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A survey of s-unital and locally unital
rings
Una revisién de anillos s-unitarios y localmente unitarios

Patrik Nystedt *
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Abstract: We gather some classical results and examples that show strict inclusion
between the families of unital rings, rings with enough idempotents, rings with sets of
local units, locally unital rings, s-unital rings and idempotent rings.
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Resumen: Recopilamos algunos resultados cldsicos y e¢jemplos que muestran una
inclusién estricta entre las familias de anillos unitarios, anillos con suficientes
idempotentes, anillos con conjuntos de unidades locales, anillos localmente unitarios,
anillos s-unitarios y anillos idempotentes.
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conjuntos de unidades locales, anillo localmente unitario, anillo s-unitario, anillo
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1. Introduction

In many presentations of ring theory, authors make the assumption that
all rings are unital, that is that they possess a multiplicative identity
element. There are, however, lots of natural constructions in ring theory
which share all properties of unital rings except the property of having
a multiplicative identity. Such constructions include ideals, infinite
direct sums of rings, and linear transformations of finite rank of an
infinite dimensional vector space. For many examples of rings lacking
a multiplicative identity there still exist weaker versions of identity
elements. The purpose of the present article is to gather some classical
results and examples of rings having different degrees of weak forms of
identity elements, ordered in hierarchy. To be more precise, we wish to

show the following strict inclusions of families of rings:
{unital rings} {rings with enough idempotents}

{rings with sets of local units}

{locally unital rings}

{s-unital rings}

{idempotent rings}

{rings}.

AR A akak’aks

In our presentation, we will begin with the class of rings and narrow
down our results and examples until we reach the class of unital rings.
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2. Idempotent and s-unital rings

Definition 2.1. Throughout this article, R denotes an associative ring. We
do not assume that R has a multiplicative identity. Let # denote the set of
integers and let # denote the set of positive integers.

Definition 2.2. The ring R is called idempotent if R* = R. Here R?
denotes the set of all finite sums of elements of the form 7s for 7, s # R.

Example 2.3. It is easy to construct rings which are not idempotent. In fact,
let A be any non-zero abelian group. Define a multiplication on A by saying
thatab = 0foralla, b# A. Then A* = {0} # A.

Another generic class of examples is constructed in the following way. If R
is a ring and I is a two-sided ideal of R, with 1 2#1 thenIisa ring which is
not idempotent. This holds for many rings R, for instance when R = # and
1 is any non-trivial ideal of R.

The next definition was introduced by Tominaga in '° and .

Definition 2.4. Let M be a left (right) R-module. We say that M is s-
unital if for every m # M the relation m # Rm (m # mR) holds. If M is
an R-bimodule, then we say that M is s-unital if it is s-unital both as a left
R-module and as a right R-module. The ring R is said to be leff (right) s-
unitalif it is left (right) s-unital as a left (right) module over itself. The ring
R is said to be s-unital if it is s-unital as a bimodule over itself.

Example 2.5. The following example shows that there exist idempotent
rings that are neither left nor right s-unital. Let G = {e, g} denote the
associative semigroup defined by the relationse-e =eande-g=g-e=g-g=
g Let K denote afield and put v =(1,0) and v =(0,1) in KxK. Let R denote
the twisted semigroup ring (K x K)[G] where the multiplication is defined by

(1 + z29)(1n + y2g) = ;11 + (T1y2e2 + T2101€1 )9
forxi,x2,y1,y2# Kx K. Then R is associative. Indeed, take
Ty, ro.y1.42.21.22 € K < K.

A straightforward calculation shows that

((z1 + z2g)(1n + y29))(21 + 22g) = 121 + (T2gn121€1 + T1Y122€2)9

and

(z1 +2ag)((v1 + y2g)(z1 + 229)) = Tz + (w2 z1€1 + 21y12202)9.

Also R is neither left nor right s-unital. In fact, takex 1, y , # Kx K. If g(x
1 +x29) =g thene x1g=gsothate x1=(1,1)in KxKwhich is a
contradiction. In the same way (x | + x 2 g)g =gleadstox 1 e, = (1,1) in
K x Kwhich is a contradiction. However, R is idempotent since for all (k, [)
G K x K, the following relations hold:

(k)1 = (k1) (1,1) e R?,

and
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(k. Dg= (kMg (L1 +(0.11-(1.1)g & B*.

