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Articulos originales

The asymptotic analysis of a Darcy-
Stokes system coupled through a curved
interface

Andlisis asintdtico de un sistema Darcy-Stokes acoplado a
través de una interfaz curva

Fernando A. Morales *
Universidad Nacional de Colombia, Colombia

Abstract: We present the asymptotic analysis of a Darcy-Stokes coupled system,
modeling the fluid exchange between a narrow channel (Stokes flow) and a porous

medium (Darcy flow), coupled through a C? curved interface. The channel is a
cylindrical domain between the interface (I') and a parallel translation of itself
(I + €€y.¢ > 0). The introduction of a change variable (to fix the domain geometry) and
the introduction of two systems of coordinates: the Cartesian and alocal one (consistent
with the geometry of the surface), permit to find the limiting form of the system when
the width of the channel tends to zero (¢ » 0). The limit problem is a coupled system
with Darcy flow in the porous medium and Brinkman flow on the curved interface ().
MSC2010: 35K50, 35B25, 80A20, 35F15.

Keywords: porous media, curved interfaces, Darcy-Stokes system, Darcy-Brinkman
system.

Resumen: En el trabajo se presenta el analisis asintético de un sistema Darcy-Stokes
acoplado a través de una interfaz curva. El sistema modela el intercambio de fluido
entre un canal angosto (flujo Stokes) y un medio poroso (flujo Darcy). El canal es
un dominio cilindrico definido entre la interfaz (') y una traslacién paralela de dicha
superficie (I' + €€y, e > 0). Utilizando un cambio de variables para fijar un dominio de
referencia e introduciendo dos sistemas de coordenadas, el Cartesiano candnico vy el
local (consistente con la geometria de la superficie), es posible encontrar la forma limite
cuando el ancho del canal tiende a cero (¢ - 0). El problema limite es un sistema acoplado
con flujo Darcy en el medio poroso y flujo Brinkman en la interfaz ().

Palabras clave: medio poroso, interfaces curvas, sistema Darcy-Stokes, sistema Darcy-
Brinkman.

1. Introduction

In this paper we continue the work presented in (14] extending the result

to a more general and realistic scenario. That is, we find the limiting
form of a Darcy-Stokes (see equations (26)) coupled system, within a
saturated domain Q€ in #Y, consisting in three parts: a porous medium
Q, (Darcy flow), a narrow channel 25 whose width is of order e (Stokes
flow) and a coupling interface I' = 9%, 119 (see Figure 1 (a)). In contrast
with the system studied in (%), where the interface is flat, here the analysis
is extended to curved interfaces. It will be seen that the limit is a fully-
coupled system consisting of Darcy flow in the porous medium Q; and a
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Brinkman-type flow on the part I' of its boundary, which now takes the
form of a parametrized IV - I dimensional manifold.

(a) Original Domain (b) Scaled Domain after the change of variable
x = p(x), with ¢ defined in Equation (10).

Figure 1
Figure (a) depicts the original domain with a thin channel on top, where we
set the Stokes flow. Figure (b) depicts the domain after scaling by the change
of variables x > ¢(x), where ¢ is defined in Equation (10). This will be the
domain of reference which is used for asymptotic analysis of the problem.

The central motivation in looking for the limiting problem of our
Darcy-Stokes system is to attain a new model, free of the singularities
present in (26). These are the narrowness of the channel @ (¢) and the
high velocity of the fluid in the channel @ (¢), both (geometry and
velocity) with respect to the porous medium. Both singularities have a
substantial negative impact in the computational implementation of the
system, such as numerical instability and poor quality of the solutions.
Moreover, when considering the case of curved interfaces, the geometry of
the surface aggravates these effects, making even more relevant the search
for an approximate singularity-free system as it is done here.

The relevance of the Darcy-Stokes system itself, as well as its
limiting form (a Darcy-Brinkman system) is confirmed by the numerous

achievements reported in the literature: see 2/, 4, ¥) for the analytical

91 3] £5r the numerical analysis point of view, see (11,

approach, (31 [51 [
(1] for numerical experimental coupling and [12) for a broad perspective

and references. Moreover, the modeling and scaling of the problem have
already been extensively justified in 4. Hence, this work is focused on
addressing (rigorously) the interface geometry impact in the asymptotic
analysis of the problem. It is important to consider the curvature of
interfaces in the problem, rather than limiting the analysis to flat or
periodic interfaces, because the fissures in a natural bedrock [where this
phenomenon takes place] have wild geometry. In (71 18] the analysis is
made using homogenization techniques for periodically curved surfaces,
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which is the typical necessary assumption for this theory. In [7), 18 the
analysis is made using boundary layer techniques, however no explicit
results can be obtained, as usually with these methods. An early and
simplified version of the present result can be found in !¢, where
incorporating the interface geometry in the asymptotic analysis of a
multiscale Darcy-Darcy coupled system is done and a explicit description
of the limiting problem is given.

The successful analysis of the present work is because of keeping
an interplay between two coordinate systems: the Cartesian and a
local one, consistent with the geometry of the interface r. While it is
convenient to handle the independent variables in Cartesian coordinates,
the asymptotic analysis of the flow fields in the free fluid region ©; is more
manageable when decomposed in normal and tangential directions to
the interface (the local system). The a-priori estimates, the properties of
weak limits, as well as the structure of the limiting problem will be more
easily derived with this double bookkeeping of coordinate systems, rather
than disposing of them for good. It is therefore a strategic mistake (not a
mathematical one, of course) to seck a transformation flattening out the
interface, as it is the usual approach in traces' theory for Sobolev spaces.
The proposed method is significantly simpler than other techniques and
it is precisely this simplicity which permits to obtain the limiting form
explicit description for a problem of such complexity, as a multiscale
coupled Darcy-Stokes.

Notation

lee [ [20])

We shall use standard function spaces 'see ', . For any smooth

bounded region G in #N with boundary 9G, the space of square integrable
functions is denoted by L*(G) and the Sobolev space H '(G) consists
of those functions in L*(G) for which each of its first-order weak
partial derivatives belongs to L *(G). The trace is the continuous linear
function y : H'(G) - L *(9G) which agrees with the restriction to the
boundary on smooth functions, i.e., 2(w) = wl,, it v € c@@). Its kernel is
(@) " (v e (@) 50w - o). The trace space is #'2@c) “ 4. the range of
v endowed with the usual norm from the quotient space 1'(c)/m(c).
and we denote by H'*(9G) its topological dual. Column vectors
and corresponding vector-valued functions will be denoted by boldface
symbols, e.g., we denote the product space [L*(G)]™ by L*(G) and the
respective N-tuple of Sobolev spaces by wi * ure*. Each w # L *(G)
has gradient v = (32..... 42 < 12@), furthermore we understand it as a row
vector. We shall also use the space Hgiy(G) of vector functions w # L*(G)
whose weak divergence # o w belongs to L*(G). The symbol 7 stands for
the unit outward normal vector on dG. If w is a vector function on 9G, we
indicate its normal component by w =+(w) - 7. and its normal projection
by w(#) = ws . The tangential component is denoted by witg) = w — wii).
The notations w N, wr indicate respectively, the last component and
the first N - 1 components of the vector function w in the canonical
basis. For the functions w # Hg(G), there is a normal trace defined
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on the boundary values, which will be denoted by w .4 ¢ #-12@¢). For
those w # G H '(G) this agrees with ~(w) - . Greek letters are used to
denote general second-order tensors. The contraction of two tensors is
given by o : x = . ; o5, For a tensor-valued function £ on dG, we denote
the normal component (vector) by « * 5, x5 <»". and its normal and
tangential parts by «@). i - xis = 5, i, s = s - ean respectively. For a
vector function w # H'(G), the tensor v, - 2 is the gradient of w and the
tensor (£(w)) = N + is the symmetric gradient.

The set 5 * (z......z,; indicates the standard canonical basis in #". For a
column vector X = (X 1, XN-1, X N) # #N we denote by % = (+1.....2.) the
vector in #! consisting of the first N - 1 components of x. In addition,
we identify #N1 x {0} with #N! byx = (x.z,). The operators V,. V,- denote
respectively the #"'-gradient and the #'-divergence in the first N -
1-canonical directions, ie., v (£. .2 ) moreover, we regard #r as a
row vector. Finally, v*. v/ denote the corresponding operators written as
column vectors.

Remark 1.1. It shall be noticed that different notations have been
chosen to indicate the first N - 1 components: we use % for a vector
variable as x, while we use wr for a vector function w (or the operator #1
, # ). This difference in notation will ease keeping track of the involved
variables and will not introduce confusion.

Preliminary Results

We close this section recalling some classic results.

