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Stokes system coupled through a curved

interface
Análisis asintótico de un sistema Darcy-Stokes acoplado a

través de una interfaz curva

Fernando A. Morales a*

Universidad Nacional de Colombia, Colombia

Abstract: We present the asymptotic analysis of a Darcy-Stokes coupled system,
modeling the fluid exchange between a narrow channel (Stokes flow) and a porous
medium (Darcy flow), coupled through a C2 curved interface. e channel is a
cylindrical domain between the interface (Γ) and a parallel translation of itself

 e introduction of a change variable (to fix the domain geometry) and
the introduction of two systems of coordinates: the Cartesian and a local one (consistent
with the geometry of the surface), permit to find the limiting form of the system when
the width of the channel tends to zero (є → 0). e limit problem is a coupled system
with Darcy flow in the porous medium and Brinkman flow on the curved interface (Γ).
MSC2010: 35K50, 35B25, 80A20, 35F15.
Keywords: porous media, curved interfaces, Darcy-Stokes system, Darcy-Brinkman
system.
Resumen: En el trabajo se presenta el análisis asintótico de un sistema Darcy-Stokes
acoplado a través de una interfaz curva. El sistema modela el intercambio de fluido
entre un canal angosto (flujo Stokes) y un medio poroso (flujo Darcy). El canal es
un dominio cilíndrico definido entre la interfaz (Γ) y una traslación paralela de dicha
superficie  Utilizando un cambio de variables para fijar un dominio de
referencia e introduciendo dos sistemas de coordenadas, el Cartesiano canónico y el
local (consistente con la geometría de la superficie), es posible encontrar la forma límite
cuando el ancho del canal tiende a cero (є - 0). El problema límite es un sistema acoplado
con flujo Darcy en el medio poroso y flujo Brinkman en la interfaz (Γ).
Palabras clave: medio poroso, interfaces curvas, sistema Darcy-Stokes, sistema Darcy-
Brinkman.

1. Introduction

In this paper we continue the work presented in [14], extending the result
to a more general and realistic scenario. at is, we find the limiting
form of a Darcy-Stokes (see equations (26)) coupled system, within a
saturated domain Ωє in #N, consisting in three parts: a porous medium
Ω1 (Darcy flow), a narrow channel  whose width is of order e (Stokes
flow) and a coupling interface  (see Figure 1 (a)). In contrast
with the system studied in [14], where the interface is flat, here the analysis
is extended to curved interfaces. It will be seen that the limit is a fully-
coupled system consisting of Darcy flow in the porous medium Ω1 and a
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Brinkman-type flow on the part Γ of its boundary, which now takes the
form of a parametrized N - 1 dimensional manifold.

Figure 1
Figure (a) depicts the original domain with a thin channel on top, where we
set the Stokes flow. Figure (b) depicts the domain aer scaling by the change

of variables x → φ(x), where φ is defined in Equation (10). is will be the
domain of reference which is used for asymptotic analysis of the problem.

e central motivation in looking for the limiting problem of our
Darcy-Stokes system is to attain a new model, free of the singularities
present in (26). ese are the narrowness of the channel  (є) and the
high velocity of the fluid in the channel  (є), both (geometry and
velocity) with respect to the porous medium. Both singularities have a
substantial negative impact in the computational implementation of the
system, such as numerical instability and poor quality of the solutions.
Moreover, when considering the case of curved interfaces, the geometry of
the surface aggravates these effects, making even more relevant the search
for an approximate singularity-free system as it is done here.

e relevance of the Darcy-Stokes system itself, as well as its
limiting form (a Darcy-Brinkman system) is confirmed by the numerous
achievements reported in the literature: see [2], [4], [6] for the analytical
approach, [3], [5], [9], [13] for the numerical analysis point of view, see [11],
[21] for numerical experimental coupling and [12] for a broad perspective
and references. Moreover, the modeling and scaling of the problem have
already been extensively justified in [14]. Hence, this work is focused on
addressing (rigorously) the interface geometry impact in the asymptotic
analysis of the problem. It is important to consider the curvature of
interfaces in the problem, rather than limiting the analysis to flat or
periodic interfaces, because the fissures in a natural bedrock [where this
phenomenon takes place] have wild geometry. In [7], [8] the analysis is
made using homogenization techniques for periodically curved surfaces,
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which is the typical necessary assumption for this theory. In [17], [18] the
analysis is made using boundary layer techniques, however no explicit
results can be obtained, as usually with these methods. An early and
simplified version of the present result can be found in [16], where
incorporating the interface geometry in the asymptotic analysis of a
multiscale Darcy-Darcy coupled system is done and a explicit description
of the limiting problem is given.

e successful analysis of the present work is because of keeping
an interplay between two coordinate systems: the Cartesian and a
local one, consistent with the geometry of the interface r. While it is
convenient to handle the independent variables in Cartesian coordinates,
the asymptotic analysis of the flow fields in the free fluid region  is more
manageable when decomposed in normal and tangential directions to
the interface (the local system). e a-priori estimates, the properties of
weak limits, as well as the structure of the limiting problem will be more
easily derived with this double bookkeeping of coordinate systems, rather
than disposing of them for good. It is therefore a strategic mistake (not a
mathematical one, of course) to seek a transformation flattening out the
interface, as it is the usual approach in traces' theory for Sobolev spaces.
e proposed method is significantly simpler than other techniques and
it is precisely this simplicity which permits to obtain the limiting form
explicit description for a problem of such complexity, as a multiscale
coupled Darcy-Stokes.