Example 2.6. The following example (inspired by [7, Exercise 1.10])
shows that there are lots of examples of rings which are left (right) s-unital but
not right (left) s-unital. Let A be a unital ring with a non-zero multiplicative
identity 1.

(@) Let B | denote the set A x A equipped with componentwise addition
and multiplication defined by the relations

(a4, 6)(c, d) = (ac, ad)

for a, b, ¢, d # A. Now we show that Bi is associative. Take a, b, ¢, d, e,
f# A Then,

((a, b)(c d))(e f) = (ac, ad)(e, f) = (ace, acf),
and

(4 6)((¢ d)(e.f) = (a b)(ce, f) = (ace, acf).

It is clear that any element of the form (1, a), for a # A, is a left identity for
B\. However, B\ is not right unital. Indeed, since (0,1) # {(0, 0)} = (0,1)B
1 it follows that B | is not even right s-unital. For each n # # let C ,, denote
acopy of B 1, and put ¢ = w,2nC,.. Then Cis left s-unital but not left unital.
Since none of the C , are right s-unital it follows that C is not right s-unital.

(b) Let B , denote the set A x A equipped with component wise addition
and multiplication defined by the relation

(@ b)(c, d) = (ac, be)

Jfor a, b, ¢, # A. Now we show that Br is associative. Take a, b, ¢, d, e, [#
A. Then,

(@ b)(c d))(e,f) = (ac, be)(e, ) = (ace, bee),
and

(@ 6)((c d)(e /) = (4 b)(ce, de) = (ace, bee).

It is clear that any element of the form (1, a), for a # A, is a right identity
for Bl. However, B, is not left unital. Indeed, since (0,1) # {(0, 0)} =B,
(0,1) it follows that Br is not even left s-unital. For each n # # let D ,, denote
acopy of B and D = ©,enD,.. Then D is right s-unital, but not right unital.
Since none of the D , are left s-unital, it follows that D is not left s-unital.

Definition 2.7.If ¢, ¢" # R, then pute' Ve"=¢' + ¢" - ¢¢”

Proposition 2.8. Let M be a lefi (right) R-module. Then M is left (right)
s-unital if, and only if, for all n # # and all m,,...m, # M there is ¢ # R such
that for all i # {1,..., n} the relation em; = m; (m ; e = m ;) holds.

Proof. We follow the proof of [11, Theorem 1]. The "if" statements are
trivial. Now we show the "only if" statements.

First, suppose that M is aleft R-module which is s-unital. Take 7 # # and
my,..., m, # M. Take e, # R such that e,m,, = m,, and for every i # {1,....n -
1} put v; = m; - e,m;. By induction there is an element ¢' # R such that for
every i # {1,..., n - 1} the equality ¢ 'v; = v; holds. Put e = ¢' V ¢,,. Then
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empy =e'mp + e,mp - € 'epmy =€ 'my + my, - €'my, = my,

and for every i # {1,..., n - 1} we get that

em; = ée'm;+e,m;—ee,m;
= ¢e'(mi — enm;) + enm;
= €ev;+e,my
= U + €,My
= My — €My + €M

= ;.

Now suppose that M is a right R-module which is s-unital. Take 7 #
# and mj,..., m, # M. Take e, # R such that m,e, = m,, and for every i
#{1,...n - 1} put v; = m; - m;e,. By induction there is an element ¢' # R
such that for every i # {1...., n - 1} the equality vie ' = v, holds. Pute = ¢,
Ve' Then

mpe = mpe# + mpe, — mpepe# = mpe# + my — mpe# = my,
and for every i # {1,..., n - 1} we get that

r !
e = ;e + MijCy — Ny

(m; — mien)e’ + mien

e’ 4+ mae
P I i=n

= 1 4+ micy
= m; — m;e, + m;e,
= 1.

Proposition 2.9. Let M be an R-bimodule and suppose that ¢', ¢ " # R.
Let X be a subset of M such that for all m # X the relations ¢ m = me " =m
hold. Then; for all m # X the following relations hold:

(eVeYym=m(Ve)=m.