Lemma 1.2. Let G # #N be an open set with Lipschitz boundary, and 7
be the unit outward normal vector on 0G. Let the normal trace operator

n € Hyo(G) = u-5 € H-V2(36) be deﬁnea’ by

{(u-n,0) =126, 120G def [ [11 Vo+ ¥V -||:_>J de, ¢e H'(G). (1)

For any g # H V*(3G) there exists u G Hui(G) such that w -7 = g on
9G and |ln..) < Klalu-r200). with K depending only on the domain G.
In particular, if g belongs to L *(9G), the function u satisfies the estimate
[l ‘II,;“.[m < Klgllo,ve-

Proof. See Lemma 20.2 in (19],

Next we recall a central result to be used in this work

Theorem 1.3. Let X, Y, X', Y' be Hilbert spaces and their corresponding
topological duals. Let A : X > X', B: X >Y,C:Y > Y be linear and
continuous operators satisfying the following conditions

L. 4 is non-negative and X-coercive on ker(B);

11. B satisfies the inf-sup condition

|Bx(y)

inf sup ————— = 10; (2)
veYxex ||Ixlix ¥ly

L C is non-negative and symmetric.
Then, for every F 1 # X' and F , # X', the problem (3) below has a unique
solution (x,y) # Xx Y:
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x,v)eXxY: Ax+By=0FN inX',
-Bx+Cy=F inY'

Moreover, the solution satisfies the estimate
[x[x + ll¥llv < c(llFrllxs + [[Fllv), (4)

for a positive constant ¢ depending only on the preceding assumptions on

A, B, and C.
Proof. See Section 4 in (10],

2. Geometric setting and formulation of the problem

In this section we introduce the Darcy-Stokes coupled system when the

interface is curved, analogous to the one presented in [14] \wre begin with
the geometric setting

2.1. Geometric setting and change of coordinates

We describe here the geometry of the domains to be used in the present
work; see Figure 1 (a) for the case N =2. The e-domain o * o, urua; is
composed of two disjoint bounded open sets Q; and 5 in #N sharing a
common #nterface v s0,ns0; < v*. The domain Q1 is the porous medium
and @ is the free fluid region. For simplicity we have assumed that the
domain @ is a cylinder defined by the interface I' and a small height ¢
> 0. It follows that the interface must verify specific requirements for a
successful analysis

Hypothesis 1. There exist Gy, G bounded open connected domains in

#N1 such that cl(G) # G, and a function { : Gy » #, in C*(Gy), such that
the interface I can be described by

re<{(%¢x): xec}. (5)

That is, I' is aparametrized N - 1 manifold in #N. In addition, the
domain @ is described by

Q5 (% y) (X)) <y<C(X)+e, %G (6)

Remark 2.1.I. Observe that the domain G is the orthogonal projection
of the open surface I' # #Ninto #N°1,
I1. Notice that due to the properties of { it must hold that if 7 = a(%) is

the upwards unitary vector, orthogonal to the surface I, then

5 = inf {A(X)- ey :x€ G} > 0. (7)

Here €y is the last element of the standard canonical basis in #~
For simplicity of notation in the following we write
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L.
F+e® Iz (® +6):xea), (8)

o, " al, Qe ot ()

In order to conduct the asymptotic analysis of the coupled system, a
domain of reference n needs to be settled (see Figure 1 (b)). Therefore,
we adopt a bijection between domains and account for the changes in the
differential operators.

Definition 2.2. Let ¢ : @5 — @ be the change of variables defined by

n

ey uvoruw) = (10)

YN-1
euv = Clu..... un-1)) +€(w1, .- un—1)

with y = (1. ..., yn—1. yn) € Q5. Also, denote x = (x,...,2ny-1,2) def ply). ie.,

x=(®,....an-1.7) € Qa, x-€=op(y) € forall f=1,...] N, (11)

where &,,... ey are the standard canonical basis in #™.

Remark 2.3. Observe that ¢ : 5 — Qs is a bijective map (see Figure 1
(b)).

Gradient operator

Denote by 7, *# the gradient operators with respect to the variables y
and x respectively. Due to the convention of equation 9 above, a direct
computation shows that these operators satisfy the relationship

Yy ARG b s v I e v
Yyt = h _ ( € .] 5 . ) (12)
Ty 0 € .

In the block matrix notation above, it is understood that I is the
identity matrix in gW-"=¥-1_ g ¢ g are vectors in #N1and . - 2 In order
to apply these changes to the gradient of a vector function w, we recall the
matrix notation

YV w,

YVw=

[XV£r'l + (1= e N0 * V¢ el houn
: : (13)

YV w, I_XV, wy + (1= e 0wy Vel e ' Dowy

Reordering we get

YVw (X, on) = |ixD‘w l . w] . (14)
[

Here, the operator *£)¢ is defined by

*Diw L xg w4 (I - })fi_._\\-"‘v,.’t:. (15)

i.e., *ptw e rV*(¥-1, it is introduced to have a more efficient notation. In
the next section we address the interface conditions.

Divergence operator

Observing the diagonal of the matrix in (13) we have

Y ew (R ) = (*V,-wr + (1 - %)a; W, -"vr-u)lx.:w %U;\\-\ (%2z). (16)
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Remark 2.4. The prescript indexes y, x written on the operators above
were used only to derive the relation between them; however, they will be
dropped once the context is clear.

Local vs global vector basis

It shall be seen later on, that the velocities in the channel need to
be expressed in terms of an orthonormal basis B, such that the normal
vector 7 belongs to B, and the remaining vectors are locally tangent to the
interface I. Since { : G > # is a C* function, it follows that % — a(x) is at
least C.

Definition 2.5. Let 5 % (z......ex_..ev) be the standard canonical basis in #™.

For any s < ¢ 1« 5 = 5) ** {s1.....o-.5} be an orthonormal basis in #™. Define
the linear map v : &Y - &" by

U, e, fori=1,....1 N1, Ux)i < en. (17)

We say the map %~ U(x) is a stream line localizer if it is of class Cl. In
the sequel we write it with the following block matrix notation:

ey der [UTHE(R) UTR(R) .
Ulx) = {'.\'.l:gi'] {-'\l"i[ﬁ] : (18)

Here, the indexes 7"and N stand for the first N - 1 components and
the last component of the vector field. The indexes tg and # indicate the
tangent and normal directions to the interface I.

Remark 2.6. 1. Since { is bounded an C*(C), clearly for each x = . a
basis 5 - {#......x_1.7} can be chosen so that x — /(%) is C!. In the following
it will be assumed that U is a stream line localizer.

I1. Notice that by definition (%) is an orthogonal matrix forall x € ¢

Next, we express the velocity fields w” in terms of the normal and
tangential components, using the following relations:

@

lw'r'u_'r Yy — “,.'.’ ' ﬁ[\'} ”qél:l
w?. (%)
Wig(z) = : . (19b)

a2 —
wo e y_q(x)

Clearly, if w? = w?(x,2v) is expressed in terms of the canonical basis, the
relationship between velocities is given by

“.'“J(.i'..r\ ) = U(X) {::"u:-:.?:-} (%, zx)

nixr)
_ [Tz vTrE)| Wi (%24
= UNE(R) UNAR) “,_:;“.;I X, Ty).

Remark 2.7. We stress the following observations
I. The procedure above does not modify the dependence of the

(20)

variables; only the way velocity fields are expressed as linear combinations
of a convenient (stream line) orthonormal basis.

I1. The fact that Uis a smooth function allows to claim that w#, belongs
to [m' (@) and wi e H().
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IIL In order to keep notation as light as possible, the dependence of the
matrix U with respect to % , as well as the normal and tangential directions
ni » tg will be omitted whenever is not necessary to write explicitly these
parameters.

IV. Recall that for any vector field v, v(@) = (v #)a denotes its normal
projection on the direction 7 , while v(tg) = v- v( @ ), i.e., the component
orthogonal to 7 (and tangent to I'). Considering the previous, given any

two flow fields u 2, w 2, the following isometric identities hold:

II?: . \\".‘!: = ul"[l,l_{] . \\'.‘3(1:.‘,].

ui - wi = u’(n) - wi(n), (21)

2 2 2¢ \ 2 21=1 2= 2 2 2 2
u’ - w* =u(tg) - w(tg) +u(n)- - w(n) =g, * Wi, + URWE.

Proposition 2.8. Let w* # H'(Qy), and let w3, be as defined in (19).
Then,

8wl o

d.w (X,zy) = U(X) {U_ wl o

1= 2112 : 2112 g 2 |12
laaw?|; o = 225, + [J0sw? |
.|‘ =W | 00, G Wy 0,023 d*“ ~Nllon,

)
+ ||0:w5s

P > 112
= 'l‘}'“ |;:-‘EI.E!‘-

Proof. 1. It sufhices to observe that the orthogonal matrix U defined in
(20) is independent from z.
I1. Due to (22), we have

X ) -0 !
0@ % V0 | g0 U@ { V0 | g 2y
= " R(T) a. WhE)

The last equality holds true because the matrix U (% ) is orthogonal
at each point x e ¢, therefore it is an isometry in the Hilbert
space #N endowed with the standard inner product. Recalling that
o2 () + 0w ()| = 1w (5,00 fOr all x = (%.2,). the result follows.

