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Abstract: In this work, we prove the existence of periodic solutions for some enzyme
catalyzed reaction models subject to periodic substrate input. We also obtain uniqueness
and asymptotic stability of the periodic solution of some classes of reaction equations.
Numerical simulations are performed using specific substrate functions to illustrate our
analytical findings.
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Resumen: En este trabajo probamos la existencia de soluciones periddicas para algunos
modelos de reacciones catalizadas por enzimas sujetas a una entrada periddica de
sustrato. También obtenemos unicidad y estabilidad asintética de la solucién periddica
dealgunas clases de reacciones. Realizamos simulaciones numéricas utilizando funciones
especificas de sustrato para ilustrar nuestros hallazgos analiticos.
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1. Introduction

Mathematical models have become important tools in analyzing chemical
reactions; of special interest are enzymatic reactions in biochemical
systems. Enzymes are important in regulating biological processes
acting as activators or inhibitors in a reaction. A basic scheme for a
catalyzed reaction is based into the Michaelis-Menten equation, which
is fundamental for enzyme kinetics. It can be described by the following
kinetic mechanism:

(t ky
Ms+e=2c
E_,

P4 E. (1)

where E denotes enzyme, S denotes substrate, P denotes product and C
denotes enzyme substrate complex. I(#) is the rate of input of the substrate
into the system. Letting [ 4] denote concentration of a chemical specie A.
A well-studied law of action kinetic is the law of mass action; it assumes
that the rate of a reaction is proportional to the concentrations of its
reactants; the law of mass action leads to the system of following non-
linear reaction equations:
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f!:' = I(t) - ks [S][E] + k_1[C].
d[E]
Tdt
d[C]
dt
dp) .
7 = .E.'-_;_( ].

= —ky [S|[E] + (k=y + k2)[C],

= ky[S][E] — (k=1 + k2)[C].

All of the parameters are positive constants. Since the scheme (1) is
reversible, then, by adding the second and third equations in the system
(2), we have ([E] + [C])’ = 0; therefore [E] + [C] = K for all time t for
some positive constant K. Using this relation, and since the last equation
in system (2) decouples from the other equations, we can reduce model
(2) to a two-dimensional system in terms of [S] and [C], as follows:

= I(t) — ks (K — [C))[S] + k_4[C],
) (2)
L = by (K = [O))S) = (k_y + k2)[C).

rf'_.‘-n'l

dt

dC
di

In chemical engineering it is common to use stirred tank reactors
where fresh nutrient are supplied at periodic rate from external sources;
on the other hand, a natural situation in biological system is that the
rate of input of the substrate I fluctuates in periodic form; this is due
to intrinsic oscillations in living organisms. So, for the interest of the
chemical industry or for biological reasons of the reactions considered, we
can assume that /is a non negative, non constant continuous I—periodic
function;

™

It+T)=1I(t)and I(f) = 0.Vt = R.

In the study of enzymatic models the analysis of periodic solutions is
seen as an important goal, since this periodicity reveals the recurrence of
biochemical rhythms of living organisms. Hence, determining existence
of such solutions under different parameter configurations and input
functions is crucial.

Stoleriu and coworkers [*! studied the existence of periodic solutions in
a particular class of input rate I, by using Brouwer's fixed-point theorem.
Katriel ! proved the existence of periodic orbits of (3), by using Leray-
Schauder degree theory. Moreover, he asked if that periodic solution
is unique and asymptotically stable. Using the theory of cooperative
systems, in the sequel we will recover Katriel's result as an application of
our main result; moreover, we obtain the uniqueness of such orbit, and
that the periodic solution attracts all other positive solutions, answering
affirmatively to Katriel's questions (11, On the other hand, considering the
generalized mass-action law we obtain more general systems of type (3);
for that kind of systems we also prove the existence of periodic orbits.
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2. Results

We first review the cooperative systems (this material is included for
completeness and to fix some of the notation); for a brief introduction to
cooperative systems see [, For two points x, y # # denote the partial order
u < v, if u; < v; for each i; also denote # < v if u < vand u # v. Consider
a system

= f(t,x(t),y(t)), (4)
g = g(t,z(t), y(t)),
where f,gare Cl'inan openD # #% and continuous T-periodic functions
on t. Recall that (4) is said a cooperative system in # x D if

[t x,y) =0, and g (¢, y) 20, ¥Yi€e R, (z,y) € D. (5)

The cooperative systems have very important properties. For example:
the monotonicity of the local flow generated by (4).
We say that a pair of T-periodic differentiable functions (a(2),5(¢)) is
a subsolution pair of (4) if
a < fl(t,a(t),bit)), i
R (6)
b < gl(f, a(t),b(t)), for all ¢,
Analogously, a pair of T-periodic differentiable functions (A(t), B(z))
is a supersolution pair if
A= f(t, A, B(t):

. (7)
B = g(t, A(t), B(t)), for all t.

