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Some notes about power residues modulo prime
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Abstract. Let g be a prime. We classify the odd primes p # ¢ such that the
equation z? = ¢ (mod p) has a solution, concretely, we find a subgroup Ly, of
the multiplicative group Uy, of integers relatively prime with 4¢ (modulo 4¢q)
such that 2% = ¢ (mod p) has a solution iff p = ¢ (mod 4q) for some ¢ € Ly,,.
Moreover, Ly, is the only subgroup of Uy, of half order containing —1.

Considering the ring Z[v/2], for any odd prime p it is known that the equation
22 =2 (mod p) has a solution iff the equation x? — 2y? = p has a solution in
the integers. We ask whether this can be extended in the context of Z[{/2]
with n > 2, namely: for any prime p = 1 (mod n), is it true that =™ =
(mod p) has a solution iff the equation D2 (xg,...,2,_1) = p has a solution
in the integers? Here D2(Z) represents the norm of the field extension Q( {/2)
of Q. We solve some weak versions of this problem, where equality with p is
replaced by 0 (mod p) (divisible by p), and the “norm" D! (%) is considered
for any r € Z in the place of 2.

Keywords: Power residues modulo prime, quadratic residues, Legendre sym-
bol, norms of field extensions, irreducible polynomials.

MSC2010- 11A15, 11C20, 11R04.

Sobre residuos de potencias moédulo primo

Resumen. Sea ¢ un numero primo. Clasificamos los primos impares p # ¢
tal que la ecuacién 2 = ¢ (mdd p) tiene solucién, concretamente, hay un
subgrupo Ly, del grupo multiplicativo Uy, de los enteros primos relativos
con 4g (médulo 4q) tal que 22 = ¢ (mdéd p) tiene solucién si y solo si p = ¢
(méd 4q) para algin ¢ € Ly,. Atin més, Ly, es el tnico subgrupo de Uy, con
la mitad del orden que contiene a —1.

En conexién con el anillo Z[v/2], para cualquier primo impar p se sabe que
la ecuaciéon 2 = 2 (méd p) tiene solucién si y solo si #? — 2y? = p tiene so-
lucién en los enteros. Nos preguntamos si esta situacién se puede extender al
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contexto de Z[{/2] con n > 2, a saber: para cualquier primo p = 1 (méd n),
Jla ecuacion ™ = 2 (méd p) tiene solucién si y solo si D2 (zq,...,Tp_1) =p
tiene solucién en los enteros? Aqui D2 (%) representa la norma de Q(3/2) co-
mo extensién del campo Q. Solucionamos algunas versiones débiles de este
problema, donde igualdad con p se reemplaza por 0 (mdd p) (divisible por
p), ¥y la “norma” D] (Z) se considera para cualquier r € Z en lugar de 2.

Palabras clave: Residuos de potencias médulo primo, residuos cuadraticos,
simbolo de Legendre, normas de extensiones de campos, polinomios irreduci-
bles.

Introduction

In this work, we prove several properties and present problems related with quadratic
residues and its generalization to n-th power residues modulo prime, all in the framework
of elementary number theory.

Before entering into the subject, we first fix some basic notations.

Notation 1.1. In the following, m > 1 is an integer and ¢ is a prime.

(1)

2)

3)

[F, denotes the field of integers modulo ¢, which is the prime field of order ¢, and F
denotes its associated multiplicative group.

More generally, U, denotes the multiplicative group of integers modulo m that are
relatively prime with m. Note that U, = F.

Let G be a group with identity element 1. For any r € G, the order of r in G,
which we denote by Og(r), is the smallest positive integer n satisfying ™ = 1g in
case it exists, otherwise Og(r) is infinite. When G = U,,, for r € U,,, we abbreviate
O (r) := Oy, (1), which is the smallest positive integer n such that v =1 (mod m)
(which always exists because U,, is finite). We can of course extend this notion for
any r € Z that is relatively prime with m, so Oy, (r) = Oy, (ro) where rq is the residue
obtained after dividing r by m.

The number of elements of a set A is denoted by #A. When G is a group, #G is
also called the order of G. When G is a finite group and r € G, Og(r) divides #G.
Therefore, since #U,, = ¢(m) where ¢ denotes Fuler’s phi function, O, (r) | p(m)
for any integer r relatively prime with m. In particular, if ¢ does not divide r then

Oy(r) 1 p(q) = q— 1.