2.2. Interface conditions and the strong form

The interface conditions need to account for stress and mass balance. We
start decomposing the stress in its tangential and normal components; the
former is handled by the Beavers-Joseph-Saffman (24a) condition and the
latter by the classical Robin boundary condition (24b); this gives

o (1 )ig = e 3 \,-"E\'jitg] . (24a)

rr'“J[f:];, - p'“J +pl=avi.7ionl. (24b)

In the expression (24a) above, € is a scaling factor introduced to
balance out the geometric singularity coming from the thinness of the
channel. In addition, the coeficient ¢ > 0 in (24b) is the fluid entry
resistance.
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Next, recall that the stress satisfies +2 = 2¢.£(v?) (where the scale e is
introduced according to the thinness of the channel and u > 0 is the shear

viscosity of the fluid; see also Hypothesis 2) and that # v? =0 (since the
system is conservative); then we have

V-a2=V- _"3:' ;:E{\-’j‘}j = euV - Vv=.

Replacing in the equations (24) we derive the following set of interface

conditions:
w2 av: " .
[ (‘ ‘ﬁ — (¢ \ﬁ -u}n) =23 O v (tg), (25a)
dn an '
av: 2 -
:;J( — -n) —p'+p] =av'.n, (25h)
an

viei=vi-nonl, (25¢)
The condition (25c¢) states the fluid flow (or mass) balance.
With the previous considerations, the Darcy-Stokes coupled system in
terms of the velocity v and the pressure p is given by

Vv vl =h, (26a)
Ov+Vp' =0, inQ. (26b)
V.ovi=0, (26¢)

-V 2epE(V) + Vpi=£f. in Q. (26d)

Here, equations (26a), (26b) correspond to the Darcy flow filtration
through the porous medium, while equations (26¢) and (26d) stand for
the Stokes free flow. Finally, we adopt the following boundary conditions:

p'=0 on d0, —T. (27a)

vi =0 on 905 — (' +¢). (27h)

av* dv? 5 )
e ( — n)n =0 onl +e (27¢)
dn in (

vini=vi=0 onl+e (27d)

-

The system of equations (26), (27) and (25) constitute the strong form
of the Darcy-Stokes coupled system.

Remark 2.9. i. For a detailed exposition on the system's scaling,
namely, the fluid stress tensor o2 =2¢u£(v?) and the Beavers-Joseph-
Saffman condition (24a), together with the formal asymptotic analysis,
we refer to (3],

I1. A deep discussion on the role of each physical variable and parameter

in equations (26), as well as the mzeaning of the boundary conditions (27),
can be found in Sections 1.2, 1.3 and 1.4 in !4,

2.3. Weak variational formulation and a reference domain

In this section we present the weak variational formulation of the

problem defined by the system of equations (26), (27) and (25), on the
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domain Q°. Next, we rescale ©; to get a uniform domain of reference. We
begin defining the function spaces where the problem is modeled.

Definition 2.10. Let @.0,.05.1 be as introduced in Section 2.1; in
particular, Q, and T satisfy Hypothesis 1. Define the spaces

Xy S {ve HY(OY) :v =000 005 — (T+e). v-si=0onl+¢}, (28a)

XU v € Hao () x X5 i vl i = vZ -7 on ')

. (28h)
={v € Haio () : v* € X5},

ve & 20, (28¢)

endowed with their respective natural norms. Moreover, for ¢ =1 we
simply write X, X; and Y.

In order to attain well-posedness of the problem, the following
hypothesis is adopted.

Hypothesis 2. It will be assumed that p, > 0 and that the coefficients
£, 2 are non-negative and bounded almost everywhere. Moreover, the
tensor Q is elliptic, i.c., there exists a positive constant Cq such that
(@x) x> Collx|? for all x € R

Theorem 2.11. Consider the boundary-value problem defined by the
equations (26), the interface coupling conditions (25) and the boundary
conditions (27); then,

L. A weak variational formulation of the problem is given by

'\\-'.p"' eX Y

[ (Q_\'I" cwl - pl T w! ) dy + / (€ IrrV\"‘!" — pg"fi ) : vw? dydy
+a [(\-'-'-' i) (w?n)ds + /:'—' VOV wlds
I Jr

= / £25  w?dvdyy, (29a)

[ Vool ;' dy + [ AvRTE ,:2 dy dy,, = f Bl ;1 dy (29b)
m Joy I

for all [w,y] € X Y,

IL. The problem (29) is well-posed.
ML The problem (29) is equivalent to
[vi.pleXxY:

/ gvlowl dx — [ "V awldu—e / preV e w? did:
Jay Jay, Jas

—~¢(1- 1) / p2e 8. w2 W, dR > — [ P2 0wl d% d=
€/ Ja, Jaa '

—:-rjf pDvde s Drwldsd: + [ pd v 9, w? dx dz
Joy 4L
+ (Ij (vi-n)(w' -n)dS+é [ V0 \,f& Wi dS
I Jr
e 2 e
= /- =5 - wdxdz, (30a)
Jo,

vt ot dR dz

2€ (o d% dz +[ RS ,—'—'r&,f;;[ hbe gt s,
L] i
(30b)

Jor all [w. ] € X x Y.
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Proof. 1. See Proposition 3 in 14, We simply highlight that the term
Jo, ?av@vic - wias has been replaced by f,.¢svavi wias. due to the isometric
identities 2V,

IL. See Theorem 6 in M4, The technique identifies the operators A, B,
C in the variational statements (29a) and (29b), then it verifies that these
operators satisfy the hypotheses of Theorem 1.3; this result delivers well-
posedness.

III. A direct substitution of the expressions (14) and (16) in the
statements (29), combined with the definition (15) yields the system
(30). (Also notice that the determinant of the matrix in the right hand
side of the equation (14) is equal to ¢  .) Finally, observe that the
boundary conditions of space X;. defined in (28a) are transformed into
the boundary conditions of X; because none of them involve derivatives.

Remark 2.1f. In order to prevent heavy notation, from now on we
denote the volume integrals by f, # = I, F dx and fo, F = Jo, Fixd=. We will use
the explicit notation J,, #éxd: only when specific calculations are needed.
Both notations will be clear from the context.

3. Asymptotic analysis

In this section, we present the asymptotic analysis of the problem, i.c., we

obtain a-priori estimates for the solutions ((v5, p%) : € > 0), derive weak
limits and conclude features about them (velocity and pressure). We start
recalling a classical space.

Definition 3.1. Let £, be as in Definition 1 and define the Hilbert

spaces

H(@., ) " {we L2() : 0. we L2()), (31a)
H(D., Q) % {we L2(0) : 0. we L3()), (31b)

endowed with the corresponding inner products

(000, / (wo+d.ud.v), (31¢)

TH{8: 022)

{u.\'\s def / (uv+d.ud.v). (31d)

Lemma 3.2. 1. Let H(9,, Q) be the space introduced in Definition
3.1; then, the trace map v — |, from H(9,, Q) to L X(T) is well-defined.
Moreover, the following Poincaré-type inequalities hold in this space:

< /2 ( wllo.q, + |[0: w| n.s;_‘). (32a)

[wlo.r
lwlogn, = \/E( a9, wllon, + [lw u.[')- (32b)
Sfor all w# H(9,, Q).

IL Let H(9,, Q») be the vector space introduced in Definition 3.1; then,
Jfor any w # H(0,, Q) the estimates analogous ro (32) hold.
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ML Let w* # H'(Q,) # H(3,, Q1) and let ., be as defined in (19);
then,

g w2
= | d. wi ||[r.':3-_-

|| \'\'i‘l llo.62 + 2 |\'\'-_;.-II llo.r, (33a)

2

|| Wig ||4J.SJ: nt ” &: “-L:.u Hu.!!_» +2] “-.‘EL" 0.r- (33b)

Proof. 1. The proof is a direct application of the fundamental theorem

of calculus on the smooth functions C * (€,), which is a dense subspace
in H(9,, ).

II. A direct application of equations (32) on each coordinate of w #
H(9,, ©,) delivers the result.

IIL It follows from a direct application of (i) and (i) on wi.w%
respectively.

Next we show that the sequence of solutions is globally bounded under
the following hypothesis.

Hypothesis 3. In the following, it will be assumed that the sequences
(£2¢ e > 0) C L2(2) and ('« : ¢ > 0) € L?(2) are bounded, i.e., there exists C > 0
such that

”f2 - :||]_(_}__‘ <C, Hh] - | <C, for all € > 0. (34)

0,9, =

Theorem 3.3 (Global a-priori Estimate). Lez ([v¢, p - e > 0) # X x Y
be the sequence of solutions to the e-Problems (30). There exists a constant
K > 0such that

2 "y 2 s o 2eli? 2,602 2|2 .
[l ”u.su +| D (ev® ]”c).s!_- +[lav <], o T [V llor + llevisllor < &

for all € > 0. (35)

Proof- Set w = v in (30a), ¢ = p € in (30b) and add them together.
(Observe that the mixed terms were canceled out on the diagonal.) Next,
apply the Cauchy-Bunyakowsky-Schwartz inequality to the right hand
side and recall the Hypothesis 2; this gives

v Ilo, ﬂ”[ Dvie DivAe 4 |lav?

fIvheaiflg+evis g
) [ v "o “Vig llor

¢ \‘3 4
llogs ™

L 1p2e 2,0 2.6 2.0 e e an
= I(“f' :l(i_gg_:l‘(’ \'.;-_)Hu o ”[n '|u_!z.‘. ”(’ Vi )”u ot [__ e pt “"")‘ (36)

We continue focusing on the last summand of the right hand side in
the expression above, i.c.,