Notation
We shall use standard function spaces [see [1], [20]). For any smooth

bounded region G in #N with boundary ∂G, the space of square integrable
functions is denoted by L2(G) and the Sobolev space H 1(G) consists
of those functions in L2(G) for which each of its first-order weak
partial derivatives belongs to L 2(G). e trace is the continuous linear
function γ : H1(G) - L 2(∂G) which agrees with the restriction to the
boundary on smooth functions, i.e.,  Its kernel is

 e trace space is  the range of
γ endowed with the usual norm from the quotient space 
and we denote by H-1/2(∂G) its topological dual. Column vectors
and corresponding vector-valued functions will be denoted by boldface
symbols, e.g., we denote the product space [L2(G)]N by L2(G) and the
respective N-tuple of Sobolev spaces by  Each w # L 2(G)
has gradient  furthermore we understand it as a row
vector. We shall also use the space Hdiv(G) of vector functions w # L2(G)
whose weak divergence # • w belongs to L2(G). e symbol  stands for
the unit outward normal vector on ∂G. If w is a vector function on ∂G, we
indicate its normal component by  and its normal projection
by  e tangential component is denoted by 
e notations w N, wT indicate respectively, the last component and
the first N - 1 components of the vector function w in the canonical
basis. For the functions w # Hdiv(G), there is a normal trace defined
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on the boundary values, which will be denoted by  For
those w # G H 1(G) this agrees with  Greek letters are used to
denote general second-order tensors. e contraction of two tensors is
given by  For a tensor-valued function k on ∂G, we denote
the normal component (vector) by  and its normal and
tangential parts by  respectively. For a
vector function w # H1(G), the tensor  is the gradient of w and the
tensor (£(w)) = ^(ff^ + is the symmetric gradient.

e set  indicates the standard canonical basis in #N. For a
column vector x = (x 1 ,..., x N-1, x N) # #N we denote by  the
vector in #N-1 consisting of the first N - 1 components of x. In addition,
we identify #N-1 x {0} with #N-1 by  e operators  denote
respectively the #N-1-gradient and the #N-1-divergence in the first N -
1-canonical directions, i.e.,  moreover, we regard #T as a
row vector. Finally,  denote the corresponding operators written as
column vectors.

Remark 1.1. It shall be noticed that different notations have been
chosen to indicate the first N - 1 components: we use  for a vector
variable as x, while we use wT for a vector function w (or the operator #T

, # ). is difference in notation will ease keeping track of the involved
variables and will not introduce confusion.

Preliminary Results
We close this section recalling some classic results.
Lemma 1.2. Let G # #N be an open set with Lipschitz boundary, and 

be the unit outward normal vector on ∂G. Let the normal trace operator
 be defined by

For any g # H -1/2(∂G) there exists u G Hdiv(G) such that  on
∂G and  with K depending only on the domain G.
In particular, if g belongs to L 2(∂G), the function u satisfies the estimate

Proof. See Lemma 20.2 in [19].
Next we recall a central result to be used in this work
eorem 1.3. Let X, Y, X', Y' be Hilbert spaces and their corresponding

topological duals. Let A : X → X', B : X → Y', C : Y → Y' be linear and
continuous operators satisfying the following conditions

I. A is non-negative and X-coercive on ker(B);
II. B satisfies the inf-sup condition

III. C is non-negative and symmetric.
en, for every F 1 # X' and F 2 # Y', the problem (3) below has a unique

solution (x, y) # X x Y:
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Moreover, the solution satisfies the estimate

for a positive constant c depending only on the preceding assumptions on
A, B, and C.

Proof. See Section 4 in [10].

2. Geometric setting and formulation of the problem

In this section we introduce the Darcy-Stokes coupled system when the
interface is curved, analogous to the one presented in [14]. We begin with
the geometric setting

2.1. Geometric setting and change of coordinates

We describe here the geometry of the domains to be used in the present
work; see Figure 1 (a) for the case N =2. e є-domain  is
composed of two disjoint bounded open sets Ω1 and  in #N sharing a
common interface  e domain Ω1 is the porous medium
and  is the free fluid region. For simplicity we have assumed that the
domain  is a cylinder defined by the interface Γ and a small height є
> 0. It follows that the interface must verify specific requirements for a
successful analysis

Hypothesis 1. ere exist G0, G bounded open connected domains in
#N-1 such that cl(G) # G0, and a function ζ : G0 → #, in C2(G0), such that
the interface Γ can be described by

at is, Γ is aparametrized N - 1 manifold in #N. In addition, the
domain  is described by

Remark 2.1. I. Observe that the domain G is the orthogonal projection
of the open surface Γ # #N into #N-1.

II. Notice that due to the properties of ζ it must hold that if  is
the upwards unitary vector, orthogonal to the surface Γ, then

Here  is the last element of the standard canonical basis in #N

For simplicity of notation in the following we write
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In order to conduct the asymptotic analysis of the coupled system, a
domain of reference n needs to be settled (see Figure 1 (b)). erefore,
we adopt a bijection between domains and account for the changes in the
differential operators.

Definition 2.2. Let  be the change of variables defined by

where  are the standard canonical basis in #N.
Remark 2.3. Observe that  is a bijective map (see Figure 1

(b)).
Gradient operator
Denote by y, x# the gradient operators with respect to the variables y

and x respectively. Due to the convention of equation 9 above, a direct
computation shows that these operators satisfy the relationship

In the block matrix notation above, it is understood that I is the
identity matrix in  are vectors in #N-1 and  In order
to apply these changes to the gradient of a vector function w, we recall the
matrix notation

Reordering we get

Here, the operator x£)e is defined by

i.e.,  it is introduced to have a more efficient notation. In
the next section we address the interface conditions.