Let r € Z be relatively prime with m. Since O,,(r) | ¢(m), there is a unique (positive)
integer n,(r) satisfying Oy, (r)nm (1) = @(m). Therefore, due to the definition of

e(m)
n

O, (1), N (1) is the largest n | ¢(m) such that r =1 (mod m).

The notion of n,,(r) is not standard, but it will be very useful in the context of power
residues modulo prime, as well as in characterizations of O,,(r).

Euler’s criterion for quadratic residues modulo prime can be easily generalized to power
residues as follows (see e.g. [5, Thm. 3.11], [8, Thm. 1.29] and [3, Prop. 4.2.1]).

[Revista Integracion



Some notes about power residues modulo prime 3

Theorem 1.2 (Generalized Euler’s criterion). Let r € Z, p a prime not dividing r and let
n be a positive integer. Then the equation ™ =r (mod p) has a solution iff

rEaoT = 1 (mod p).

Even more, if the equation ™ = r (mod p) has a solution then it has ged(p — 1, n)-many
incongruent solutions modulo p in total.

As a consequence,

Corollary 1.3. Let r € Z and p a prime not dividing r. Then n,(r) is the largest n | p—1
such that r has an n-th root modulo p. Moreover, the following statements are equivalent
for any positive integer n:

(1) 2™ =r (mod p) has a solution.
(11) rﬁ—ll,n) =1 (mod p).
(11) ged(p — 1,m) | mp(r).

Proof. The equivalence (i) < (ii) is Theorem 1.2; the equivalence (ii) < (iii) can be seen
from the definition of n,(r) (see Notation 1.1(5)). &4
In this view, n,(r) plays a very important role in relation with power residues modulo p.
The main results of this paper are divided in two parts, the first about quadratic reci-

procity, and the second about power reciprocity modulo prime.

Main results 1: On quadratic residues

Fix r € Z. When p is an odd prime not dividing r (i.e. ged(p,r) = 1), whether r is a
quadratic residue modulo p is determined by the Legendre symbol, which is defined by

(T> _ { 1 if the equation 2> =r (mod p) has a solution, (1.4)

D —1 otherwise.

In the case r = 2, the problem of whether 2 is a quadratic residue modulo an odd prime
is already solved.

Theorem 1.5 (See e.g. [1, Thm. 9.6]). If p is an odd prime then (%) =1iffp=+1
(mod 8).
We ask about similar characterizations for any integer r.

Problem 1.6. Let r € Z. Is there a positive integer m(r) and a set L(r) C Uy, such

r

that, for any prime p not dividing r, (5) =1 iff the residue of p modulo m(r) is in L(r)?

If so, can L(r) be characterized in some way?

Vol. 40, No. 1, 2022]



4 Yuk! Kiriu & DIEGO A. MEJIA

The answer to the first question should not be difficult due to the quadratic reciprocity
law, but the characterization of L(r) is more interesting for settling the general problem.

In fact, due to the property
b b
(3)-G)G) o)
p p p

the interesting case of Problem 1.6 is when r is a prime. In this case, we proved the
following main result:

Theorem A (Theorem 3.5). Let g be a prime. Then

(a) There is only one subgroup of Usq with order % containing —1. This subgroup is
denoted by L.

(b) For any prime p # q, (%) =1 iff the residue of p modulo 4q is in Lyg.

This theorem becomes a tool to calculate (%) for any r € Z relatively prime with p.
This is presented in Theorem 3.6 (and at the end of Section 3).

In the case of composite r, due to Equation (1.7) an extension of Theorem A is reasonable
when r is square free. In this case we can find a subgroup Ly, of Uy, containing —1 as in
(b), but in general this group is not unique as in (a). Details are presented in Theorem 3.7
and in the discussion that follows it.

Main results 2: On power residues

We aim to generalize the following result to power residues.

Theorem 1.8 (See e.g. [2, Thm. 256] and [9]). Let p be an odd prime. Then the following
statements are equivalent.

(1) The equation x*> =2 (mod p) has a solution.

(11) The equation x? — 2y? = p has an integer solution.