/ R ptde < [ Yo o, B o,
Joy
< Cf I g0 | B

=[lav" |'u.1:| [| 2 Hru_z.'-_ = (|‘] [

(37)

‘ |'t1.s!,

0,82, "

The second inequality holds due to Poincaré's inequality, given that
p" =00n9Q; - [ as stated in Equation (27a). The equality holds due
to (26b). The third inequality holds because the tensor © and the family
of sources (h': ¢ > 0) c L2(©,) are bounded as stated in Hypothesis 2 and
Hypothesis 3 (Equation (34)), respectively. Next, we control the L*(Q,)-
norm of v**. Since v # H'(Q,) # H(3,, Q,), the estimates (33) apply;
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combining them with (37) and the bound (34) (from Hypothesis 3) in

Inequality (36) we have
v, + ¢ [ D2 DA o i, + IV Al + vl
< (110 (¥5) o, + 20 ¥E) o+ 12: (€¥%) [y,
2 ¥5) o+ E1v g, )

< (118 (v2) oy + 21 V3 o + 20 (V) o+ €11% llg,)-

Here, the last inequality is due to the equality
10 (v ) [, = 10: (v3) [, + 10 (ev29) 150, Next, using the equivalence of norms
'“ll1. 1l | 2 for 4-D vectors in the previous expression yields

o Ay N R N [y e PRy iy

1/2

< {0, (v g, + N2+ IR + Vg, }

2 | (v |2 92 |2 2012 2o 2 \M?
< F{H"“ Hn‘n. T |f D {"", )Zlnyl,_w_. T ‘»t?:\'[ “n_seg + |'v)§:‘ ”UJ‘ + '|"":u |'n.l‘} .

(38)

From the expression above, the global Estimate (35) follows.

In the next subsections we use weak convergence arguments to derive
the functional setting of the limiting problem (see Figure 2), for the
structure of the limiting functions.

4z i
: (%o. (o) + 1} vifo.z) @ b V() @

L]

r S—_— (%0, 20) (%.¢(0)) (% (%) +1)

x
+
O T )
e o) fi e .
N \ . i — -"“} (ﬁlzﬂ] (;'Il-'gﬁﬂ}} (;0"([;0, + 1)
(a) Limit solutions in the reference domain (b) Velocity and Pressure Schematic Traces for the

solution on the hyperplane {(%,z) : X = %o}.
Figure 2
Figure (a) depicts the dependence of the limit solution [v, p], for both regions Q4, Q, and
a generic hyperplane {(x. ) : % = %}. Figure (b) shows plausible schematics for traces of the
velocity and pressure restricted to the hyperplane {(%.2) : % = %0}, depicted in Figure (a).

Corollary 3.4 (Convergence of the Velocities). Ler ([v6, p] : € > 0) #
X x Y be the sequence of solutions to the e-Problems (30). There exists a

subsequence, still denoted (v¢ : € > 0), for which the following holds:
L There existv' € Ha, (Q1) such that

vie Svl weakly in Haiy (Q1), (39a)
vV oovlhe = pl (39b)
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IL. There exist x = 12(9) and v* # H'(Q,) such that

d.v** — x weakly in L*(Qy), D.(ev®) = 0 strongly in L*((2), (40a)

ev 2 = v? weakly in H' (), strongly in L2(0y); (40b)

vi=v(%). (40c)

L. There exists §# H(9,, Qy) such that

Vi € weakly in H(O,, Q). (e \':,] — 0 strongly in H(d,,€,): (41a)

n

Sfurthermore, & satisfies the interface and boundary conditions

r| = y! ,‘.‘;.l £
S rt S

=0, (41b)

IV. The following properties hold:

9~

voon =10, X -n=0d.£. (42)

Proof. 1. (The proof is identical to part (i) of Corollary 11 in U4
we write it here for the sake of completeness.) Due to the global a-
priori estimate (35), there must exist a weakly convergent subsequence
and a limit v! # Hg,(Q,) such that (39a) holds only in the weak
L*(Q))-sense. Because of the hypothesis 3 and the equation (26c¢),
the sequence (v v« :¢ > 0) c £2() is bounded. Then, there must exist yet
another subsequence, still denoted the same, such that (39a) holds in the
weak Hgi,(Q1)-sense. Now, recalling that the divergence operator is linear
and continuous with respect to the Hgiy-norm, the identity (39b) follows.

II. From the estimate (35), it follows that (9, v* ¢ > 0) is bounded
in L*(Q,). Then, there exists a subsequence (still denoted the same) and
v & L2(22) such that (9, v*%: ¢ > 0) and (3,(e v**) : € > 0) satisfy the statement
(40a). Also from (35) the trace on the interface (-v**|,:<>0) is bounded in
L*(T). Applying the inequality (32b) for vector functions, we conclude
that (e v % ¢ > 0) is bounded in L*(€),) and consequently in H(9,, Q,).
Then, there must exist v> # H(3,, Q,) such that

ev> —v? weakly in H(.,99). (43)

Also, from the strong convergence in the statement (40a), it follows
that v* is independent from z, i.e., (40c) holds.

Again, from (35) we know that the sequence (¢ D € v *% ¢ > 0)
is bounded in L*(Q,). Recalling the identity (15) we have that the

expression
i 2 2. i i 20 £t -
eD' v =V (ev™) +(e— 1) v V3

is bounded. In the equation above, the left hand side and the second
summand of the right hand side are bounded in L*(Q,); then we conclude
that the first summand of the right hand side is also bounded. Hence, we

have (vv# : ¢ > 0)is bounded in L*(Q,), and therefore the sequence (e v >

¢ > 0) is bounded in H'(Q,); consequently, the statement (40b) holds.
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IIL. Since (0. v« : ¢ > 0) < L2 (2) is bounded, in particular @.v*<-i: > 0) < 120,
is also bounded. From (35), we know that (v*« -7, :¢>0) < 22(r) is bounded
and again, due to Inequality (32b), we conclude that i c>0)c 12

is bounded. Then, the sequence (v*7:¢>0) is bounded in H(d,, Q,);
consequently, there must exist a subsequence (still denoted the same) and
alimit & # H(9,, Q,), such that v : < > nand (v : « > 0 satisfy the statement
(41a). From here it is immediate to conclude the relations (41b).

IV. Since (ev2<-a)—0, and due to (43), we conclude that v2.7 =0
Finally, due to (40), we have that x -7 = 9. ¢, and the proof is complete.

Theorem 3.5 (Convergence of Pressures). Lez ([0, p©]: € > 0) # X x Y be
the sequence of solutions to the e-Problems (30). There exists a subsequence,
still denoted (p © : € > 0), verifying the following:

L There exists p' # H'(Qy) such that

Y = p' weakly in H'()) and strongly in L), (44a)
ov! + Vp! =0in 0y, p'=0ond0 T, (44b)
where v1 is the weak limit of Statement (39a)

IL There exists p > # L *(Qy) such that

p2t = p®  weakly in L*(0Q2). (45)

WL The pressure p = [p', p*] belongs to L *(Q).

Proof. 1. (The proof is identical to part (i) Lemma 11 in ) we write it
here for the sake of completeness.) Due to (16b) and (36) it follows that

4]

.|v.hl" ”n_sz. = H"v@""’l" ||||.i.'| =C,

where C is an adequate positive constant. From (11a), the Poincaré
inequality gives the existence of a constant ¢ - ¢ satisfying

ol 0, = € lIVp'

for all € = 0. (46)

0,0,°

Therefore, the sequence (p ' : ¢ > 0) is bounded in H and the

convergence statement (44a) follows directly. Again, given that p '
satisfies the Darcy equation (16b) and that the gradient # is linear and
continuous in H'(Q;), the equality ov! + vp! = 0in (44b) follows. Finally,
since #, . =0 for every element of the weakly convergent subsequence,
and the trace map «#~ ¢, is linear, it follows that p1 satisfies the boundary
condition in (44b).

IL In order to show that the sequence (p** : ¢ > 0) is bounded in L
(Qy), take any ¢ € C¢°(22) and define the auxiliary function

CpC(E)+L
=(% ) [ (%, 1) dt, C(R) <2< ¢(%) + 1. (47)

Since { # C*(G), it is clear that = = #'(9,) and =/ 1.0, < C|l¢llo.,. Hence,
the function v (0,.) - =& belongs to X,; moreover,
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|2 [lo.0, + | & w2 lo.0, < C |l ¢ l0.0- (48)
- - R — L&
||W2{fg)||-| or = |Wijg||-|_0.|' < élogn,-

Here, the second inequality follows from the first one and due to the
estimate (31a). Next, observe that =ey - ()1, < 22(r) ¢ 11-'%(02,): then, Lemma

1.1 gives the existence of a function w! # Hyiy, (Q1) such that

C(F)+1
wh fi=w?fi= =X C(X))én - n(X) = / @ (X, t)dt on I,
JEx)
_ . (49
w'-nz[]unUE!l—l‘ (19)

[W! | g i) € l= Ex - 7)llor < Clldllo.g..