Divergence operator
Observing the diagonal of the matrix in (13) we have
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Remark 2.4. e prescript indexes y, x written on the operators above
were used only to derive the relation between them; however, they will be
dropped once the context is clear.

Local vs global vector basis
It shall be seen later on, that the velocities in the channel need to

be expressed in terms of an orthonormal basis B, such that the normal
vector  belongs to B, and the remaining vectors are locally tangent to the
interface Γ. Since ζ : G → # is a C2 function, it follows that  is at
least C1.

Definition 2.5. Let  be the standard canonical basis in #N.
For any  be an orthonormal basis in #N. Define
the linear map  by

We say the map  is a stream line localizer if it is of class C1. In
the sequel we write it with the following block matrix notation:

Here, the indexes T and N stand for the first N - 1 components and
the last component of the vector field. e indexes tg and  indicate the
tangent and normal directions to the interface Γ.

Remark 2.6. I. Since ζ is bounded an C2(C), clearly for each  a
basis  can be chosen so that  is C1. In the following
it will be assumed that U is a stream line localizer.

II. Notice that by definition  is an orthogonal matrix for all  .
Next, we express the velocity fields w2 in terms of the normal and

tangential components, using the following relations:

Clearly, if  is expressed in terms of the canonical basis, the
relationship between velocities is given by

Remark 2.7. We stress the following observations
I. e procedure above does not modify the dependence of the

variables; only the way velocity fields are expressed as linear combinations
of a convenient (stream line) orthonormal basis.

II. e fact that U is a smooth function allows to claim that  belongs
to  and 
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III. In order to keep notation as light as possible, the dependence of the
matrix U with respect to  , as well as the normal and tangential directions

 , tg will be omitted whenever is not necessary to write explicitly these
parameters.

IV. Recall that for any vector field  denotes its normal
projection on the direction  , while v(tg) = v - v(  ), i.e., the component
orthogonal to  (and tangent to Γ). Considering the previous, given any
two flow fields u 2, w 2, the following isometric identities hold:

Proposition 2.8. Let w2 # H1(Ω2); and let  be as defined in (19).
en,

Proof. I. It suffices to observe that the orthogonal matrix U defined in
(20) is independent from z.

II. Due to (22), we have

e last equality holds true because the matrix U (  ) is orthogonal
at each point , therefore it is an isometry in the Hilbert
space #N endowed with the standard inner product. Recalling that

 for all  the result follows.

2.2. Interface conditions and the strong form

e interface conditions need to account for stress and mass balance. We
start decomposing the stress in its tangential and normal components; the
former is handled by the Beavers-Joseph-Saffman (24a) condition and the
latter by the classical Robin boundary condition (24b); this gives

In the expression (24a) above, e2 is a scaling factor introduced to
balance out the geometric singularity coming from the thinness of the
channel. In addition, the coefficient α ≥ 0 in (24b) is the fluid entry
resistance.
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Next, recall that the stress satisfies  (where the scale e is
introduced according to the thinness of the channel and μ > 0 is the shear
viscosity of the fluid; see also Hypothesis 2) and that #· v2 =0 (since the
system is conservative); then we have

Replacing in the equations (24) we derive the following set of interface
conditions:

e condition (25c) states the fluid flow (or mass) balance.
With the previous considerations, the Darcy-Stokes coupled system in

terms of the velocity v and the pressure p is given by

Here, equations (26a), (26b) correspond to the Darcy flow filtration
through the porous medium, while equations (26c) and (26d) stand for
the Stokes free flow. Finally, we adopt the following boundary conditions:

e system of equations (26), (27) and (25) constitute the strong form
of the Darcy-Stokes coupled system.

Remark 2.9. i. For a detailed exposition on the system's scaling,
namely, the fluid stress tensor  and the Beavers-Joseph-
Saffman condition (24a), together with the formal asymptotic analysis,
we refer to [15].

II. A deep discussion on the role of each physical variable and parameter
in equations (26), as well as the meaning of the boundary conditions (27),
can be found in Sections 1.2, 1.3 and 1.4 in [14].

2.3. Weak variational formulation and a reference domain

In this section we present the weak variational formulation of the
problem defined by the system of equations (26), (27) and (25), on the
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domain Ωє. Next, we rescale  to get a uniform domain of reference. We
begin defining the function spaces where the problem is modeled.

Definition 2.10. Let  be as introduced in Section 2.1; in
particular, Ω2 and Γ satisfy Hypothesis 1. Define the spaces

endowed with their respective natural norms. Moreover, for є =1 we
simply write X, X2 and Y.

In order to attain well-posedness of the problem, the following
hypothesis is adopted.

Hypothesis 2. It will be assumed that μ, > 0 and that the coefficients
β, α are non-negative and bounded almost everywhere. Moreover, the
tensor  is elliptic, i.e., there exists a positive constant CQ such that

eorem 2.11. Consider the boundary-value problem defined by the
equations (26), the interface coupling conditions (25) and the boundary
conditions (27); then,

I. A weak variational formulation of the problem is given by

II. e problem (29) is well-posed.
III. e problem (29) is equivalent to
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Proof. I. See Proposition 3 in [14]. We simply highlight that the term
 has been replaced by  due to the isometric

identities [21].
II. See eorem 6 in [14]. e technique identifies the operators A, B,

C in the variational statements (29a) and (29b), then it verifies that these
operators satisfy the hypotheses of eorem 1.3; this result delivers well-
posedness.