Proof. This is essentially the proof of [9, Lemma 1]. Take m G X. Then
(e"Ve'Ym=(c+e"-e"e)m=em+e'm-e"em=m+e'm-e'm=m,

and
m(e" Ve Y=m(e'+e"-e"e) =me +me'" -me'e =me +m-me'=m.

Proposition 2.10. Let M be an R-bimodule. Then M is s-unital if, and
only if, for all n # # and all m,,..., m, # M there is ¢ # R such that for all i #
{1,..., n} the relation em; = mje = m; holds.

Proof. The "if" statement is trivial. Now we show the "only if" statement.
Take 7 # # and m,..., m, # M. From Proposition 2.8 it follows that there
are €', e " # R such that for all i # {1...., n} the relations e m; = mje = m;
hold. The claim now follows from Proposition 2.9 if we pute =¢" Ve'
and X = {mj,..., m,}.

Proposition 2.11. The ring R is left (right) s-unital if; and only if, for all n
## and all ty,..., t, # R there is ¢ # Rsuch that for all 1# {1...., n} the relation
er; = r; (rie = 1;) holds.
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Proof. This follows from Proposition 2.8.

Proposition 2.12. The ring R is s-unital if, and only if, for all n # # and
all ty,..., to # R there is ¢ # R such that for all i # {1,..., n} the relations er;
=re =1; hold.

Proof. This follows from Proposition 2.10.

Definition 2.13. An element e # R is called idempotent if et =e.

Definition 2.14. We say that R is leff (right) locally unital if for all n #
N and all

I1,...0n # R there is an idempotent e # R such that for all i # {1,...,n} the
equality er; = 1j (rie = r;) holds. We say that R is locally unital if it is both
left locally unital and right locally unital.

Example 2.15. Lez R denote the ring of real valued continuous functions
on the real line with compact support. Then R is s-unital, but neither left nor
right locally unital.

3. Locally unital rings

The next definition was introduced by Anh and Mérki in 4

Definition 3.1. The ring R is said to be locally unital if for all n # # and
all ry,...,t, # R there is an idempotent ¢ # R such that for all i # {1,...,n} the
equalities er; = rie = r; hold.

Proposition 3.2. Suppose that ¢ , e # R are idempotents, and pute =e V

[N 1] T

e. Thene*=ce+e'e"-e'e"e'-e'"'e'e" +e"'e'e"e" Ifeither of the following
equalities hold,

(i) e#tert# = e#,

(ii) e#e#t# = e##,

(iif) ettet = e##,

(iv) e#te# = e#,

(v) e#er# = e##et,

then e is idempotent.

Proof. A straightforward calculation shows that

N2 niaty2 sl L PN
‘el —e(e') —eele” e €
' 1o 1t

—ele'e” +

Now we show the last part. If (i) holds, then

ehet# — chettel — ehtehett + ehtehettel = et — (e#)” — e#Het + of
#(e#)* = e# — e# — e##e# + e#te# = 0.

If (ii) holds, then

eHe## — ehettet — chtehet# + ehtetette# = et# — (e##) — (e##) +
(e##)® = e## — e## — e## + e## = 0.

If (iii) holds, then

cHe## — cHette# — chtchet# + chHeHetted = chet# — ehett — (e##)*
+ (e##)? = —e## + e## = 0.

If (iv) holds, then



Patrik Nysteds. A survey of s-unital and locally unital rings

cHet# — chetted — ehHehet# + ehtehettel = chett — (e#)” — ehett +
(e#)* = —e# + e# = 0.

If (v) holds, then
e’ —(e)Pe” — e'(e") + (¢)*(e")?

’ ' "
e’ —ele” — oo™ + e'e

0.

Proposition 3.3. A ring is locally unital in the sense of Definition 2.14 if,
and only if, it is locally unital in the sense Definition 3.1.

Proof. The "only if" statement is immediate. Now we show the "if"
statement. We use the argument from the proof of [6, Proposition 1.10]
(see also [4, Example 1]). Suppose that R is a ring which is locally unital
in the sense of Definition 2.14. Take 7 # # and ry,....r, # R. Since R is right
locally unital, there is an idempotent ¢’ # R such that for all i # {1,..., n} the
equality rie’ = r; holds. Since R is left locally unital, there is an idempotent
¢’ #Rsuch thate”e’ =¢’, and for all i # {1,...,n} the equality ¢”'r; = r; holds.
Pute=¢’Ve”. From Proposition 3.2 it follows that eis idempotent. From
Proposition 2.9, with X = {r;,...,r,}, it follows that for all i # {1,...,n} the
equalities er; = rje = r; hold. So, Rislocally unital in the sense of Definition

3.1.
4. Regular rings

Definition 4.1. The ring R is called regular if for every r # R there is s # R
such that » = rsr.