We say that sub-and supersolution pairs are ordered if for all # we have
a(t) < A(¢) and

Finally, we say that a solution ((z), w(z)) of (4) is globally attracting on
a positively invariant set R # # if all solutions (x(2),y(¢)) with (x(0),y(0))
# R satisfy

(a(t), g(d)) — (ult) w(l)) = 0, § — o0,

An important feature for the cooperative system (4) about periodic
orbits was established in 2/, Theorem 2.1. More precisely, the following
result holds.

Theorem 2.1. Assume that the system (4) is cooperative and has ordered
sub- and super-solution pairs (a(2),b(2)) and (A(z), B(z)). Then the system
has a T-periodic solution, satisfying a(t) < x(t) < A(2),b(z) < x(z) <
B(z), #1. Furthermore, any solution of (4), with the initial (x(0), y(0))

# (a(0),4(0)) x (6(0), B(0)), converges to the product (i().(t))  ((t).u(t).
where (i(t).9(1)). (2(1).4(t)) are the minimal, maximal T-periodic solution,
respectively.

Now we state our first result
Theorem 2.2. Assumek |, k 2,k 1 , K> 0, and I(¢) is a non negative,
non constant continuous T—pem’odic functz’on. Then we get:
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i) There is at least one T-periodic solution [S(2)], [C(2)] of (3) whose

components are positive if, and only if,

.
0 < < koK, where I := l [ I(t)dt. (8)
T S0

ii) Under (8) the T-periodic solution is unique in =:.

iii) It attracts all other positive solutions of (3), when t > .

Proof. i) It is clear that (8) is a necessary condition for the existence
of a T-periodic solution. In fact by adding both equations in (3) and
integrating the result on [0, 7). Now assume the condition (8); first, note
that system (3) is of cooperating type, so to use Theorem 2.1 we need
construct sub- and super-solution pairs. First we take ((2), 6(2)) = (0, 0),
which is a subsolution pair.

For the super-solution pair we take A(#) to be the unique positive 7-
periodic solution of

A(t) = T(t) = k(K = M)A(t) + k- M + 0, (9)

with & and M < K positive constants to be fixed later. Also we take
B(#) = M. To obtain that (A(#), B(¢)) are a supersolution pair, it must be
fulfilled that

T(#) — by (K — MYA(E) + kM + 6 = T(#) — ky (K — MJA(E) + kM, (10)

And
0= k(K = M)A(t) = (k_q + k2)M. (11)
Now, the periodic solutions A(z) of (9) (as function of M) satisfy
Fy lim (K —MA=T+k_ K +0.
M=K

Taking the limit M > K in the right side of (11) we get 7+¢ - k&, which
is negative by (8) for & sufficiently small; therefore, the inequality (11)
is satisfied for & small and M close to K. Thus we have sub- and super-
solution pairs; then, by Theorem 2.1. there is at least one 7-periodic
solution, which proves i).

i) By adding both equations in (3) and integrating for a periodic
solution we get

- T
ke [ [Cldt = / f(t)dt; (12)
Jo Jo

this is also true for the maximal periodic solution (s i), i.e.,

. .
!.-3/ j("[r;{rfr—[ I{t)dt; (13)
<0 o 0

thus, from (12) and (13) we have

. .
ks [ (IC] — [C])dt = / I(t) — I(t)dt = 0: (14)
JO S

]
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therefore for any periodic solution we have | - (1. but from the second
equation in (3) we obtain that (1) = (s¢);: this establishes the uniqueness.

i#i) Note that the band (0,K) is attractor to (3) in #%, and by Theorem
2.1 there is a unique periodic solution in (0,4(0)) x (0,K) which is
attractor in this set, where 4 is the unique periodic solution of (9). Since

Iy 1.]rim.r'[h- — M)A =T+ E K +0 =170,

then A(0) becomes arbitrarily large. Then the periodic solution is
globally attracting on all positive solutions of (3), when t > oo

Aswe have really mentioned Katriel (1] proved the existence of periodic
orbits of (3) under the condition (8), by using Leray-Schauder degree
theory. Moreover, he proposed the next question: is it true that if
0 < I < kK. the periodic solution is unique and globally stable? From our
result we obtain a different proof of existence, and we answer affirmatively
his questions.