III. A direct substitution of the expressions (14) and (16) in the
statements (29), combined with the definition (15) yields the system
(30). (Also notice that the determinant of the matrix in the right hand
side of the equation (14) is equal to є  -1  .) Finally, observe that the
boundary conditions of space  defined in (28a) are transformed into
the boundary conditions of X2 because none of them involve derivatives.

Remark 2.1f. In order to prevent heavy notation, from now on we
denote the volume integrals by  F dx and  We will use
the explicit notation  only when specific calculations are needed.
Both notations will be clear from the context.

3. Asymptotic analysis

In this section, we present the asymptotic analysis of the problem, i.e., we
obtain a-priori estimates for the solutions ((vє, pє) : є > 0), derive weak
limits and conclude features about them (velocity and pressure). We start
recalling a classical space.

Definition 3.1. Let Ω2 be as in Definition 1 and define the Hilbert
spaces

endowed with the corresponding inner products

Lemma 3.2. 1. Let H(∂z, Ω2) be the space introduced in Definition
3.1; then, the trace map  om H(∂z, Ω2) to L 2(Γ) is well-defined.
Moreover, the following Poincaré-type inequalities hold in this space:

for all w # H(∂z, Ω2).
II. Let H(∂z, Ω2) be the vector space introduced in Definition 3.1; then,

for any w # H(∂z, Ω2) the estimates analogous to (32) hold.
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III. Let w2 # H 1(Ω2) # H(∂z, Ω2) and let  be as defined in (19);
then,

Proof. I. e proof is a direct application of the fundamental theorem
of calculus on the smooth functions C  ∞  (Ω2), which is a dense subspace
in H(∂z, Ω2).

II. A direct application of equations (32) on each coordinate of w #
H(∂z, Ω2) delivers the result.

III. It follows from a direct application of (i) and (ii) on 
respectively.

Next we show that the sequence of solutions is globally bounded under
the following hypothesis.

Hypothesis 3. In the following, it will be assumed that the sequences
 and  are bounded, i.e., there exists C > 0

such that

eorem 3.3 (Global a-priori Estimate). Let ([vє , p є]: e > 0) # X x Y
be the sequence of solutions to the є-Problems (30). ere exists a constant
K > 0 such that

Proof. Set w = vє in (30a), φ = p є in (30b) and add them together.
(Observe that the mixed terms were canceled out on the diagonal.) Next,
apply the Cauchy-Bunyakowsky-Schwartz inequality to the right hand
side and recall the Hypothesis 2; this gives

We continue focusing on the last summand of the right hand side in
the expression above, i.e.,

e second inequality holds due to Poincaré's inequality, given that
p1,є = 0 on ∂Ω1 - Γ, as stated in Equation (27a). e equality holds due
to (26b). e third inequality holds because the tensor  and the family
of sources  are bounded as stated in Hypothesis 2 and
Hypothesis 3 (Equation (34)), respectively. Next, we control the L2(Ω2)-
norm of v2,є. Since v2,є # H1(Ω2) # H(∂z, Ω2), the estimates (33) apply;
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combining them with (37) and the bound (34) (from Hypothesis 3) in
Inequality (36) we have

Here, the last inequality is due to the equality
 Next, using the equivalence of norms

 for 4-D vectors in the previous expression yields

From the expression above, the global Estimate (35) follows.
In the next subsections we use weak convergence arguments to derive

the functional setting of the limiting problem (see Figure 2), for the
structure of the limiting functions.

Figure 2
Figure (a) depicts the dependence of the limit solution [v, p], for both regions Ω1, Ω2 and
a generic hyperplane  Figure (b) shows plausible schematics for traces of the

velocity and pressure restricted to the hyperplane  depicted in Figure (a).

Corollary 3.4 (Convergence of the Velocities). Let ([vє, pє] : є > 0) #
X x Y be the sequence of solutions to the e-Problems (30). ere exists a
subsequence, still denoted (vє : є > 0) , for which the following holds:

I. ere exist v1 є Hd¡v(Ω1) such that
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II. ere exist  and v2 # H1(Ω2) such that

III. ere exists ξ # H(∂z, Ω2) such that

IV. e following properties hold:

Proof. I. (e proof is identical to part (i) of Corollary 11 in [14];
we write it here for the sake of completeness.) Due to the global a-
priori estimate (35), there must exist a weakly convergent subsequence
and a limit v1 # Hdiv(Ω1) such that (39a) holds only in the weak
L2(Ω1)-sense. Because of the hypothesis 3 and the equation (26c),
the sequence  is bounded. en, there must exist yet
another subsequence, still denoted the same, such that (39a) holds in the
weak Hdiv(Ω1)-sense. Now, recalling that the divergence operator is linear
and continuous with respect to the Hdiv-norm, the identity (39b) follows.

II. From the estimate (35), it follows that (∂z v2,є: є > 0) is bounded
in L2(Ω2). en, there exists a subsequence (still denoted the same) and

 such that (∂z v2,є: є > 0) and (∂z(є v2,є) : є > 0) satisfy the statement
(40a). Also from (35) the trace on the interface  is bounded in
L2(Γ). Applying the inequality (32b) for vector functions, we conclude
that (є v 2,є: є > 0) is bounded in L2(Ω2) and consequently in H(∂z, Ω2).
en, there must exist v2 # H(∂z, Ω2) such that

Also, from the strong convergence in the statement (40a), it follows
that v2 is independent from z, i.e., (40c) holds.

