K, the following relations hold:

and
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Example 2.6. e following example (inspired by [7, Exercise 1.10])
shows that there are lots of examples of rings which are le (right) s-unital but
not right (le) s-unital. Let A be a unital ring with a non-zero multiplicative
identity 1.

(a) Let B l denote the set A x A equipped with componentwise addition
and multiplication defined by the relations

(a, b)(c, d) = (ac, ad)

for a, b, c, d # A. Now we show that Bi is associative. Take a, b, c, d, e,
f # A. en,

((a, b)(c, d))(e, f) = (ac, ad)(e, f) = (ace, acf),

and

(a, b)((c, d)(e, f)) = (a, b)(ce, cf) = (ace, acf).

It is clear that any element of the form (1, a), for a # A, is a le identity for
B l . However, B l is not right unital. Indeed, since (0,1) # {(0, 0)} = (0,1)B
l it follows that B l is not even right s-unital. For each n # # let C n denote
a copy of B l , and put  en C is le s-unital but not le unital.
Since none of the C n are right s-unital it follows that C is not right s-unital.

(b) Let B r denote the set A x A equipped with component wise addition
and multiplication defined by the relation

(a, b)(c, d) = (ac, bc)

for a, b, c, # A. Now we show that Br is associative. Take a, b, c, d, e, f #
A. en,

((a, b)(c, d))(e ,f) = (ac, bc)(e, f) = (ace, bce),

and

(a, b)((c, d)(e, f)) = (a, b)(ce, de) = (ace, bce).

It is clear that any element of the form (1, a), for a # A, is a right identity
for Bl. However, B r is not le unital. Indeed, since (0,1) # {(0, 0)} = B r

(0,1) it follows that Br is not even le s-unital. For each n # # let D n denote
a copy of B r and  en D is right s-unital, but not right unital.
Since none of the D n are le s-unital, it follows that D is not le s-unital.

Definition 2.7. If e', e'' # R, then put e' V e" = e' + e" - e'e".
Proposition 2.8. Let M be a le (right) R-module. en M is le (right)

s-unital if, and only if, for all n # # and all m1,...,mn # M there is e # R such
that for all i # {1,..., n} the relation em¡ = mi (m i e = m i) holds.

Proof. We follow the proof of [11, eorem 1]. e "if" statements are
trivial. Now we show the "only if" statements.

First, suppose that M is a le R-module which is s-unital. Take n # # and
m1,..., mn # M. Take en # R such that enmn = mn, and for every i # {1,...,n -
1} put vi = mi - enmi. By induction there is an element e' # R such that for
every i # {1,..., n - 1} the equality e 'vi = vi holds. Put e = e' V en. en
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emn = e'mn + enmn - e 'enmn = e 'mn + mn - e'mn = mn,

and for every i # {1,..., n - 1} we get that

Now suppose that M is a right R-module which is s-unital. Take n #
# and m1,..., mn # M. Take en # R such that mnen = mn, and for every i
# {1,...,n - 1} put vi = m¡ - m¡en. By induction there is an element e' # R
such that for every i # {1,..., n - 1} the equality v¡e ' = v¡ holds. Put e = en

V e '. en

mne = mne# + mnen − mnene# = mne# + mn − mne# = mn,

and for every i # {1,..., n - 1} we get that

Proposition 2.9. Let M be an R-bimodule and suppose that e', e '' # R.
Let X be a subset of M such that for all m # X the relations e'm = me '' = m
hold. en; for all m # X the following relations hold:

(e’’ V e’ )m = m(e’’ V e’ ) = m.

Proof. is is essentially the proof of [9, Lemma 1]. Take m G X. en

(e '' V e ')m = (e' + e'' - e ''e')m = e'm + e''m - e ''e'm = m + e''m - e''m = m,

and

m(e '' V e ') = m(e ' + e'' - e ''e') = me' + me'' - me''e' = me' + m - me ' = m.

Proposition 2.10. Let M be an R-bimodule. en M is s-unital if, and
only if, for all n # # and all m1,..., mn # M there is e # R such that for all i #
{1,..., n} the relation emi = mie = mi holds.

Proof. e "if" statement is trivial. Now we show the "only if" statement.
Take n # # and mi,..., mn # M. From Proposition 2.8 it follows that there
are e', e '' # R such that for all i # {1,..., n} the relations e mi = mie = mi

hold. e claim now follows from Proposition 2.9 if we put e = e '' V e'
and X = {m1,..., mn}.

Proposition 2.11. e ring R is le (right) s-unital if, and only if, for all n
# # and all r1,..., rn # R there is e # R such that for all i # {1,..., n} the relation
eri = ri (rie = ri) holds.
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Proof. is follows from Proposition 2.8.
Proposition 2.12. e ring R is s-unital if, and only if, for all n # # and

all r1,..., rn # R there is e # R such that for all i # {1,..., n} the relations eri

= rie = ri hold.
Proof. is follows from Proposition 2.10.
Definition 2.13. An element e # R is called idempotent if e2 = e.
Definition 2.14. We say that R is le (right) locally unital if for all n #

N and all
r1,...,rn # R there is an idempotent e # R such that for all i # {1,...,n} the

equality eri = rj (rie = ri) holds. We say that R is locally unital if it is both
le locally unital and right locally unital.