Here, the last inequality holds because sup{i(%) - éx : % € I'} < . Hence,
the function « “v'.+2 belongs to the space X. Testing (30a) with w yields

/ Oview! — [ PV !
Jony Ja,
+ [ P h+ e [ puD v Dfw? — / pe il \'f' @ (50)
Jog Jog S, '
+ o / {vl" . ﬁ)(\\'l - )rf,‘:'!vrgf v \/(.__2\’:: -\\"]’xd.‘j:r / f:i:' w.
JT r Jz

Applying the Cauchy-Bunyakowsky-Schwarz inequality to the
integrals, and reordering, we get

[ pieo
Ja,

+C2 ” €D v ”n_;}_.H eD w? ”u_{!_. +Cs ” a. ‘-:J H

= ” vhe ”u,;g‘ ”“'I ”[l,{!, + “:f’“ ”0.!;\ H v ow! ”n,s;r,

0.2 H P “n_n:
+Cy | vie-q ”n_r” woen llos

. 2,¢ 2 2, _
+Cse “c’ Vig ”u,] ”“ U!.”lL]' + H L f.‘\' ”m (o ” . ”u‘s},‘

We pursue estimates in terms of ||6]lo.q.: to that end we first apply the
fact that all the terms involving the soljution on the right hand side,
Le., vl st eDrvie 0.vi v and Vi |, are bounded. In addition, the forcing term
<tz is bounded. Replacing the norms of the aforementioned terms by a
generic constant on the right hand side we have

|[‘ p* ‘-"I <C (H“"l Ho.sz, T ” vow! ”usz. +|[eD w? | 0.2

+ H @ ”n.sz._. + H we R H(JJ' +e ”“"Ea”n rt ” w ”n.sz._.)-

(51)

In the expression above the first summand of the second line needs
further analysis. We have

” e D w? ”u,;z, - H VW + (e = 1) 8 wP V¢ ”[L;r,
<€ H Vow’ a0, w Vf{., |'iJ.'..’_- + ||0; w? V,r(, |
B I

0,0,

t o~
El.!!_‘HV-’ 4 “u.\!g‘

Combining (48) with the expression above, we conclude

H €D’ w “lr.'.!-_- ¢ “ V"wﬂ +0; WEV; ¢ “u.m +C ||r;)||”_‘_3__.. (52)
Introducing the latter estimate in the inequality (51), the first two
summands on the right hand side of the first line are bounded by a
multiple of ||¢/o.. due to (49). The second and third summands on the
second line are trace terms which are also controlled by a multiple of

|#llo , due to (48). The fourth summand on the second line is trivially
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controlled by |]o.c. because of its construction. Combining all these
observations with (52), we get

[ p2d| < el Oow 4 0.9 Vicly g, + C (| ¢l

where C > 0 is a new generic constant. Taking upper limit as ¢ > 0 in
the previous expression gives

. 2.
hmﬁup‘ [ pte
elo S,

The above holds for any o € ¢;(€2.). then, the sequence (p > ¢ > 0 ) #

< C|g| (53)

0,81;°

L*(Q,) is bounded and, consequently, the convergence statement (45)
follows.

III. From the previous part, it is clear that the sequence ([pl’e, pz’e] :
¢ > 0) is bounded in L*(Q); therefore, p also belongs to L*Q), which
completes the proof.

Remark 3.6. Notice that the upwards normal vector 7; orthogonal to
the surface I' is given by the expression

- 1 -V _
= —— ! » e
" .t—vrc.ln{ 1 } i)

and the normal derivative satisfies

i
=n-V., onl. (54b)

s
in

(=W 1)@ = (=W, 1)

We use the identities above to identify the dependence of x, £ and p*
(see Figure 2 above).
Theorem 3.7. Let x, § be the higher order limiting terms in Corollary 3.4

(i) and (iii), respectively. Let p * be the limit pressure in Q, in Lemma 3.5
(ii). Then,
df=—v'dlnL EF2)=vRE)(1-2)., ford(X)<z<{(®)+1. (55a)
p* = p(%). (55b)

x = x(x), x-n=-—v-fionl. (55¢)

In particular, o.¢ = 0.€(x).
Proof Take @ = (0, ¢ *) # Y, test (30b) and reorder the summands

conveniently; we have

O=e | W v +e / v -v.c;'t/ v ‘V,g‘\:°+/ doviogt
Jog Ja, Jag Jaog

= [ Velevi) it [ a(evi) i+ [ ot (- WG )6
o1y Joila S

:/ V,-('vﬁ")#+[ U:(fx:;‘”)-v,<;*+/ (=W, D] (v - m)e?

Letting e # 0 in the expression above we get

[ v, - vip? -—/ a:v?-v,f;;?:—[ [(=V,.¢. 1)] 0. €% = 0.
S iz
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Recalling Equation (40c) we have that 9, v? = 0; hence,
[v“ﬁ£+[u—mgnw;f=u
o E2a S (2o

Since the above holds for all 4 € £3(0.). it follows that
V. v+ (=¥, 1)]0. € =c,

where c is a constant. In the previous expression we observe that two
out of three terms are independent from z; then it follows that the third
term is also independent from z. Since the vector (-v.¢. 1) is independent
from z, we conclude that o.¢ = .¢(x). This, together with the boundary
conditions (41b), yield the second equality in (55a).

Take w-(s..... 6% e @r@y®. for each i =1, 2... N; build the

"antiderivative" = of ¢ i using the rule (47), and define

19ty < 1y (50

therefore, w*' (v, w?) « x.. Test (30a) with w and regroup the higher order
terms; we have

f Qvle . wl — /’ PtV ew! —e [ pe WV, 'wf
o Joy Jag

—€ [ pira. W",’ -V ¢+ [ pira, Wf -V — [ p 13=wi

S S S -

: : : (57)

+é2 f I Divi: D'w? 4 f pd. vie.a, w?
Jo, Ja,

+1|/ (vl on)(w' a)dsS+ ¢? ["\/Cj\f: —\\'i,rf“j:r [ 20 w2,
1 Jr Ja

The limit of all the terms in the expression above when e # 0 is clear
except for one summand, which we discuss independently; i.c.,

€ / pDvE s Dw? = / p DV (V, w? + 8. wiN[C — — 0. w"Vr'()
Ja S ¢
=¢? / p DV (Vow? 4+ 8. WiV
Jay

—I-r[ pD v 0w (= V).

S

In the latter expression, the first summand clearly tends to zero when
e # 0. Therefore, we focus on the second summand:

r[ pD v 8, wi( -V ()= [

Ja

1V, (e v?") + . \\"“)( - V)

+ / pd(ev®)VIC: dow? (= Vi) + /’ pdv (= Vi) d.wh( = V¢).
Ja, Ja,

All the terms in the right hand side can pass to the limit. Recalling the
statement (40a), we conclude that

@ [ ppvrepwt o [ v 0w (- v
JEta Ja,

1

+ [ pux( =V ¢) : 9. w?( - V().
Jo,
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Letting e # 0 in (57), and considering the equality above, we get

/' ovl.w! —[ pr-w1+/ P wi 0. wh) - (Vg —1)
Jo, Ja, Ja,
[ avvi ot (-9 + [ ax(- 90w (-9 (58)
Jo, Joy,

—:[ px-d.w+a [ (v'-n)(w' -a)ds =0
. Ju

S

We develop a simpler expression for the sum of the fourth, fifth and
sixth terms:

/ ﬂv’,.\-"’ s 0. \V"( - Vj() + [ px(— V:' () e \\f"{ - V"C) + [ -, w?
Joy Sy S
:[ p (Vv (=WC 1) - 8wt 4 [ ux (=¥ ¢ 1) 8. wiH=V, ¢ 1)
Ja, Jany

=/ pl(=%C )| D5 vE -8, w?—[ px - wi (=N 1) (=9 1),

Here 05 is the normal derivative defined in the identity (54b). We
introduce the previous equality in (58); this yields

[ Qv!l-w! — / _ulerL—[ (—WC, 1)|p* o, (w? - )
Joy Joy Jig
+ [ p(=V,¢, 1)|9av? - 0. “:2+/ px -2 w?| (= VG 1)
Ja, Ja,

2

+n/(\." ﬁ}(\\'1 ﬁ)ds:[], (59)
Jr

Next, we integrate by parts the second summand in the first line, add
it to the first summand and recall that 9.w? = —w by construction. Hence,

- /,i)’ (w!.7)ds + [ (=% D70
Jr Q2
—/ W (=V.C, D)|oav? - — / ux V(=P +a / (vl-f) (w!-m)dS =0.
Ja, Jo, Jr

(60)

In the expression above we develop the surface integrals as integrals

#N-l

over the projection G of T on ; this gives

- /j)1 (w!-7)dS +a / (vl -n)(w'-n)ds
J1 JI
=](- L [-p'| +alv'dal )] (v 7l.)dax

ST-EeN

Recalling that + - /s the latter equality becomes in

1 l Lo [ o
A [—p |].+n (v '”‘ir). W(x, z)dz - n(x)dx

;n-ey Jeix)

L(X)+1
:[/ ! [=p'p+o (v al )] @) nAE) - V(X ) d:dx

() Ten

=/ L (=o' +a(v'-al)] A Vdzdx.