Again, from (35) we know that the sequence (є D є v 2,є: є > 0)
is bounded in L2(Ω2). Recalling the identity (15) we have that the
expression

is bounded. In the equation above, the le hand side and the second
summand of the right hand side are bounded in L2(Ω2); then we conclude
that the first summand of the right hand side is also bounded. Hence, we
have  is bounded in L2(Ω2), and therefore the sequence (є v 2,є:
є > 0) is bounded in H1(Ω2); consequently, the statement (40b) holds.
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III. Since  is bounded, in particular 
is also bounded. From (35), we know that  is bounded
and again, due to Inequality (32b), we conclude that 
is bounded. en, the sequence  is bounded in H(∂z, Ω2);
consequently, there must exist a subsequence (still denoted the same) and
a limit ξ # H(∂z, Ω2), such that  and  satisfy the statement
(41a). From here it is immediate to conclude the relations (41b).

IV. Since  and due to (43), we conclude that 
Finally, due to (40), we have that  and the proof is complete.

eorem 3.5 (Convergence of Pressures). Let ([v є , p є]: є > 0) # X x Y be
the sequence of solutions to the e-Problems (30). ere exists a subsequence,
still denoted (p є : є > 0), verifying the following:

I. ere exists p1 # H1(Ω1) such that

II. ere exists p 2 # L 2(Ω2) such that

III. e pressure p = [p1, p2] belongs to L 2(Ω).
Proof. I. (e proof is identical to part (i) Lemma 11 in [14]; we write it

here for the sake of completeness.) Due to (16b) and (36) it follows that

where C is an adequate positive constant. From (11a), the Poincaré
inequality gives the existence of a constant  satisfying

erefore, the sequence (p 1.є : є > 0) is bounded in H and the
convergence statement (44a) follows directly. Again, given that p 1.є

satisfies the Darcy equation (16b) and that the gradient # is linear and
continuous in H1(Ω1), the equality  in (44b) follows. Finally,
since  for every element of the weakly convergent subsequence,
and the trace map  is linear, it follows that p1 satisfies the boundary
condition in (44b).

II. In order to show that the sequence (p2,є : є > 0) is bounded in L
2(Ω2), take any  and define the auxiliary function

Since ζ # C 2(G), it is clear that  and  Hence,
the function  belongs to X2; moreover,
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Here, the second inequality follows from the first one and due to the
estimate (31a). Next, observe that  then, Lemma
1.1 gives the existence of a function w1 # Hdiv (Ω1) such that

Here, the last inequality holds because  Hence,
the function  belongs to the space X. Testing (30a) with w yields

Applying the Cauchy-Bunyakowsky-Schwarz inequality to the
integrals, and reordering, we get

We pursue estimates in terms of  to that end we first apply the
fact that all the terms involving the sol|ution on the right hand side,
i.e.,  are bounded. In addition, the forcing term

 is bounded. Replacing the norms of the aforementioned terms by a
generic constant on the right hand side we have

In the expression above the first summand of the second line needs
further analysis. We have

Combining (48) with the expression above, we conclude

Introducing the latter estimate in the inequality (51), the first two
summands on the right hand side of the first line are bounded by a
multiple of  due to (49). e second and third summands on the
second line are trace terms which are also controlled by a multiple of

 , due to (48). e fourth summand on the second line is trivially
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controlled by  because of its construction. Combining all these
observations with (52), we get

where C > 0 is a new generic constant. Taking upper limit as є → 0 in
the previous expression gives

e above holds for any  then, the sequence (p 2,є: є > 0 ) #
L2(Ω2) is bounded and, consequently, the convergence statement (45)
follows.

III. From the previous part, it is clear that the sequence ([p1,є, p2,є] :
є > 0) is bounded in L2(Ω); therefore, p also belongs to L2Ω), which
completes the proof.

Remark 3.6. Notice that the upwards normal vector  orthogonal to
the surface Γ is given by the expression

and the normal derivative satisfies

We use the identities above to identify the dependence of x, ξ and p2

(see Figure 2 above).
eorem 3.7. Let x, ξ be the higher order limiting terms in Corollary 3.4

(ii) and (iii), respectively. Let p 2 be the limit pressure in Ω2 in Lemma 3.5
(ii). en,

In particular, 
Proof. Take Ф = (0, φ 2) # Y, test (30b) and reorder the summands

conveniently; we have

Letting e # 0 in the expression above we get



Fernando A. Morales. e asymptotic analysis of a Darcy-Stokes system coupled through a curved interface

PDF generated from XML JATS4R by Redalyc
Project academic non-profit, developed under the open access initiative

Recalling Equation (40c) we have that ∂z v2 = 0; hence,

Since the above holds for all  it follows that

where c is a constant. In the previous expression we observe that two
out of three terms are independent from z; then it follows that the third
term is also independent from z. Since the vector  is independent
from z, we conclude that  is, together with the boundary
conditions (41b), yield the second equality in (55a).