This is related to the characterization of irreducible elements of the ring Z[/2]: an odd
prime p in 7Z is still a prime in Z[v/2] iff the equation 22 — 2y? = p does not have integer
solutions (see [2, Thm. 256]). Recall that 22 — 2y is the norm of = + y+/2 in the field
extension Q(v/2) of Q.

For any n > 2, denote by D2 (xq, ..., 2, 1) the norm of xg + 21 /2 +...2, 1 V271 in
the field extension Q( /2) of Q. This norm is defined (even in a more general context) in
Section 4, but we just state here that D2 (zg,...,2,_1) is an integer when zg, ..., T, 1 €
Z. So we ask whether Theorem 1.8 can be generalized in the following sense.

Problem 1.9. Let n > 2 and p a prime such that p = 1 (mod n). Are the following
statements equivalent?

(1) The equation x™ =2 (mod p) has a solution.

[Revista Integracion



Some notes about power residues modulo prime 5

(2) The equation D2 (zq,...,2n_1) = p has an integer solution.

The solution of this problem seems to rely on tools in algebraic number theory that
would go beyond elementary number theory. In these terms, we managed to solve weaker
versions of the problem, where in some of them (2) is replaced by D2 (zg,...,2,_1) =0
(mod p). The trivial solution of this equation is zg = ... = z,-1 = 0, so we aim for
non-trivial solutions. On the other hand, our results deal with any integer r in place of
2, so we used a general version D7 (zg,...,Z,—1) of the norm (which is defined in detail
in Section 4).

Theorem B (Theorem 5.1). Let p be a prime, r € Z, n € Z" and ro € F,, such that
r=ro (mod p).

(a) The polynomial x™ — o is irreducible in Fpx] iff the equation Dy, (xo,...,Zp—1) =0
(mod p) does not have a non-trivial solution in the integers.

(b) If n > 2 and the equation ™ =r (mod p) has a solution, then D! (zq,...,2n—1) =0
(mod p) has a non-trivial solution in Z™ satisfying —p% <z < p% for all0 <i < n.

The proof of Theorem B(b) is inspired in the proof of Theorem 1.8 presented in the
post [9]. As a consequence, we obtain the following equivalence when n is a prime.

Corollary (Corollary 5.2). Let p and q be primes, r € Z. Then the following statements
are equivalent:

(1) 29 =r (mod p) has a solution.

(11) D (zo,...,rn—1) =0 (mod p) has a non-trivial solution.

We can also conclude some weakening of the implication (2) = (1) of Problem 1.9, which
yields the real implication when n is a prime.

Theorem C (Theorem 5.3). Assume that p is a prime, n > 2, r € F, and rg € F), such
that r = ro (mod p). If the polynomial ™ — ry is irreducible in Fy[z] then D} (Z) = p
does not have a solution in the integers.

In particular, (2) = (1) of Problem 1.9 is true when n is a prime.
We also present a simple proof of Theorem 1.8 using Theorem B (see Theorem 5.4),
where 2 can also be replaced by r € {—2, —1}. This shortens the proof in [9] a little bit.

We remark that “z™ — r is irreducible in F,[z]” is stronger than “z™ = r (mod p) does
not have a solution”. For instance, if p € {7,17,23,31,41,47,71}, the equation 22 = 2
(mod p) has a solution, but zP~1 =2 (mod p) does not have one. On the other hand, if
ap is a solution of #2 — 2 =0 in F, then, in F,[z]:

gP~l 2= 220%7) ai = (xprl — ao)(avl%1 + agp).

This means that 2P~! — 2 is reducible in F,[z]. More details about irreducibility of 2™ —r
are presented in Section 4.