1, - en

Introducing the previous in (60), we have

1 _ i - .
/ — [—_n’|].fr\ (v! -ﬁ{[.)]n-'lld:rfx— / (=Wl 1)|p" - W dxedz
Jog T-EN Jir

_ [ 1|(=V,¢, 1)|@av? - O dX dz —f ;r‘( - V., 1}", x - Pdxdz =0.
Ja, [N

Since the above holds for all v« (cz.))". it follows that

1 . ~1 V= . 2~
vl b Pllr' +a(vi-@ ‘[.]_n + (=Y. )p*n

—p (=g, DIaVE — p|(-%¢ D2 x =0, in L2().  (61)
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In order to get the normal balance on the interface wie coulyd repeat the
previous strategy, but with a quantifier v « c3(2.)" satistying v = (v-7) 7. i.e.,
such that it is parallel to the normal direction. This would be equivalent
to replace ¥ by (v-7)7. n in all the previous equations. Consequently, in
order to get the normal balance, it suffices to apply ¢ Equation (61);
such operation yields:

1 1

e S SN | 4 A = 1
n-ey [(-VC 1)2 0 Plpralvi-al)]
+ L 2 L dav? - 9. £ =0, (62)
—p° —p dav  n—pd. £ = 32
%o’ TMEwaGn !

In the last expression the identity (42) has been used. Also notice that
all the terms are independent from z, then the equation (55b) follows.
Consequently, all the terms but the last in (61) are independent from z;
therefore we conclude that X is independent from z. Recalling (42) and
(55a), the second equality in (55¢) follows and the proof is complete.

4. The limiting problem

In this section we derive the form of the limiting problem and characterize
it as a Darcy-Brinkman coupled system, where the Brinkman equation

takes place in a parametrized (N - 1)-dimensional manifold of #~. First,

we need to introduce some extra hypotheses to complete the analysis.
Hypothesis 4. In the following, it will be assumed that the sequence of

forcing terms (< : ¢ > 0) < L) and (# : « > 0) € L) are weakly convergent,

i.e., there exist f* # L*(Q2) and h' # L*(Q;) such that

G Rt~ pl, (63)

4.1. The tangential behavior of the limiting problem

Recalling (40c) and (42), clearly the lower order limiting velocity has the

va) _ [vi®) |
{n}_{ 0 } (64)

The above motivates the following definition.
Definition 4.1. Let % — U(x) be the matrix-valued map introduced in
Definition 2.5. Define the space X, # X; by

Xig def {w2 eXo:w? =U(X) {“‘?.[ﬂ.](xi'} } (65)

endowed with the H!(Q,)-norm.
We have the following result:
Lemma 4.2. The space X # X, is closed.

Proof- Let (w1 : ¢ < ) < x,, and w” # X be such that |w:() - w2, +0. W e

must show that w” # X, First, notice that the convergence in X; implies

structure

() -], 0. Recalling (20) and the fact that U/(x) ) is orthogonal, we have
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(%) = x|

w2 ()] 0 (x)-

pyTie [T t i “_,-:J“] “,'.IE ()
f."\l'”"\ r'.\'.n x)

In the identity above, we observe that wi(¢).w#(¢) ) are convergent in the
H'-norm and that the orthonormal matrix U has differentiability and
boundedness properties. Therefore, we conclude that «,() is convergent
in the Hi-norm, and denote the limit by w3, = w2, (x.-) Now take the limit
in the expression above in the L%sense; given that there are no derivatives
involved, we have

e pralt  [w
[(_'.\'.tg 'i_-'.\'.ii] ST

I

Observe that the latter expression implicitly states that wi, =wi®.
Finally, applying once more the inverse matrix, we have

2 ‘L\."‘E N [T L.'T.ﬁ ) “_..l’g )
WS = \'.-"‘i_ t_x} = I-‘-\--’J-'. f.'-\.-"-l (‘( N ('K }

Here the equality is in the L%-sense. However, we know that
w, = ()" therefore the equality holds in the H' -sense too, i.e. X is
closed as desired.

Next we use space X to determine the limiting problem in the
tangential direction.

Lemma 4.3 (Limiting tangential behavior's variational statement).

Let v* be the limit Jfound in Theorem 3.4 (ii). Then, the following weak

variational statement is satisfied:

- [ PV, -wf + / pnVA Vw4 [ J‘\/'av"‘; . wf;_, S = [ f\i - \\‘i‘
Ja, Jaa Ji Jao

for all w? € X, (66)

Proof Let w” # X; then w = (0, w*) # X test (30a) with w and get

_r/ P2V, wl _,3/ DAV s Diw? 4 r-z]_j‘/ﬁ\.;’; cw? S = ¢ / 2.
Ja, Ja, r Jo,

)

Divide the whole expression over e, expand the second summand

according to the identity (15) and recall that 9, w” = 0; this gives

- / pPr v, -Wf + [ 1 [t’l (f \-"’"}—}— (e — 1), \-’2"Vrrtj : V,ow?

+ [.s\/c_gu-f; Wl dS = [
JT

Jin

26 2
e - Wige

Letting e # 0, the limit v? meets the condition

—] PV \\'f + / I :V’, vi - \V’I’(J : Vow? 4 / .i\@\'ti —wfg ds
; Joy Jr

We modify the higher order term using the property 9, w* = 0:
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- / pxVI:Vowt = / px (=W 1) Vw? = /- p (=%, Dx - (Ww? 7).
Recall that w?.7 —o0. , because w* # Xz then w2 = vw? .7 = 0.
Replacing the above expression in (67), the statement (66) follows

because all the previous reasoning is valid for w” # X arbitrary.
4.2. The higher order effects and the limiting problem

The higher order effects of the e-problem have to be modeled in the
adequate space; to that end we use the information attained. We know the
higher order term x satisfies the condition (55¢) and it belongs to L*(Q,).
This motivates the following definition:

Definition 4.4. Define

L. The subspace

W, S whog) e Xy, = 0p,n-7 = wh 5| (R)(1 - 2)}, (68)

endowed with its natural norm.
I1. The space of limit normal effects in the following way:

X3 et {Iw!, n] € Haw (1) x H(D., Q) :
e =07, =01 n=—w'n| (X2} (69%)

endowed with its natural norm

” :“']- ’f] ” -;){'_" = ”“'] “[2[,.,._.113.1 + ||”||I2I|U: )’ (69b)

Remark 4.5. I. It is direct to prove that x is closed.
I1. Observe that, due to its structure, the component 7 of an element in
x4, can be completely described by its normal trace on [ i.e., the norm

def 2

|| :w]. n] || i,-,‘ = ||w] ||I_IJ.\.-{5}-_| + _-|i_i . *A'”r.l_’.r (70)

is equivalent to the norm (69b). This feature will permit the

dimensional reduction of the limiting problem formulation later on (see
Section 5.2).

I11. Let v! and & be the limits found in the statements (39a) and (41a),
respectively. The function [v', £] belongs to x2 , with

def . .[l
el (71)

£
-

This was one of the motivations behind the definition of the space x2
above.

iv. The information about the higher order term x is complete only
in its normal direction v(ii). Furthermore, the facts that x depends
only on % (see Equation (55¢)) and that x i =a.c = 4l show that
only information corresponding to the normal component of x will be
preserved by the modeling space x5 , while the tangential component of
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the higher order term x(tg) will be given away for good. It is also observed
that most of the terms involving the presence of x require only its normal
component, €. x -dzw* = x(i) -9;w* in the third summand of the variational
statement (66). This was the reason why the space x2 excludes tangential
effects of the higher order term.

Before characterizing the asymptotic behavior of the normal flux we
need a technical lemma.

Lemma 4.6. The subspace W, C X is dense in X, .

Proof- Consider an element w-(w'n<x% then = Or, and
n-n € H(0..9,) is completely defined by its trace on the interface I Given
e > 0, take = < mi(r) such that I=-n-# 20y <« Now extend the function
to the whole domain using the rule o) w2 then lle—n-fllue. o) < e
From the construction of @ we know that (e, —n-ii| lor == 57| Jor < <.
Define s~ -n-al,c22r; due to Lemma 1 there exists u # Hg,(Q)
such that u-i=g¢g on ', u-7#i =0 on dQ; - I and IJul sainy < Cillgllo.r, with

C, depending only on Q,. Then, the function w! + u is such that
(w+u) n=wl-Ai+o-n-n=w and 1w+ - W e = lullsen < Cillsllor £ G e

Moreover, defining

y def . UT

o

we notice that the function (w' +u, w?) belongs to W;. Due to the
previous observations we have

||w —(w!+u, \\"‘J}||x‘, = |,{“-l_ 1) — (w! + 1|.w2)| xo = vVCi+1le.

Given that the constants depend only on the domains Q ; and Q,, it
follows that W is dense in x .

Definition 4.7. Let x be the shear viscosity of the fluid, and define its
average in the z-direction by

C(x)+1
i def / pdz. (72)

£ix)

=
[

Lemma 4.8 (Limiting normal behavior's variational statement). Lez v !