Take  for each i =1, 2,..., N; build the
"antiderivative"  of ϕ i using the rule (47), and define

 Use Lemma 1.2 to construct w1 # Hdiv(Ω1) such that
 and

therefore,  Test (30a) with w and regroup the higher order
terms; we have

e limit of all the terms in the expression above when e # 0 is clear
except for one summand, which we discuss independently; i.e.,

In the latter expression, the first summand clearly tends to zero when
e # 0. erefore, we focus on the second summand:

All the terms in the right hand side can pass to the limit. Recalling the
statement (40a), we conclude that
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Letting e # 0 in (57), and considering the equality above, we get

We develop a simpler expression for the sum of the fourth, fih and
sixth terms:

Here  is the normal derivative defined in the identity (54b). We
introduce the previous equality in (58); this yields

Next, we integrate by parts the second summand in the first line, add
it to the first summand and recall that  by construction. Hence,

In the expression above we develop the surface integrals as integrals
over the projection G of Γ on #N-1; this gives

Recalling that  the latter equality becomes in

Introducing the previous in (60), we have

Since the above holds for all  it follows that
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In order to get the normal balance on the interface w(e coul)d repeat the
previous strategy, but with a quantifier  satisfying  i.e.,
such that it is parallel to the normal direction. is would be equivalent
to replace ψ by  n in all the previous equations. Consequently, in
order to get the normal balance, it suffices to apply  Equation (61);
such operation yields:

In the last expression the identity (42) has been used. Also notice that
all the terms are independent from z, then the equation (55b) follows.
Consequently, all the terms but the last in (61) are independent from z;
therefore we conclude that X is independent from z. Recalling (42) and
(55a), the second equality in (55c) follows and the proof is complete.

4. e limiting problem

In this section we derive the form of the limiting problem and characterize
it as a Darcy-Brinkman coupled system, where the Brinkman equation
takes place in a parametrized (N - 1)-dimensional manifold of #N. First,
we need to introduce some extra hypotheses to complete the analysis.

Hypothesis 4. In the following, it will be assumed that the sequence of
forcing terms  and  are weakly convergent,
i.e., there exist f2 # L2(Ω2) and h1 # L2(Ω1) such that

4.1. e tangential behavior of the limiting problem

Recalling (40c) and (42), clearly the lower order limiting velocity has the
structure

e above motivates the following definition.
Definition 4.1. Let  be the matrix-valued map introduced in

Definition 2.5. Define the space Xtg # X2 by

endowed with the H1(Ω2)-norm.
We have the following result:
Lemma 4.2. e space Xtg # X2 is closed.
Proof. Let  and w2 # X2 be such that  W( e)

must show that w2 # Xtg. First, notice that the convergence in X2 implies
 Recalling (20) and the fact that  ) is orthogonal, we have
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In the identity above, we observe that  ) are convergent in the
H1-norm and that the orthonormal matrix U has differentiability and
boundedness properties. erefore, we conclude that  is convergent
in the H1-norm, and denote the limit by  Now take the limit
in the expression above in the L2-sense; given that there are no derivatives
involved, we have

Observe that the latter expression implicitly states that 
Finally, applying once more the inverse matrix, we have

Here the equality is in the L2-sense. However, we know that
 therefore the equality holds in the H1 -sense too, i.e. Xtg is

closed as desired.
Next we use space Xtg to determine the limiting problem in the

tangential direction.
Lemma 4.3 (Limiting tangential behavior's variational statement).

Let v2 be the limit found in eorem 3.4 (ii). en, the following weak
variational statement is satisfied:

Proof. Let w2 # Xtg; then w = (0, w2) # X; test (30a) with w and get

Divide the whole expression over e, expand the second summand
according to the identity (15) and recall that ∂z w2 = 0; this gives

Letting e # 0, the limit v2 meets the condition

We modify the higher order term using the property ∂z w2 = 0:
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Recall that  , because w2 # Xtg; then 
Replacing the above expression in (67), the statement (66) follows
because all the previous reasoning is valid for w2 # Xtg arbitrary.

4.2. e higher order effects and the limiting problem

e higher order effects of the e-problem have to be modeled in the
adequate space; to that end we use the information attained. We know the
higher order term x satisfies the condition (55c) and it belongs to L2(Ω2).
is motivates the following definition:

Definition 4.4. Define
I. e subspace

endowed with its natural norm.
II. e space of limit normal effects in the following way:

endowed with its natural norm

Remark 4.5. I. It is direct to prove that  is closed.
II. Observe that, due to its structure, the component η of an element in
 can be completely described by its normal trace on Γ, i.e., the norm

is equivalent to the norm (69b). is feature will permit the
dimensional reduction of the limiting problem formulation later on (see
Section 5.2).

III. Let v1 and ξ be the limits found in the statements (39a) and (41a),
respectively. e function [v1, ξ] belongs to  , with

is was one of the motivations behind the definition of the space 
above.

iv. e information about the higher order term x is complete only
in its normal direction  Furthermore, the facts that x depends
only on  (see Equation (55c)) and that  show that
only information corresponding to the normal component of x will be
preserved by the modeling space  , while the tangential component of
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the higher order term x(tg) will be given away for good. It is also observed
that most of the terms involving the presence of x require only its normal
component, e.g.  in the third summand of the variational
statement (66). is was the reason why the space  excludes tangential
effects of the higher order term.

Before characterizing the asymptotic behavior of the normal flux we
need a technical lemma.

Lemma 4.6. e subspace  is dense in  .
Proof. Consider an element  then η tg = 0T, and

 is completely defined by its trace on the interface Γ. Given
e > 0, take  such that  Now extend the function
to the whole domain using the rule  then 
From the construction of  we know that 
Define  due to Lemma 1 there exists u # Hdiv(Ω1)
such that  on  on ∂Ω1 - Γ and  with
C1 depending only on Ω1. en, the function w1 + u is such that

 and 
Moreover, defining

we notice that the function (w1 +u, w2) belongs to  Due to the
previous observations we have

Given that the constants depend only on the domains Q i and Q2, it
follows that  is dense in  .