We do not have any counter-example for Problem 1.9 even when x™ — 2 is reducible in
Fylz].
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6 Yuk! Kiriu & DIEGO A. MEJIA

Indirect motivation

The motivation of this work is related with the study of Mersenne primes, although we
do not present explicit results about them. A Mersenne number is an integer of the form
2" — 1 with n € Z* (positive integer), and a Mersenne prime is a primer number of this
form. It is well known that, whenever 2™ — 1 is a prime, n must be a prime. Another
curious fact is that, whenever 2" — 1 is a Mersenne prime, there is only one (odd) prime
p such that O,(2) | n, that is, such that 2" = 1 (mod p). Even more, since n must be
prime, n = O,(2). The converse situation is interesting: if n is a prime and there is only
one prime p such that O,(2) | n, then 2™ — 1 = p® for some e € Z*. Hence, when e = 1,
2" —1 is a Mersenne prime; but if e > 1 then p is a Wieferich prime, i.e., a prime number
p satisfying 2P~ =1 (mod p?). Recall that so far only two Wieferich primes are known,
namely 1093 and 3511, and Silverman proved under the abc-conjecture that there are
infinitely many non-Wieferich primes [7].

The previous observation indicates that understanding O,(2) would lead to a better
understanding of Mersenne primes and would trigger possible characterizations. On the
other hand, since O,(2) is associated with n,(2), according to Corollary 1.3 we can
discover a lot about n,(r) in general by studying power residues modulo p.

Concerning O, (r) for some fixed integer r > 1, the pattern of the sequence of O,(r) for
prime p relatively prime with r seems to be very erratic [6], but O, (r) in general can
be determined in terms of O,(r) for prime p | n, see Theorems 2.1-2.3. In particular,
Ope (1) is deeply related with Wieferich primes (in base r). A more detail discussion is
presented in Section 2.

Structure of the paper

Section 2. We discuss some simple aspects related with Oy, (r) and n,(r). In particular,
we show expressions of O,,(r) for composite m, and a method to obtain n-th roots of
1 modulo a prime p, in particular n,(r)-th roots of 1. The contents of this section are
known and unrelated with the main results, but we present them in accordance with the
“indirect motivation” above.

Section 3. This is dedicated to the proof of Theorem A and to further discussions about
groups associated with quadratic reciprocity.

Section 4. We present some preliminaries in algebra that are going to be required in
the proof of the main results about power residues modulo prime.

Section 5. We prove our main results about power residues modulo prime, in particular
Theorems B and C.

Section 6. We discuss research related to this work.

2. Muiltiplicative order

We first show how the multiplicative order modulo composite numbers can be calculated.

[Revista Integracion
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Theorem 2.1 (See e.g. [5, §3.2, Thm. 3.6]). Let p be an odd prime and r € Z, r # £1
relatively prime with p. Assume that eg is the mazimum integer such that Opeo (r) =
O,(r). Then, for any e > 1,

[ Op(r) when e < e,
Ope(r) = { p°=°0,(r) otherwise.

The previous result has a deep connection with Wieferich primes. In fact, an odd prime
p is a Wieferich prime in base r if ptr and O,2(r) = Op(r).! Very few of these numbers
are known for each r > 1.

The following is a version of Theorem 2.1 for p = 2. The proof is almost the same, so we
omit it.

Theorem 2.2. Assumer € Z is odd, r # +1. If eg > 2 is the mazimum integer such that
Oseo (1) = Oy(1) then, for any e > 2,

_ O4(r) when e < eq,
Oae(r) = { 2¢7€0y(r) otherwise.

Now we look at the case when m > 1 is composite but not a prime power, so we assume
that it has prime factorization m = [[}_, p{* (s > 2).
Theorem 2.3. When ged(r,m)=1, O (r) = lem(Oea (1), Opez (1), - . ., Opes (1)).

Py ps

Proof. Let us suppose b := lem(Opei (1), Opez (1), ..., Opes (r)). We need to prove the
following.

1. 7 =1 (mod m). For any i < s we know that PO = (mod p;*) and O, () |

b,sor’ =1 (mod p*), i.e. pi* | 7® — 1. Since p§* and p;j are relatively prime when

i # j, we conclude that m | r® — 1.

2. b is the minimal number satisfying the equation r* = 1 (mod p) Assume 7* = 1
(mod m). This implies 7* = 1 (mod p;j*) for any i <'s, so O, (r) | x. Therefore
b |z, so by (1) b is the minimum we claim. v

Notice that, by the Chinese remainder theorem, the map Z,, — @;_, Zp:i that sends a
to the tuple (a1, . .., as) of residues modulo p;* is a ring isomorphism, and when restricted
to U,, it gives a group isomorphism onto @leUpji. So the previous result can be seen as
a particular case of the following fact: if G = EBf:l G, is a direct sum of groups of finite
order and a = (ay,...,ax) € G, then Og(a) = lem(Og, (a1),...,0¢, (ax)). (A similar
proof works.)