V2 be the limits Sfound in Corollary 3.4, and let p L P 2 be the limits Sfound
in Theorem 3.5. Then, the following variational statement is satisfied:

/ ov! -wwx-/ PV wldx + [,.-'u-v,g.nuw'-ﬁ|‘.m.5'
Sy T JI

- [[n +a) (v A)w! A)dS =0, forallw' e X%, (73)
ST

Here, ji is the averaged viscosity introduced in Definition 4-7.
Proof. Test (30a) with (w'.5] ¢ W, and let € > 0; this gives

/ Qv! -\\"rfx—[ P Vw\\']rfx—[ pto.m, V,(dxd:—/ p* O, dx dz
o Ja, Ja, Ja,

+ [ px O mpdxdz + o / (v-@) (w!-n)ds=0. (74)
Jiug Jr



Fernando A. Morales. The asymptotic analysis of a Darcy-Stokes system coupled through a curved interface

Notice that the third and fourth summands in the expression above
can be written as

" ] r £~

/ P, Vo(didz — / o, dxds = — / p2o.n - {_V]'rﬂ}

v 2 22
-— / Pl=%,C1)|dn -0
=—[ Pl=V D (—w" - 7l)

=— / Pl(=VLC D)|(—w' - &) dS,
Ji

where the second equality holds by the definition of W; and the last

equality holds since p* is independent from z (see Equation (55b)). Next,
recalling the identities (42), (55a) and (55¢), observe that

/;(,\-(’;‘:rj:/ ;;{\'-ﬁ]i;‘;(:;-ﬁ}:[ ;;('}:E{—\\"-ﬁh.,]
Ja, Jo, Ja,

= [ p‘[—\'1 . ﬁ'l ){—\\l- ﬁ|['}

S

= [,ref—v' nl) (—w! ) ds.
Jr

Replacing the last two identities in (74), we conclude that the
variational statement (73) holds for every test function in W5, . Since the
bilinear form of the statement is continuous with respect to the norm
|-Ix; and W is dense in x2, it follows that the statement holds for every
element w # x2 .

4.3. Variational formulation of the limit problem

In this section we give a variational formulation of the limiting problem
and prove it is well-posed. We begin characterizing the limit form of the
conservation laws.

Lemma 4.9 (Mass conservation in the limit problem). Lez v UV bethe
limits found in Theorem 3.4; then,

Vvl =h!, in Q4 (75a)

Jor all ¢* € L} (), ¢ = $?(X). (75b)

Proof- Take ® = (9 1,0) # Y, test (30b) and let ¢ # 0; we have

[ Vvl = / Rt for all ¢! € L*(y).
Jey Ja,

The statement above implies (75a).

For the variational statement (75b), first recall the dependence of the
limit velocity given in equation (55b). Hence, consider ® = (0,9 %) GY
such that /* = +*(%). test (30b) and regroup terms using (54a). The previous
yields

/ v, - Lrv:");’—/ B (ev) Vg + / [(=¥,¢, )0 (v* - ) = 0.
1} Iz

11 S0y H

Next, let e # 0 and get
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[ v »\,’2;2—[ EJ:\-Q-V,Q;”+[ (=W ¢, 1)|0:€ P didz = 0,
S5 Ja, Je,

In the expression above, recall that a.v2 = 0. »* = »,®) and the identity
(55a); then, the statement (75b) follows.

Next, we introduce the function spaces of the limiting problem:

Definition 4.10. Define the space of velocities by

X' ‘I;r{“’J.-ll:“"EX?I.II‘EX“_:}. (76a)

endowed with the natural norm of the space X% @ x... Define the space
of pressures by

YO U D = (o), 0?) e Y : ¢? = P(X)), (76b)

endowed with its natural norm.

Theorem 4.11 (Limiting problem variational formulation). Lez v ', 2

be the limits found in Corollary 3.4, and let p v p 2 be the limits found in
Theorem 3.5. Then, they satisfy the following variational problem:

[\-. p] e X" Y":

/ Q\']-w:—/ P V'\\I—f ;JHV,-Wf—/ p Vv Vow?
Ja Ja, 2, Ja,

+ / .f\,-"Z\',l':_ . “"fﬂu'._ﬂ'—- /(u i) (ven)(w'-n)ds + / =V, l]jal"(\\" ‘n)ds
JT Jr 4T
= / fi—\\";’!. (77a)

/ Vvl —/ v, - v? \:"—[ (—W,.C, 1) (v -:'a),:"re’.&'—[ !, (77h)
Jiy Jay Jr o

Sor all [\\'. <|’: e X" x Y

Moreover, the problem (77) is well-posed. (Here, i1 is the averaged viscosity
introduced in Definition 4.7.)

Proof- Since [v, p] satisfies the variational statements (66), (73), (75a),
(75b) as shown in Lemmas 4.3, 4.8 and 4.9, respectively, it follows that
[v, p] satisfies the problem (77) above.

In order to show that the problem is well-posed w(e proveycontinuous
dependence )of the solution with respect to the data. Test (77a) with v,

v*and (77b) with (p', p*), add them together and get

/Q\'I \-"—/ pvt vt
Ja, Jag

+ / .:'\.'E\"i . \‘,":_,«‘.S'Jr [{rn +a)(v!-w)(v!-n)ds
Ji Jr

=/ fl";‘\i+/ hlp'. (78)
Joy 2,

Applying the Cauchy-Bunyakowsky-Schwarz inequality to the right
hand side of the expression above, and recalling that vZ is constant in the
z-direction, we get

[’ 1.’._)r. ° ""—:: - [‘ h! PI s Hfﬁ: ‘u,u.;”‘"i:”||,tzz - |'hll 0.6, ”‘rjl ”u o,
S0y @

Azl
flev']l

< Hfi._-:"u_t.'gllh'liHn_r + c ""’L

= Hf.a"u.u:h“'liHn.l'
< (‘[

|0_{_n

+C||hY|

I -
0,81 (79)
0,521 0,821

sl 2 2 Y2 a2 2 Y
Il:’:”n‘!!; + H"’IHn,s!‘ ] _H‘:w_;:lfn,\' - |"'] Hn‘s!,w
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Here, the second and third inequalities holds because p1 satisfies
respectively the drained boundary conditions (Poincaré's inequality
applies) and the Darcy's equation as stated in (44a). Finally, the fourth
inequality is a new application of the Cauchy-Bunyakowsky-Schwarz
inequality for 2-D vectors. Introducing (79) in (78), and recalling
Hypothesis 2 on the coeflicients Q , o, f and g, we have

. P . 1/2 - P A— 1/2 .
(1905 g, + IVl + (925 o + 12 lae] < (|82 000, + W5, | (50

Recalling (39b), the expression above implies that

[ . ., 1/2
-jf:f;|':.11-; ™ |'FJI |'u3.t..l. ] . (81)

||"'I||u.,_.\.r.s.'.:n <C

Next, given that w, is independent from z (see (40c)), it follows that
&los = [92loe, and 19¥2 o0, = %vil,., Therefore (80) yields

s _ Y 1/2
f!f-. || o T '|hI |||;_1_z. ] ' (82)

0,822

||V?|' Lo, = ([

Again, recalling that p1 satisfies the Darcy's equation and the drained
boundary conditions (Poincaré's inequality applies) as stated in (44a), the
estimate (81) implies w1 < el -, o

Next, in order to prove continuous dependence for pz, recall (61),
where it is observed that all the terms are already continuously dependent
on the data; then it follows that

L (1112 s 1/2
}-;;3”"_5!_. = (r_I rll”u_sz._. + ”Jf]”n_z!-_] : (84)

Finally, in order to prove the uniqueness of the solution, assume there
are two solutions, test the problem (77) with its difference and subtract
them. We conclude that the difference of solutions must satisfy the
problem (77) with null forcing terms. This implies, due to (81), (82) (83)
and (84), that the difference of solutions is equal to zero, i.c. the solution
is unique. Since (77) has a solution, which is unique and it continuously
depends on the data, it follows that the problem is well-posed.

Corollary 4.12. The weak convergence statements in Corollaries 3.4 and
3.5 hold for the whole sequence ((v¢, p°) : € > 0) of solutions.

Proof. It suffices to observe that, due to Hypothesis 4, the limiting
problem (77) has unique forcing terms. Therefore, any subsequence of the
solutions ((v, p°) : € > 0) would have a weakly convergent subsequence,
whose limit is the solution of problem (77) (v, p), which is also unique,
due to Theorem 4.11. Hence, the result follows.

5. Closing remarks

We finish the paper highlighting some aspects that were meticulously
addressed in 1,
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S.1. A mixed formulation for the limiting problem

For an independent well-posedness proof of the problem (77), define the

operators

AV XY (X0 A def [Q + 75 [u + ,Hj Ta 0
AV . AY= 0 Ty

And

(85b)

BY: X — (Y, o f [ v u ]

RGN §IL TN A

Then, the variational formulation of the problem (77) has the
following mixed formulation:

[v.p] X'« YY" A% — (BY p = £°,

86)
h’"\-’:v’:l. (86)

The proof now follows showing that the hypotheses of Theorem 1.3 are
satisfied. The strategy is completely analogous to that exposed in Lemma

17, Lemma 18 and Theorem 19 in 14,
5.2. Dimensional reduction of the limiting problem

It is direct to see that since X, and Y? do not change on the z-direction
inside €, the integrals on this domain can be reduced to integrals on the
interface I This yields a problem coupled on Q; x I equivalent to (77).
To that end we introduce the space:

X[I-':' el {w] e Hapw () s wh - fr-[. S !.2[[‘:'}. (87a)

endowed with the norm (70), and the space

X(,") dof {w" e HY ) : wi(X) - n(xX)=0forall X € G, w? =0 on t')l'}. (87h)

endowed with its natural norm.