Definition 4.7. Let μ be the shear viscosity of the fluid, and define its
average in the z-direction by

Lemma 4.8 (Limiting normal behavior's variational statement). Let v 1

, v2 be the limits found in Corollary 3.4, and let p 1 , p 2 be the limits found
in eorem 3.5. en, the following variational statement is satisfied:

Here,  is the averaged viscosity introduced in Definition 4-7.
Proof. Test (30a) with  and let є → 0; this gives
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Notice that the third and fourth summands in the expression above
can be written as

where the second equality holds by the definition of  and the last
equality holds since p2 is independent from z (see Equation (55b)). Next,
recalling the identities (42), (55a) and (55c), observe that

Replacing the last two identities in (74), we conclude that the
variational statement (73) holds for every test function in  . Since the
bilinear form of the statement is continuous with respect to the norm

 and  is dense in  , it follows that the statement holds for every
element w #  .

4.3. Variational formulation of the limit problem

In this section we give a variational formulation of the limiting problem
and prove it is well-posed. We begin characterizing the limit form of the
conservation laws.

Lemma 4.9 (Mass conservation in the limit problem). Let v 1 , v2 be the
limits found in eorem 3.4; then,

Proof. Take Ф = (φ 1,0) # Y, test (30b) and let є # 0; we have

e statement above implies (75a).
For the variational statement (75b), first recall the dependence of the

limit velocity given in equation (55b). Hence, consider Ф = (0, φ 2) G Y
such that  test (30b) and regroup terms using (54a). e previous
yields

Next, let є # 0 and get
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In the expression above, recall that  and the identity
(55a); then, the statement (75b) follows.

Next, we introduce the function spaces of the limiting problem:
Definition 4.10. Define the space of velocities by

endowed with the natural norm of the space  Define the space
of pressures by

endowed with its natural norm.
eorem 4.11 (Limiting problem variational formulation). Let v 1 , v 2

be the limits found in Corollary 3.4, and let p 1 , p 2 be the limits found in
eorem 3.5. en, they satisfy the following variational problem:

Moreover, the problem (77) is well-posed. (Here,  is the averaged viscosity
introduced in Definition 4.7.)

Proof. Since [v, p] satisfies the variational statements (66), (73), (75a),
(75b) as shown in Lemmas 4.3, 4.8 and 4.9, respectively, it follows that
[v, p] satisfies the problem (77) above.

In order to show that the problem is well-posed w(e prove)continuous
depen(dence )of the solution with respect to the data. Test (77a) with v1,
v2 and (77b) with (p1, p2), add them together and get

Applying the Cauchy-Bunyakowsky-Schwarz inequality to the right
hand side of the expression above, and recalling that  is constant in the
z-direction, we get
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Here, the second and third inequalities holds because p1 satisfies
respectively the drained boundary conditions (Poincaré's inequality
applies) and the Darcy's equation as stated in (44a). Finally, the fourth
inequality is a new application of the Cauchy-Bunyakowsky-Schwarz
inequality for 2-D vectors. Introducing (79) in (78), and recalling
Hypothesis 2 on the coefficients  , α, β and μ, we have

Recalling (39b), the expression above implies that

Next, given that  is independent from z (see (40c)), it follows that
 and  erefore (80) yields

Again, recalling that p1 satisfies the Darcy's equation and the drained
boundary conditions (Poincaré's inequality applies) as stated in (44a), the
estimate (81) implies 

Next, in order to prove continuous dependence for p2, recall (61),
where it is observed that all the terms are already continuously dependent
on the data; then it follows that

Finally, in order to prove the uniqueness of the solution, assume there
are two solutions, test the problem (77) with its difference and subtract
them. We conclude that the difference of solutions must satisfy the
problem (77) with null forcing terms. is implies, due to (81), (82) (83)
and (84), that the difference of solutions is equal to zero, i.e. the solution
is unique. Since (77) has a solution, which is unique and it continuously
depends on the data, it follows that the problem is well-posed.

Corollary 4.12. e weak convergence statements in Corollaries 3.4 and
3.5 hold for the whole sequence ((vє, pє) : є > 0) of solutions.

Proof. It suffices to observe that, due to Hypothesis 4, the limiting
problem (77) has unique forcing terms. erefore, any subsequence of the
solutions ((vє, pє) : є > 0) would have a weakly convergent subsequence,
whose limit is the solution of problem (77) (v, p), which is also unique,
due to eorem 4.11. Hence, the result follows.

5. Closing remarks

We finish the paper highlighting some aspects that were meticulously
addressed in [14].
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5.1. A mixed formulation for the limiting problem

For an independent well-posedness proof of the problem (77), define the
operators

And

en, the variational formulation of the problem (77) has the
following mixed formulation:

e proof now follows showing that the hypotheses of eorem 1.3 are
satisfied. e strategy is completely analogous to that exposed in Lemma
17, Lemma 18 and eorem 19 in [14].