As a consequence, we obtain the following modular equation using Euler’s phi function.

1The standard definition is »»~! = 1 (mod p?), which is equivalent thanks to Theorem 2.1: If
O,2(r) # Op(r) then O,2(r) = pOp(r), which does not divide p — 1.
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8 Yuk! Kiriu & DIEGO A. MEJIA

Corollary 2.4. If ged(r,m) =1 and

e p(m)
ged(p(pi'), (p32), - - - p(ps*))

then r¢ =1 (mod m).

Proof. Since lem(aq,as,...,an) - ged(ar,ag,...,am) | a1az - amy, by Theorem 2.3 we
can prove that

O (r) | lem(o(p1), @(p2%), - - ., @(ps™))
and lem(p(p1®), (P2?), - - -, 0(ps)) | .

The theorem follows immediately. v

The previous result can be generalized as well in the context of direct sums of groups: if

ac G and ¢ = W then a¢ = ].G, i.e. OG(EL) ‘ C.

From here until the end of this section, we assume that p is a prime and ged(r,p) = 1.

We look at the effect of the power of Op(r) in F), namely, properties of kOr(") for

k € IFp. In fact, these properties come from more general results. First, we show that
{kO»() . | € Fy} gives the full set of n,(r)-th roots of 1 modulo p, which can be
generalized as follows.

Theorem 2.5. Let n > 1 be an integer. Then all the n-th roots of unity can be obtained
from the set

A::{aﬁyg—n:aelﬁ‘;}

Moreover, if r, is a primitive root of p then the set above coincides modulo p with
0=l
B = {rp ged(np=1 : 0 < ¢ < ged(n,p — 1)},
and their members are pairwise incongruent modulo p.

Proof. We define m(n) := Wé—l)
then ™™ = rpkm(”) (mod p). If we put k = d - ged(n,p — 1) + £ for some d € Z and
0 < ¢ < ged(n,p—1), then km(n) = d(p — 1) +£m(n). So we get a™™) = (rpm(”))l =
(mod p). This shows A C B (modulo p). The converse inclusion is trivial.

and b := 7, (). For any a € FX,ifa=r," (mod p)

By Theorem 1.2, the equation 2™ =1 (mod p) has exactly ged(n,p — 1)-many solutions
in Fp. On the other hand, since O,(b) = ged(n,p — 1), it is clear that (bz)n =1 (mod p)
for all 0 < ¢ < ged(n,p — 1), and that the b are pairwise incongruent modulo p. This
shows that B is the complete set of n-th roots of unity. ]

Corollary 2.6. The set of solutions for the equation z™»(") =1 (mod p) (i.e. the set of
ny(r)-th roots of unity modulo p) is

{aop(’”) ta€ IF;} = {szop(r) 1 0<l< np(r)} (modulo p).
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Recall the following properties of roots of unity modulo p.

Lemma 2.7. Let n > 1 and assume that a is an n-th root of 1 modulo p. Then:

n—1

(a) If a =1 (mod p) then Zai =n (mod p).
=0

n—1
(b) If a £ 1 (mod p) then Zai =0 (mod p).
i=0

Proof. Property (a) is trivial; since

n—1
(a—l)Zai:a"—le (mod p),
i=0

it is clear that @ # 1 (mod p) implies (b). v

As a consequence, we can show the behaviour of the sum of k9»(") for 1 <k <p—1, or
even more generally:

Theorem 2.8 (See e.g. [8, Pg. 67]). Let n € Z" . Then:

p—1

(a) p—1|n< Zk"zp—l (mod p).
k=1

p—1

b)p—1in < Zk"EO (mod p).

k=1

Proof. Fix a primitive root r, of p, and for each 1 < k < p choose e, < p — 1 such that
rp®* =k (mod p). We have the following:

p—1 p—1 p—1 p—2 )
Z k" = Z(rpek)” = (rp”)ek = (rp”)l (mod p).
k=1 k=1 k=1 i=0

Note that any member of F) is a (p — 1)-th root of 1, so we can apply Lemma 2.7 to
conclude:

p—2

(a) if 7, =1 (mod p) then Z (rp”)i =p—1 (mod p);
i=0

p—2 )
(b) if r,™ £ 1 (mod p) then Z (7",)")Z =0 (mod p).
i=0

It is easy to verify that 7, =1 (mod p) is equivalent to p—1 | n, so the result follows.