Remark 5.1. Notice the following:

L. The space, X% is isomorphic to x2 (69a).

IL. Since r is a surface (a parametrized manifold in #~) as described
by the identity (6), it is completely characterized by its global chart
{: G > #. Therefore a function u : I' > #, ¥ > u(y), can be seen as
ue : G — R, X = u(x.((x)). with G being the orthogonal projection of

#N-l

the surface T into . Identifying u with ug allows to well-define

integrability and differentiability. Hence, the space L*(T') is characterized
by the equality: [, v?as = [, «2/(ve.1jax. where dx is the Lebesgue measure in G
# #1. In the same fashion, the space H '(T) is the closure of the C'(T)
space in the natural norm i3, = juiz, + 1w, (Clearly, #7 suffices to store all
the differential variation of a functionu: ' > #.)

With the definitions above, define the space of velocities
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def
X0 = {\\.-' +u:we Xliji”. u e X?,L,I}. (88a)

endowed with the natural norm of the space x2@x» Next, define the
space of pressures by

Y2 e 12(0,) % L), (88b)

endowed with its natural norm. Therefore, the problem (77) is
equivalent to

{‘.7 ;,'I e X005 y00 .

/ Qvlow! — / PtV oew!
Ja, Ja,

A /p Vol Uowt 4+ / V@V -wds
Ji Jr Jr

+ /[n + ) (v -n)(w'-n)ds + /l(—v,(. D[p* (w' - 7)dS = / 2. wh  (89a)
Ji Jr Ji

/'v-w;h;/q-vﬂﬁff[7vm¢nhﬂqnfas=[ Mol (sob
Sy Jr JI Sy

for all [w, ] & X° x Y™,

where e 5 eu.

Remark 5.2 (The Brinkman equation). Notice that in the equation
(89a), the product vz -w, has been replaced by v* . w* (for consistency
2w, was replaced by 2. w?). This is done in order to attain a Brinkman-
type form in the third, fourth and fifth summands of equation (89a).
Also notice that although v2 .7 = 0 and w27 = 0. the product v,v* : v,w?
can not be replaced by v.+z : v.v%.. due to the differential operators (the
orthogonal matrix U depends on x ). This is the reason why we give up
expressing the activity on the interface I exclusively in terms of tangential
vectors, as its is natural to look for.

5.3. Strong convergence of the solutions

In contrast to the asymptotic analysis in (4] the strong convergence of
the solutions can not be concluded. The main reason is the presence of
the higher order term x, weak limit of the sequence (0.v2<:¢>0). As it
can be seen in the proof of Theorem 4.3, the higher order term x can be
removed because the quantifier w? belongs to X, However, when testing
the problem (30) on the diagonal [v¢, p €] and adding the equations to
get rid of the mixed terms, the quantifier v*¢ does not belong to Xig As
a consequence, the terms 7 D (ev*9)3q, + [u2.v*Joa, contain in its internal
structure inner products of the type

/ il v 2 {*IVk} VW (ev?e) = / p|(=V¢ 1)|dvde - Wiev?e) . a, (90)
Jiry St

which can not be combined/balanced with other terms present in the
evaluation of the diagonal. The product above is not guaranteed to pass
to the limit /. #(-veon-vv 5 because both factors are known to converge
weakly, but none has been proved to converge strongly. Such convergence
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would be ideal since v* # Xy therefore o,v2 = vv2.i =0 and the term (90)
would converge to zero. The latter would yield the strong convergence of
the norms for |V, (ev )0, and 2.v*<|o, and the desired strong convergence
would follow.

More specifically, the surface geometry states that the normal %) and
the tangential directions (tg) are the important ones, around which the
information should be arranged. On the other hand, the estimates yield
its information in terms of % (T) and z (V). Such disagreement has the
effect of keeping intertwined the higher order and lower order terms
to the extent of allowing to conclude weak, but not strong convergence
statements.

5.4. Ratio of velocities

The relationship of the velocity in the tangential direction with respect
to the velocity in the normal direction is very high and tends to infinity

as expected for most of the cases. We know that (v jos. -« > 0) is bounded,
therefore | evi oo = 1vi loa, +0. Suppose first that v2 #0. and consider the
ratios

|\h llo.e2 _ ||r\r‘i,': llo, s . lim inf : vislloe: _ V2 _;U_‘_!_‘ -4 0

[vi oo vy loa. evi o, evillo, o,

The lower bound holds true for ¢ > 0 small enough and adequate & > 0;
then we conclude that the L*>-norms' ratio of the tangent component over
the normal component blows-up to infinity, i.e., the tangential velocity is
much faster than the normal one in the thin channel.

In contrast, if vz =0 nothing can be concluded, since it can not be
claimed that v'.7; — pon T unless f* = 0 is enforced, trivializing the activity
on ,. Therefore, it can only be concluded that v, = .., for € > 0
small enough, when v # 0. as discussed above.

5.5. Reduction to the flat horizontal case

In this section we show how the e-problems (30) and the limit problem
(77) are corresponding generalizations of the systems (23) and (59)
presented in [14] e show this fact in several steps:

a. Recall that in " the interface r is flat horizontal and, for

convenience, it was assumed that T # #~1 x {0}. In our current scenario,
this is attained by merely setting { = 0, which satisfies all the conditions

of Hypothesis 1. Furthermore, the following differential operators verify

Vi=0, V. (=0, Dfw = V,w.

where D € w is defined in (15).
b. For { = 0, the stream line localizer of Definition 2.5 is the constant

matrix valued function x — v(x) = 1. where I # #"N is the identity matrix.
In particular @ = &y, which is independent from x.
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c. Given that the stream line localizer is the identity matrix, the normal
and tangential velocities introduced in the equations (19) satisfy

2 ~ 2 2 2
Wa =W l=wy,, Wi, = Wi

Taking into account all the previous observations, the e-problems (30)
reduce to

[ve.pleXxY:

/ Qv -\\']d.\;—/ PV awldx - / PV, W rf.‘\"d:—/ p2eowl dx dz
0, Ja, Jo, Jo,

Ar”[ v Gow? didz + / pdv 0w dxdz
2 I
+a [ (vl @) (w! -a)ds + € / WOV widS
Jr I

=r/ £2 . w? d%ds, (91a)
Jag

/ Vovhipldx + e / V. \',"" o d¥%dz + / d.v '\')" o didz = [ hl ol dx,
Ja, Ja, Ja, Ja,
(01b)

for all [w,®| e X x Y.

The summands of the second line in (91a) can be written in the
following way:

(l‘[!‘;r Vv : Vow? diidz = r-‘_[m,, Vv 2 Vowldids ;.-’I[s!‘ﬁ Vw2 Vow? dit dz,
j;‘.,, Avi . dw? didz = [ ,;:;,. vie.d.w? dxdz +7[”\,i iﬂ-:\‘:_’" d.w? didz.
Introducing the changes above in (91), the system (23) in (4]
attained.
Again, taking into account the simplifications corresponding to a flat
horizontal interface ({ = 0) listed at the beginning of this section, the limit
problem (77) reduces to

v, _n] eX®xY°:

[ ovl.ow! - [ P VA\\'l—[ p"lV, -\\'f—/- ;..'V,\"":VJW2
Joy Ja, Ja, Ja,

+/ 5OV wlds + [m—;rj(v'-ﬁ)(w'-ﬁ}ri.5‘+ /JI"(“" n)dS = [ £2wl,
r Jy r Jaa
(92a)

/ Vvl +[ V. ovigt - [{v' -ﬁ},:"’«‘.s‘f/- h'et, (92b)
Ja, Jir Jr Ja,

for all [w, #] € X" = YO

Notice that since { = 0, the spaces X%, Y in 1) are isomorphic to
X%and Y% in (92), respectively. Finally, reordering the summands in the

equalities above and writing

/ 1V, vl v, w? = /-F v, vl v, wldx = /
T Jr

Je, Jr Jr

we obtain the system (59) in 14,

1V, vi: v w?ds,

v? ;3d.‘i,

The e-problems (30) are isomorphic to the problems (23) in 4, and the
limit problem (77) is isomorphic to (59) (Theorem 21) in '), In addition,
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the reasoning proving that (77) is the limit form of (30) stands for the
case { = 0. Next, the strong convergence limitations discussed in Section
5.3 no longer hold, since the expression (90) reduces to

/ jJrl):'\'j" {_TL‘} : Vievde) = [ povie iy, (93)

From here, the same reasoning presented in Section 5 in (14] applies.
The previous observations, show that the present work entirely
recovers the weak convergence results analogous to those presented in

4] byt extending them to a considerable broader scenario. On the other

hand, the strong convergence properties in (14] ould not be generalized,
and they should be treated on a case-wise basis, using particular features
of the function Z, as it was done in the equality (93) above.
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