Example 2.15. Let R denote the ring of real valued continuous functions
on the real line with compact support. en R is s-unital, but neither le nor
right locally unital.

3. Locally unital rings

e next definition was introduced by Ánh and Márki in 4.
Definition 3.1. e ring R is said to be locally unital if for all n # # and

all r1,...,rn # R there is an idempotent e # R such that for all i # {1,...,n} the
equalities eri = rie = ri hold.

Proposition 3.2. Suppose that e , e # R are idempotents, and put e = e V
e . en e 2 = e + e 'e '' - e 'e ''e ' - e ' 'e 'e '' + e ' 'e 'e ''e '. If either of the following
equalities hold,

(i) e#e## = e#,
(ii) e#e## = e##,
(iii) e##e# = e##,
(iv) e##e# = e#,
(v) e#e## = e##e#,
then e is idempotent.
Proof. A straightforward calculation shows that

Now we show the last part. If (i) holds, then
e#e## − e#e##e# − e##e#e## + e##e#e##e# = e# − (e#)2 − e##e# + e#

#(e#)2 = e# − e# − e##e# + e##e# = 0.
If (ii) holds, then
e#e## − e#e##e# − e##e#e## + e##e#e##e# = e## − (e##)2 − (e##)2 +

(e##)3 = e## − e## − e## + e## = 0.
If (iii) holds, then
e#e## − e#e##e# − e##e#e## + e##e#e##e# = e#e## − e#e## − (e##)2

+ (e##)2 = −e## + e## = 0.
If (iv) holds, then
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e#e## − e#e##e# − e##e#e## + e##e#e##e# = e#e## − (e#)2 − e#e## +
(e#)2 = −e# + e# = 0.

If (v) holds, then

Proposition 3.3. A ring is locally unital in the sense of Definition 2.14 if,
and only if, it is locally unital in the sense Definition 3.1.

Proof. e "only if" statement is immediate. Now we show the "if"
statement. We use the argument from the proof of [6, Proposition 1.10]
(see also [4, Example 1]). Suppose that R is a ring which is locally unital
in the sense of Definition 2.14. Take n # # and r1,...,rn # R. Since R is right
locally unital, there is an idempotent e’ # R such that for all i # {1,..., n} the
equality rie’ = ri holds. Since R is le locally unital, there is an idempotent
e’’ # R such that e’’e’ = e’, and for all i # {1,...,n} the equality e’’ri = ri holds.
Put e = e’ V e’’. From Proposition 3.2 it follows that e is idempotent. From
Proposition 2.9, with X = {ri,...,rn}, it follows that for all i # {1,...,n} the
equalities eri = rie = ri hold. So, R is locally unital in the sense of Definition
3.1.

4. Regular rings

Definition 4.1. e ring R is called regular if for every r # R there is s # R
such that r = rsr.

e next proposition is [4, Example 1].
Proposition 4.2. Every regular ring is locally unital.
Proof. We proceed in almost the same way as in the proof of

Proposition 2.8. Let R be a regular ring. Take n # # and r1,...,rn # R. First
we show that R is le locally unital. By induction there is an idempotent
e1 # R such that for all i # {1,..., n - 1} the equality e1ri = ri holds. Put s =
rn - e1rn. Since R is regular, there is t # R such that s = sts. Put f = st. en
f is idempotent and

Put g = f - fe 1. en e 1 g = ge 1 = U and

g 2 = f 2 - f 2 e 1 - fe 1 f + fe 1 fe 1 = f - fe 1 = g.

Let e = e1 + g. en e is an idempotent. Take i # {1,..., n - 1}. en,

Finally,
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Now we show that R is right locally unital. By induction there is an
idempotent e1 # R such that for all i # {1,..., n - 1} the equality rie1 = ri

holds. Put s = rn - rne1. Since R is regular, there is t # R such that s = sts.
Put f = ts. en f is idempotent, and

Put g = f - e 1 f. en e 1 g = ge 1 = 0 and

g 2 = f 2 - e 1 f 2 - fe 1 f + e 1 fe 1 f = f - e 1 f = g.

Let e = e 1 + g. en e is an idempotent. Take i # {1,..., n - 1}. en,

Finally,

5. Rings with sets of local units

e next definition was introduced by Abrams in 2.
Definition 5.1. Suppose that E is a set of commuting idempotents in

R which is closed under the operation V from Definition 2.7. en E is
called a set of local units for R if for all r # R there is e # E such that er =
re = r.

Remark 5.2. In [2, Definition 1.1] the condition that E is closed
under V was not included. However, since this was intended (personal
communication with G. Abrams) we chose to include it here.
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Proposition 5.3. If R has a set of local units E, then for all n # N and all
r1,...,rn # R there is e # E such that for all i # {1,..., n} the equalities er i = r
i e = r i holds.