Vol. 40, No. 1, 2022]
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Corollary 2.9. Let r € Z such that ged(r,p) = 1. Then:

p—1

(a) Op(r) =p—1« > k") =p—1 (mod p).
k=1

p—1
(b)) Op(r)#p—1< Zkop(r) =0 (mod p).
k=1

3. Groups associated with quadratic residues

This section is dedicated to the proof of Theorem A.
Recall the Legendre symbol (%) as presented in Equation (1.4). It is known that the map

Fy — Uy, r— (%) is a group homomorphism, where Uy = {1, —1} as a multiplicative

L: = {a €FX: (Z) = 1} (3.1)

is a subgroup of F of order 172;1 (half of the order of F)’).

group,? so

We look at the following converse situation: given an integer r, characterize the odd
primes p relatively prime with r such that (%) = 1. This is associated with n,(r) in the

following sense.

Lemma 3.2. Let p be an odd prime, r € Z such that ged(r,p) = 1. Then the following
statements are equivalent:

(1) (5) ~1.
(1) 22> = r (mod p) has a solution.
(1) r*= =1 (mod p).

(1v) ny(r) is even.

Proof. The equivalence (i) < (ii) follows from the definition of Lagrange’s symbol. The
others are a direct consequence of Corollary 1.3 (applied to n = 2). ]

First, we look at the case when r = ¢ is a prime. If ¢ = 2 we have the following situation.

Theorem 3.3. If p is an odd prime then the following statements are equivalent.

(1) (%) ~ 1.
(11) p = +1 (mod 8).

2This is isomorphic to the additive group Zs.

[Revista Integracion
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(111) 2 7 =1 (mod p).

(1v) ny(2) is even.
Proof. (i) < (ii) is known, see Theorem 1.5. The rest follows by Lemma 3.2. [t

We aim to generalize Theorem 3.3 for any r in the place of 2, concretely, to find a

condition like in (ii) that characterizes (%) for any odd prime p relatively prime with r.

An observation about the case r = 2: Denote LLg := {1,—1} as a subgroup of Ug. Note
that this is the only subgroup of Ug of order 2 (half of the order of Ug) that contains

—1. Theorem 3.3 says that (%) =11iff p=c (mod 8) for some ¢ € Lg, which validates
Theorem A for r = 2.

Assume that r = ¢ is an odd prime. If p # ¢ is an odd prime then, by the quadratic

reciprocity law:
q a-1lp-1 [P
) =(=1)"2 =2 = ]. 3.4
3)-cr==(3) 59

We start assuming ¢ = —1 (mod 4),% in which case

Therefore, (%) = 1 iff one of the following cases hold:

(1) p=1 (mod 4) and p = a (mod gq) for some a € LL; (see Equation (3.1)), or

(1) p=—1 (mod 4) and p = b (mod gq) for some b € U, \ L.

For any odd prime go: by the Chinese remainder theorem, the map F, : Zsq, = Zs B Fy,
that sends any x to the pair (zg,z1) of remainders modulo 4 and gy respectively, is a
ring isomorphism. When this map is restricted to Uy, it becomes a group isomorphism
onto Uy & ]quo.

Coming back to our argument, using the previous terminology we conclude that (%) =1

iff p = ¢ (mod 4q) for some ¢ € Uy, such that c satisfies one of the following conditions:
()1: Fy(c) = (1,a) for some a € L} (by (i)), or

(%)3: Fy(c) = (—=1,b) for some b € U, \ L7 (by (ii)).

Let Ly, be the set of ¢ € Uy, satisfying either (x){ or (x)4. Since

L’(4’q) ={(e,a) €Uy ® U, : eithere=1anda€L;,ore#1anda¢ L}

3 Although the easy case is ¢ = 1 (mod 4), we decided to start with the other case for convenience of
the presentation.
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is a subgroup of Uy @ U, and Ly, is the inverse image under F, of this subgroup, we
conclude that Ly, is a subgroup of Uy,.