The next proposition is [4, Example 1].

Proposition 4.2. Every regular ring is locally unital.

Proof. We proceed in almost the same way as in the proof of
Proposition 2.8. Let R be a regular ring. Take 7 # # and ry,...,r, # R. First
we show that R is left locally unital. By induction there is an idempotent
e; # Rsuch that for all i # {1,..., n - 1} the equality e;r; = r; holds. Put s =
Iy - €1, Since R is regular, there is t # R such that s = s#5. Put f'=sz. Then
fis idempotent and

erf =est =ey(ry, —ery )t = (11, — e'fr',. )t = (e1r, —ery )t =0,
Putg=/f-fe,. Thene,g=ge; =Uand

=t fre-feiftfeifer=f-fe1=g
Lete =e¢; + g Then ¢ is an idempotent. Take i # {1.,..., n - 1}. Then,

er; = (e1 +g)ri = (e1 +gleyr; = [;f +gey)r; = eyr; =71,

Finally,
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ern, = (e1+ g)rn
E1Tn + _E';.i"“
e1rn + (f — fer)ra
f'l]",, T f."'” _— ff'!]"“

= €1 n T f'“

= €17y + Sis

= E1Tp T8

= 1Ty Ty — €17y

.

Now we show that R is right locally unital. By induction there is an
idempotent ¢; # R such that for all i # {1..., n - 1} the equality rie; = ;
holds. Put s = r, - rye;. Since R is regular, there is # # R such that s = szs.
Put /= #5. Then f is idempotent, and

fer = tsey = t(rn — rmer)er = Hrner — rne) = H(rney — rner) = 0.
Putg=f-e,f Thene,;g=ge;=0and
=P fP-ferfrerferf=f-c1f=¢
Lete =¢ + g Then e is an idempotent. Take 7 # {1...., z - 1}. Then,
rie =ri(e1 + g) = rie1(er + g) = ri(el + e19) = rier = .

Finally,

e = Tnl€1 +g)

-

- Fatl _"ruf_:.rr!]f
= rae] +5f

= Tpe] + sts

= The] + 8

= Tp€l vy — Tt}

~
=

5. Rings with sets of local units

The next definition was introduced by Abrams in 2,

Definition 5.1. Suppose that E is a set of commuting idempotents in
R which is closed under the operation V from Definition 2.7. Then E is
called a sez of local units for R if for all r # R there is ¢ # E such that er =
re =r.

Remark 5.2. In [2, Definition 1.1] the condition that E is closed
under V was not included. However, since this was intended (personal
communication with G. Abrams) we chose to include it here.
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Proposition 5.3. If R has a set of local units E, then for all n # N and all
[1yeeln # R there is e # E such that for all i # {1,..., n} the equalities er ; = r
ce=r;holds.

Proof. Take n # # and 7 1,...r , # R. By induction there is ey, e, # E such
exfn = Ihes =y, and for all i # {1,.., n - 1} the relationse ; i =7rje; =1;
hold. Put e = e; V e,. Then, since eje; = ez¢;, we get that

ern=el1rntexrpn-er1e2rpn=e1rntrpn-€17n="n
and

rneé=7rpne€ltrner-rpene1=rpnel1+rn-rn€1="n
and forall i # {1,..., n - 1} we get that

eri=e1riterri-exe1ri=rviterri-erri=r;i

and
rie=rie1+triex-riel1er=ritrier-rier=rj.

Proposition 5.4. If a ring has a set of local units, then it is locally unital.

Proof. This follows from Proposition 5.3.

Example 5.5. According to [4, Example 1] there are regular rings that do
not possess sets of local units in the sense of Definition 5.1.

Definition 5.6. If ¢, f# R are idempotent, then e and f are said to be
orthogonal if ef = fe = 0.