It should be noted that the existence of periodic orbits in the particular
case of I(£): = I o (1 + ¢ sin(wt)) was considered in P by using Brouwer's
fixed-point theorem. Observe that Theorem 2.2 gives an alternative proof

to Theorem 1 in ), which we remember below.
Corollary 2.3. Let I(2): =1 ¢ (1 + e sin(we)), with 0 < e < 1. If

0<I* < koK, where I' == max I(t), (15)

then for any value of ¢, 0 < € < 1, the system (3) has at least one positive
= -periodic solution. Moreover, the periodic solution /or e sufficiently small
is unique.

Note that the condition (15) implies (8), but it is a stronger condition;
moreover, we do not require additional conditions for uniqueness (over
¢), therefore Theorem 2.2 produces a slight generalization of this result.

To model the dynamics of the concentrations of the chemical species

involved, we also can consider the generalized mass-action law (sce By,
Under this law we obtain a more general enzyme catalysed system than
(3), written as

d[S]
dt
= Iy (K — [C]7)[8]® — (k=y + ka)[C)° 1= g(t. 5. C).
T 1171 J

= I(t) — Iy (K — [C)P)[8]* + ks [C)F 1= f(1,8.C),
(16)

All of the parameters (exponents included) are positive constants and
Iis a non constant continuous T-periodic function.

With a similar proof as in Theorem 2.2, we obtain the following slight
generalization of this result:

Theorem 2.4. Assumek |,k 2,k 1, K > 0, and I(¢) is a non negative, non
constant continuous T -periodic function. If B > 0 and o = 1, then we get:

i) There is at least one T-periodic solution [S(¢)], [C(2)] of (16) whose
components are positive if, and only if, (8) holds.

ii) Under (8) the T-periodic solution is unique in ?2.

iit) It attracts all other positive solutions of (16), as t > oo.
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2.1. Examples

In the previous section we established analytically the existence of
periodic solutions for system (2) of enzymatic reactions. The object of
this section is to show numerical evidence of the existence of periodic
solutions. We numerically solved these equations using a 4th order
accurate Runge-Kutta integrator, which was programmed in FORTRAN
95. The graphs correspond to numerical approximations of the periodic
analytic solution; the parameters are artificial, and only for the purpose of
illustrating our analytical results.
Example 1. Consider the system

AS] _ 14y = b (K = [C])[S] + k- [C),
dt P
dlct . (17)
# =k(K - [(1"! — (ko + Agl(]
where parameters are determined by k4 ; =2,k ;, =1L k , = 1.5
and K = 33. The substrate input function is determined by (z) = 1 +
0.3 sin(2nt). Note that 0 < < 4.5. Numerical simulations are shown in
the next figures, which exhibit an oscillatory behavior according to the

Theorem 2.2.

Figure 1
Time plots for enzymatic model (17). We can see that the solutions for the initial conditions Sy =
0.325 and Cy = 0.645 converge to the corresponding numerical approximation of the periodic orbit.

According to Theorem 2.2 the system has a periodic solution, which
is globally attractive. To illustrate this fact, we consider different initial
conditions for the system (17) and observe that the corresponding
solutions tend the corresponding numerical approximation of the

periodic orbit (see figure 2).
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Figure 2
Time plots for enzymatic model (17), with different initial conditions. We can see that the
corresponding numerical approximation of the periodic orbit behaves like a globally attractive orbit.

Example 2. Consider the system

d[5]
dt

i[C] (18)
T (K - [O1)[S] = (k_q + k2)[CTP,
dt S &l

= I{t) = ky (K = [C)%)[S] + k—y [C),

where parameters are determined by =54 ;, =02,k ., = 0.3, k >
= 7, and K = 0.8. The substrate input function is determined by (z) =
cos 2 (2mt).

Figure 3
Time plots for enzymatic model (18). We can see that the solutions for the initial conditions Sy

= 0.4 and Cy = 0.4 converge to the corresponding numerical approximation of the periodic orbit.
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