Proof. Take n # # and r 1 ,...r n # R. By induction there is e1, e2 # E such
e2rn = rne2 = rn, and for all i # {1,..., n - 1} the relations e 1 r i = r i e 1 = ri

hold. Put e = e1 V e2. en, since e1e2 = e2e1, we get that

er n = e 1 r n + e 2 r n - e 1 e 2 r n = e 1 r n + r n - e 1 r n = r n

and

r n e = r n e 1 + r n e 2 - r n e 2 e 1 = r n e 1 + r n - r n e 1 = r n,

and for all i # {1,..., n - 1} we get that

er i = e 1 r i + e 2 r i - e 2 e 1 r i = r i + e 2 r i - e 2 r i = r i

and

r i e = r i e 1 + r i e 2 - r i e 1 e 2 = r i + r i e 2 - r i e 2 = r i.

Proposition 5.4. If a ring has a set of local units, then it is locally unital.
Proof. is follows from Proposition 5.3.
Example 5.5. According to [4, Example 1] there are regular rings that do

not possess sets of local units in the sense of Definition 5.1.
Definition 5.6. If e, f # R are idempotent, then e and f are said to be

orthogonal if ef = fe = 0.

6. Rings with enough idempotents

e following definition was introduced by Fuller in 5.
Definition 6.1. e ring R is said to have enough idempotents in case

there exists a set  of orthogonal idempotents in R (called a complete
set of idempotents for R) such that 

Example 6.2. ere exist rings which have sets of local units in the sense of
Definition 5.1, but which does not have enough idempotents in the sense of
Definition 6.1. To exemplify this we recall the construction om [1, Example
1.6]. Let F denote the field with two elements, and let R be the ring of all
functions f : # → F. For each n # # define fn # R by fn(n) = 1, and fn(m) =0,
if m ≠ n. For all finite subsets S of #, define fS # R via  en I =
{fS | S is a finite subset of #} is an ideal of R. Since R is unital, Zorn's lemma
implies the existence of a maximal proper ideal M of R with I # M. Since all
elements in R, and hence also in M, are idempotent, it follows that M is a
ring with E = M as a set of local units. Seeking a contradiction, suppose that
M has a complete set of idempotents {ej}j#J . Since I, and hence M, contains
all fn, for n # #, it follows that  Since M is a proper ideal, we get
that 1R # M, and thus it follows that J is an infinite set. Choose any partition
J = K # L, with K # L = #, and K and L infinite. Define  and

 Since the ej are pairwise orthogonal, we get that eKeL = 0. But M
is a maximal ideal of R. erefore M is a prime ideal of R, and thus eK # M
or eL # M. Suppose that eK # M. Since {ej}j#J is a complete set of idempotents,
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there must exist a finite set J' of J with  which is a contradiction.
Analogously, the case when eL # M leads to a contradiction. erefore, M is
not a ring with enough idempotents.

Definition 6.3. If M is a le (right) R-module, then M is called le
(right) unital if there is e # R such that for all m # M the relation em = m
(me = m) holds. In that case e is said to be a le (right) identity for M. If
M is an R-bimodule, then M is called unital if it is unital both as a le R-
module and a right R-module. e ring R is said to be le (right) unital
if it is le (right) unital as a le (right) module over itself. e ring R is
called unital if it is unital as a bimodule over itself.

Example 6.4. e ring Bl (or Br) om Example 2.6 is a ring which is le
(or right) unital, but not right (or le) unital.

Example 6.5. ere are many classes of rings that are neither le nor right
unital but still have enough idempotents. Here are some examples:

• infinite direct sums of unital rings;
• category rings where the category has infinitely many objects (see e.g.

[8, Proposition 4]);
• Leavitt path algebras with infinitely many vertices (see e.g. [3,

Lemma 1.2.12(iv)]).

Proposition 6.6. Let M be an R-bimodule. en M is unital if, and only
if, there is e # R such that for all m # M the relations em = me = m hold.

Proof. e "if" statement is trivial. e "only if" statement follows from
Proposition 2.9 if we put X = M.

Proposition 6.7. e ring R is unital if, and only if, there is e G R such
that for all r R the relations er = re = r hold.

Proof. is follows from Proposition 6.6 if we put M = R. 0

Remark 6.8. Proposition 6.7 can of course be proved directly in the
following way. Let e’ (or e’’) be a le (or right) identity for R as a le (or
right) module over itself. en e' = e’e’’ = e’’.

We end the article with the following remark, which connects unitality
and s-unitality.

Proposition 6.9. If R is le (right) s-unital and right (le) unital, then
R is unital.

Proof. First suppose that R is le s-unital and right unital. Let f be a
right identity of R and take r # R. From Proposition 2.8 it follows that
there is e # R with er = r and ef = f. But since f is a right identity of R it
follows that ef = e. us e = f and hence  = er = r so that f is a le identity
of R. Now suppose that R is right s-unital and le unital. Let f be a le
identity of R and take r # R. From Proposition 2.8 it follows that there is
e # R with re = r and fe = f. But since f is a le identity of R it follows that
fe = e. us e = f and hence rf = re = r so that f is a right identity of R.
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