5.2. Dimensional reduction of the limiting problem

It is direct to see that since Xtg and Y0 do not change on the z-direction
inside Ω2, the integrals on this domain can be reduced to integrals on the
interface Γ. is yields a problem coupled on Ω1 x Γ equivalent to (77).
To that end we introduce the space:

endowed with the norm (70), and the space

endowed with its natural norm.
Remark 5.1. Notice the following:
I. e space,  is isomorphic to  (69a).
II. Since r is a surface (a parametrized manifold in #N) as described

by the identity (6), it is completely characterized by its global chart
ζ : G → #. erefore a function u : Γ → #, γ → u(γ), can be seen as

 with G being the orthogonal projection of
the surface Γ into #N-1. Identifying u with uG allows to well-define
integrability and differentiability. Hence, the space L2(Γ) is characterized
by the equality:  where  is the Lebesgue measure in G
# #N-1. In the same fashion, the space H 1(Γ) is the closure of the C1(Γ)
space in the natural norm  (Clearly, #T suffices to store all
the differential variation of a function u : Γ → #.)

With the definitions above, define the space of velocities
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endowed with the natural norm of the space  Next, define the
space of pressures by

endowed with its natural norm. erefore, the problem (77) is
equivalent to

where 
Remark 5.2 (e Brinkman equation). Notice that in the equation

(89a), the product  has been replaced by v2 · w2 (for consistency
 was replaced by f2 · w2). is is done in order to attain a Brinkman-

type form in the third, fourth and fih summands of equation (89a).
Also notice that although  and  the product 
can not be replaced by  due to the differential operators (the
orthogonal matrix U depends on  ). is is the reason why we give up
expressing the activity on the interface Γ exclusively in terms of tangential
vectors, as its is natural to look for.

5.3. Strong convergence of the solutions

In contrast to the asymptotic analysis in [14], the strong convergence of
the solutions can not be concluded. e main reason is the presence of
the higher order term x, weak limit of the sequence  As it
can be seen in the proof of eorem 4.3, the higher order term x can be
removed because the quantifier w2 belongs to Xtg. However, when testing
the problem (30) on the diagonal [vє , p є] and adding the equations to
get rid of the mixed terms, the quantifier v2,є does not belong to Xtg. As
a consequence, the terms  contain in its internal
structure inner products of the type

which can not be combined/balanced with other terms present in the
evaluation of the diagonal. e product above is not guaranteed to pass
to the limit  because both factors are known to converge
weakly, but none has been proved to converge strongly. Such convergence
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would be ideal since v2 # Xtg, therefore  and the term (90)
would converge to zero. e latter would yield the strong convergence of
the norms for  and  and the desired strong convergence
would follow.

More specifically, the surface geometry states that the normal  and
the tangential directions (tg) are the important ones, around which the
information should be arranged. On the other hand, the estimates yield
its information in terms of  (T) and z (N). Such disagreement has the
effect of keeping intertwined the higher order and lower order terms
to the extent of allowing to conclude weak, but not strong convergence
statements.

5.4. Ratio of velocities

e relationship of the velocity in the tangential direction with respect
to the velocity in the normal direction is very high and tends to infinity
as expected for most of the cases. We know that  is bounded,
therefore  Suppose first that  and consider the
ratios

e lower bound holds true for є > 0 small enough and adequate δ > 0;
then we conclude that the L2-norms' ratio of the tangent component over
the normal component blows-up to infinity, i.e., the tangential velocity is
much faster than the normal one in the thin channel.

In contrast, if  nothing can be concluded, since it can not be
claimed that  on Γ unless f2 = 0 is enforced, trivializing the activity
on Ω2. erefore, it can only be concluded that  for є > 0
small enough, when  as discussed above.

5.5. Reduction to the flat horizontal case

In this section we show how the e-problems (30) and the limit problem
(77) are corresponding generalizations of the systems (23) and (59)
presented in [14]. We show this fact in several steps:

a. Recall that in [14] the interface r is flat horizontal and, for
convenience, it was assumed that Γ # #N-1 x {0}. In our current scenario,
this is attained by merely setting ζ = 0, which satisfies all the conditions
of Hypothesis 1. Furthermore, the following differential operators verify

where D є w is defined in (15).
b. For ζ = 0, the stream line localizer of Definition 2.5 is the constant

matrix valued function  where I # #NxN is the identity matrix.
In particular  which is independent from 
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c. Given that the stream line localizer is the identity matrix, the normal
and tangential velocities introduced in the equations (19) satisfy

Taking into account all the previous observations, the e-problems (30)
reduce to

e summands of the second line in (91a) can be written in the
following way:

Introducing the changes above in (91), the system (23) in [14] is
attained.

Again, taking into account the simplifications corresponding to a flat
horizontal interface (ζ = 0) listed at the beginning of this section, the limit
problem (77) reduces to

Notice that since ζ = 0, the spaces X00, Y00 in [14] are isomorphic to
X0 and Y0 in (92), respectively. Finally, reordering the summands in the
equalities above and writing

we obtain the system (59) in [14].
e є-problems (30) are isomorphic to the problems (23) in [14], and the

limit problem (77) is isomorphic to (59) (eorem 21) in [14]. In addition,
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the reasoning proving that (77) is the limit form of (30) stands for the
case ζ = 0. Next, the strong convergence limitations discussed in Section
5.3 no longer hold, since the expression (90) reduces to

From here, the same reasoning presented in Section 5 in [14] applies.
e previous observations, show that the present work entirely

recovers the weak convergence results analogous to those presented in
[14], but extending them to a considerable broader scenario. On the other
hand, the strong convergence properties in [14] could not be generalized,
and they should be treated on a case-wise basis, using particular features
of the function Z, as it was done in the equality (93) above.
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