6. Rings with enough idempotents

The following definition was introduced by Fuller in >,

Definition 6.1. The ring R is said to have enough idempotents in case
there exists a set {¢,}.; of orthogonal idempotents in R (called a complete
set of idempotents for R) such that k = @.c; Re; = @cpe. R

Example 6.2. There exist rings which have sets of local units in the sense of
Definition 5.1, but which does not have enough idempotents in the sense of
Definition 6.1. To exemplify this we recall the construction from [1, Example
1.6). Let F denote the field with two elements, and let R be the ring of all
Sfunctions £: # > F. For each n # # define £, # R by £,(n) = 1, and £,(m) =0,
if m # n. For all finite subsets S of #, define fs # R via 1s =% ,.cc fo. Then I =
{fs | S is a finite subset of #} is an ideal of R. Since R is unital, Zorn's lemma
implies the existence of a maximal proper ideal M of R with 1# M. Since all
elements in R, and hence also in M, are idempotent, it follows that M is a
ring with E = M as a set of local units. Seeking a contradiction, suppose that
M has a complete set of idempotents {e}is . Since I, and hence M, contains
all £, for n # #, it follows that 1n = 5,.,<;. Since M is a proper ideal, we get
that 1x # M, and thus it follows that | is an infinite set. Choose any partition
J=K#L, with K#L = #, and K and L infinite. Define cx =5, ex and
eL = Yaer o1 Since the ¢ arve pairwise orthogonal, we get that exer, = 0. But M
is a maximal ideal of R. Therefore M is a prime ideal of R, and thus ex # M
or e # M. Suppose that ex # M. Since {¢j}js) is a complete set of idempotents,



Revista Integracién, 2019, 37(2), Jul-Dec, ISSN: 0120-419X

there must exist a finite set ' of | with ex = .., e which is a contradiction.
Analogously, the case when e # M leads to a contradiction. Therefore, M is
not a ring with enough idempotents.

Definition 6.3. If M is a left (right) R-module, then M is called /ef
(right) unital if there is e # R such that for all m # M the relation ez = m
(7me = m) holds. In that case e is said to be a left (right) identity for M. If
M is an R-bimodule, then M is called u##izal if it is unital both as a left R-
module and a right R-module. The ring R is said to be leff (right) unital
if it is left (right) unital as a left (right) module over itself. The ring R is
called unital if it is unital as a bimodule over itself.

Example 6.4. The ring By (or B,) from Example 2.6 is a ring which is left
(or right) unital, but not right (or left) unital.

Example 6.5. There are many classes of vings that are neither left nor right
unital but still have enough idempotents. Here are some examples:

o infinite direct sums of unital rings;

o category rings where the category has infinitely many objects (sec e.g.
[8, Proposition 4]);

o Leavitt path algebras with infinitely many vertices (see e.g. [3,
Lemma 1.2.12(iv)]).

Proposition 6.6. Let M be an R-bimodule. Then M is unital if, and only
if, there is ¢ # R such that for all m # M the relations em = me = m hold.

Proof. The "if" statement is trivial. The "only if" statement follows from
Proposition 2.9 if we put X = M.

Proposition 6.7. The ring R is unital if, and only if, there is ¢ G R such
that for all r R the relations er = re = r hold.

Proof- This follows from Proposition 6.6 if we put M = R.°

Remark 6.8. Proposition 6.7 can of course be proved directly in the

following way. Let ¢ (or ¢”) be a left (or right) identity for R as a left (or
right) module over itself. Then e'=¢e”=¢”

We end the article with the following remark, which connects unitality
and s-unitality.

Proposition 6.9. If R is left (right) s-unital and right (left) unital, then
R is unital.

Proof. First suppose that R is left s-unital and right unital. Let f be a
right identity of R and take » # R. From Proposition 2.8 it follows that
there is ¢ # R with er =  and ¢f = f. But since f is a right identity of R it
follows that ¢f = e. Thus e = fand hence f = er = 7 so that fis a left identity
of R. Now suppose that R is right s-unital and left unital. Let f be a left
identity of R and take » # R. From Proposition 2.8 it follows that there is
¢ # Rwith re = and fe = f. But since f is a left identity of R it follows that

fe =e. Thus e = fand hence 7f'= re = r so that fis a right identity of R.
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