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On some Chebyshev type inequalities for
the complex integral

Sobre algunas desigualdades tipo Chebyshev para la integral
compleja

Silvestru Sever Dragomir a*

Victoria University, Australia

Abstract: Assume that f and g are continuous on γ, γ # # is a piecewise smooth path
parametrized by z (t) ,t # [a, b] from z (a) = u to z (b) = w with w ≠ u, and the complex
Chebyshev functional is defined by

In this paper we establish some bounds for the magnitude of the functional D γ (f, g)
under Lipschitzian assumptions for the functions f and g, and provide a complex version
for the well known Chebyshev inequality.
MSC2010: 26D15, 26D10, 30A10, 30A86.
Keywords: Complex integral, Continuous functions, Holomorphic functions,
Chebyshev inequality.
Resumen: Sean f y g funciones continuas sobre γ, siendo γ # # un camino suave por partes
parametrizado por z (t), t # [a, b] con z (a) = u y z (b) = w, w ≠ u, y el funcional de
Chebyshev complejo definido por

En este artículo establecemos algunas cotas para la magnitud del funcional D γ (f, g) bajo
condiciones de lipschitzianidad para las funciones f y g, y damos una versión compleja
para la conocida desigualdad de Chebyshev.
Palabras clave: Integral compleja, funciones continuas, funciones holomórficas,
desigualdad de Chebyshev.

1. Introduction

For two Lebesgue integrable functions f, g : [a, b] → #, in order to compare
the integral mean of the product with the product of the integral means,
we consider the Chebyshev functional defined by

In 1934, G. Grüss [17] showed that

provided m, M, n, N are real numbers with the property that
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e constant  in (1) is sharp.
Another, however less known result, even though it was obtained by

Chebyshev in 1882, [8], states that

provided that f’, g’ exist and are continuous on 
e constant  cannot be improved in the general case.

e Chebyshev inequality (3) also holds if f, g: [a, b] → # are assumed
to be absolutely continuous and f’, g’ # L ∞ [a,b], while 

For other inequality of Grüss' type see [1]-[16] and [18]-[28].
In order to extend Grüss' inequality to complex integral we need the

following preparations.
Suppose γ is a smooth path parametrized by z (t) , t # [a, b] and f is a

complex valued function which is continuous on γ. Put z (a) = u and z (b)
= w with u, w # #. We define the integral of f on γu,w = γ as

We observe that the actual choice of parametrization of γ does not
matter.

is definition immediately extends to paths that are piecewise
smooth. Suppose γ is parametrized by z (t), t # [a, b], which is
differentiable on the intervals [a, c] and [c, b]; then, assuming that f is
continuous on γ, we define

where v := z (c). is can be extended for a finite number of intervals.
We also define the integral with respect to arc-length:

and the length of the curve γ is then

Let f and g be holomorphic in G, an open domain, and suppose γ # G
is a piecewise smooth path from z (a) = u to z (b) = w. en we have the
integration by parts formula
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We recall also the triangle inequality for the complex integral, namely,

where 
We also define the p-norm with p≥1 by

For p = 1 we have

If p, q > 1 with  then, by Hölder’s inequality, we have

Suppose γ # # is a piecewise smooth path parametrized by z (t), t # [a,
b] from z (a) = u to z (b) = w with w ≠ u. If f and g are continuous on γ,
we consider the complex Chebyshev functional defined by

In this paper we establish some bounds for the magnitude of the
functional Dγ (f, g) under various assumptions for the functions f and g,
and provide a complex version for the Chebyshev inequality (3).

2. Chebyshev type results

We start with the following identity of interest:
Lemma 2.1. Suppose γ # # is a piecewise smooth path parametrized by z

(t), t # [a, b] om z (a) = u to z (b) = w with w ≠ u. If f and g are continuous
on γ, then

Proof. For any z # γ the integral  exists and
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e function I (z) is also continuous on γ, then the integral  exists
and

which proves the first equality in (6).
e rest follows in a similar manner and we omit the details. 0
Suppose γ # # is a piecewise smooth path from z (a) = u to z (b) = w

and h : γ → # a continuous function on γ. Define the quantity:

We say that the function f: G # # → # is L-h-Lipschitzian on the subset
G if

for any z, w # G. If h (z) = z, we recapture the usual concept of L-
Lipschitzian functions on G.

eorem 2.2. Suppose γ # # is a piecewise smooth path parametrized by z
(t), t # [a, b] om z (a) = u to z (b) = w with w ≠ u, h : γ → # is continuous,
f and g are L1, L2 -h-Lipschitzian functions on γ; then

Proof. Taking the modulus in the first equality in (6), we get

Now, observe that
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erefore, by (10) we get

and by (9) we get the desired result (8).
Further, for γ # # a piecewise smooth path parametrized by z (t), and

by taking h (z) = z in (7), we can consider the quantity

Corollary 2.3. Suppose γ # # is a piecewise smooth path parametrized by
z (t), t # [a, b] om z (a) = u to z (b) = w with w ≠ u and f and g are L1,
L2 -Lipschitzian functions on γ; then

Remark 2.4. Assume that f is L-h-Lipschitzian on γ. For g = f we have

and by (8) we get

For  we have

and by (8) we get

If f is L-Lipschitzian on γ, then
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And

If the path γ is a segment [u, w] connecting two distinct points u and
w in #, then we write  as 

Now, if f and g are L1, L2-Lipschitzian functions on [u, w] := {(1 - t) u
+ tw, t # [0,1]} , then by (12) we have

where

erefore,

if f and g are L 1 , L 2-Lipschitzian functions on [u, w].
If f is L-Lipschitzian on [u, w] , then

and

3. Examples for circular paths

Let [a, b] # [0, 2π] and the circular path γ[ a,b  ],R centered in 0 and with
radius R > 0:

If [a, b] = [0, π], then we get a half circle, while for [a, b] = [0, 2π] we
get the full circle.

Since
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for any t, s # #, then

for any t, s # # and r > 0. In particular,

for any t, s # #.
If u = R exp (¿a) and w = R exp(ib), then

Since

and

hence

If γ = γ [a,b],R then the circular complex Chebyshev functional is defined
by

If γ = γ [a,b],R then
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We have the following result:
Proposition 3.1. Let γ[a,b],R be a circular path centered in 0, with radius

R > 0 and [a, b] # [0, 2π]. If f and g are L 1, L  2  -Lipschitzian functions
on γ[a,b],R, then
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