Moreover, Ly, has order ¢ — 1, which is half of the order of Uyy, and —1 € Ly4: Since L}
has order q;—l, it is clear that the order of L’(4 g 18 double, that is, ¢ — 1, and this is the
order of LLyy; note that Fy,(—1) = (—1,—1) and —1 ¢ L} because ¢ = —1 (mod 4), so it
satisfies (%)% and we get —1 € Lyg.

We turn to the case when ¢ =1 (mod 4). By Equation (3.4) we obtain that (%) = (g),
SO (%) =1iff p=a (mod ¢) for some a € ;. Using the ring isomorphism £} introduced

before, define
Lag :={c € Uyy : Fy(c) = (e,a) for some e € Uy and a € L }.

Since this is the inverse image under F, of Uy & L} and this is a subgroup of Uy & U,
of size ¢ — 1, we conclude that Ly, is a subgroup of Uy, of order ¢ — 1 (half of the order
of Usq). Even more, —1 € L4, because Fy(—1) = (—1,—1) and, since ¢ = 1 (mod 4),
—-1elj.

The previous argument is then summarized in the following result, which generalizes
Theorem 3.3 and concludes the proof of Theorem A.

Theorem 3.5. Let q # p be prime numbers with p odd. Then (%) =1 iff p=c (mod 4q)
for some ¢ € Lyq.

Moreover, L4y is the unique subgroup of Usq with order ¢ — 1 (half of the order of Uy,)
that contains —1.

Proof. According to the previous discussion, it remains to show that, whenever ¢ is an
odd prime, Ly, is the unique subgroup of Uy, as in the statement. So let G be a subgroup
of Uy, of order ¢ — 1 with —1 € G. This indicates that (—1) := {1, —1} is a subgroup of
G, so when taking quotients

Usg/G = (Usg/(=1))/(G/(=1)).
Note that Us,/(—1) = Uy and G/(—1) is a subgroup of Uyy/(—1) of order q;—l. So it is

enough to show that Uy, contains only one subgroup of order q;—l.

By the Chinese remainder theorem, Uy, is isomorphic to Uz ©F;, which is isomorphic to

]qu itself. Since JF; is a cyclic group, it only contains one subgroup of order %1, which
concludes the proof. v

Now we turn to the more general case r € ZT. If r is a square then trivially (g) =1 for
any odd prime p relatively prime with r; if r = [[]_, ¢i" is the prime factorization of r
and r is not a square, and p is an odd prime relatively prime with 7, then by (1.7):

(5)-I1(%) -0 (%) - ()

€S
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Some notes about power residues modulo prime 13

where S := {i : ¢; is odd}.

Therefore, the general case reduces to when r is square free, that is, it has its prime
factorization of the form ¢ - - - ¢,, (when all prime powers are 1). Since

m
(5)-11(3)
p) i\p
we obtain that (%) = 1 iff the number of elements of the set {z : (%) = —1} is even.

We can express this in terms of the groups L4, thanks to Theorem 3.5.

Theorem 3.6. Letr € Z™T.
(a) If r is a square then (%) =1 for any odd prime p with ged(p,r) = 1.

(b) Assume that r is not a square and r = [[]_, ¢;* is its prime factorization. If S :=

{i: e; is odd} then, for any odd prime p with ged(p,r) =1, (Iﬂ]) =1 iff the number

of elements of the set
{ieS:p=b (mod gq) for some b € Usg, \ Lug, }

is even.
We develop the case r = ¢1 -+ ¢, (prime factorization) a bit more. Consider the ring
homomorphism F) : Z — @~ | Za,, that sends z to the tuple (z1,...,z,,) where z = z;

(mod 4g¢;) for any i. Although the kernel of this map is (4r)Z, the image is not everything:
as a consequence of the Chinese remainder theorem (for non-coprime moduli),*

Fl7) = {(xl, cey T) € @24% cz; =x; (mod 4) for all i,j}.
i=1

Therefore, the map F,. : Zy, — F![Z] defined by F,.(a) = F/(a), is a ring isomorphism.

If we restrict this map to Uy,., we get a group isomorphism onto

U(’47T) = Fl[Z]n @U&h = {(ml, cey X)) € @Uzlqi cx; =x; (mod 4) for all i,j}.
i=1 i=1

According to (b), define

() = {(21, ..., 2m) € U(y,) : the number of elements of the set
{i: z; € Uyy, \Lyg,} is even}.
And let Ly = {z € Uy : Fr(z) € Li,,)}. Therefore, for any odd prime p with

ged(p,r) =1, (%) = 1iff p=c¢ (mod 4r) for some c € Ly,

4This holds even when some ¢; is 2. Recall that the Chinese remainder theorem (for non-coprime
moduli) states that a system of congruences x = a; (mod n;) (1 < i < m) has a solution iff a; = a;
(mod gcd(ng,ny)) for all 4,7, and the solution (if it exists) is unique modulo lem(n1,...,nm) (this is a
generalization of [5, §2.4, Thm. 2.9] that can be easily proved by induction).
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14 YUkl Kiriu & DIEGO A. MEJIA

It is easy to check that L’( 4r) is a subgroup of U(’ L) of half order, so Ly, is a subgroup
of Uy, of half order. Moreover, —1 € Ly, because {i : —1 € Uyy, \ Lyg, } is empty by
Theorem 3.5 (so it has zero elements). To summarize:

Theorem 3.7. Let r € Z* with prime factorization v = qy---qm. Then there is a
subgroup Ly, of Uy, of half order, containing —1, such that for any odd prime p with
T

ged(p,r) =1, (;) =14ff p=c (mod 4r) for some ¢ € Ly,

However, it may be that L4, is not the only subgroup of Uy, of half order containing
—1. For example, consider r = 15: Lgg = {£1,+7,£11, £17}, but {£1,£11,4+19, £29}
is another subgroup of Ug of half order containing —1.

To finish this section, we consider negative integers. If r € Z™ and p is an odd prime

with ged(r, p) = 1 then
—r -1 T
) -GG

Since (%) =1iff p=1 (mod 4), (%) can be easily calculated by Theorem 3.6.

4. Preliminaries about modules and fields

Throughout this section, we fix an arbitrary integral domain R, » € R and a natural
number n. We first discuss the ring quotient R := R[z]/(z™ — r). It is very common
to look at this ring quotient when R is a field and z™ — r is irreducible in R[], in which
case R] is a field. But in this work we also want to look at the situation when z™ — r is
reducible in R[z], in which case R], is not an integral domain. In any case:

Lemma 4.1. The ring R, is a free R-module with basis {1,u,...,u" "} where u := x
(mod (z™ — 1)), even more R} is an R-algebra.

Proof. Recall that R[x] satisfies the division algorithm with monic polynomials: for any
f(x),g(x) € R[], if g(x) is of the form 2™ + a,,, 1™ 1+ ...+ ag (m = 0 is allowed, in
which case g(z) = 1) then there are unique ¢(x),t(z) € R[z] such that f(x) = q(z)g(x)+
t(x) and t(x) has degree smaller than g(z).

Now, if 0 # f(z) € R[z] has degree smaller than n then, by applying the previous division
algorithm to g(z) = 2™ — r, we obtain that f(z) = q(z)g(z) + t(z) for unique g(x) and
t(z), the latter with degree smaller than n. Hence ¢(z) = 0: if g(z) # 0 has degree
m > 0, then ¢(z)g(x), and thus f(z), have degree n+m, which contradicts that f(x) has
degree smaller than n. Therefore ¢(z) = f(x) # 0, meaning that f(x) is not a multiple
of " — r (otherwise, t(x) = 0 by the division algorithm with monic polynomials).

Let R’ be the R-submodule of R[z] generated by {1,z,...,2" '}, which is a free R-
module. The previous paragraph shows that the surjective R-module homomorphism
R’ — R" that sends each z° to u’ has kernel equal to the zero ring, so it is an R-module
isomorphism. This shows that R” is a free R-module with basis {1,u,...,u""1}.

It is clear that R, is an R-algebra. v
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Some notes about power residues modulo prime 15

If 2™ — r is reducible in R[z] then R! is not an integral domain, but it is an integral
domain when R is a unique factorization domain and x™ — r is irreducible in R[z]. In
general, R! can be expressed as a ring of matrices M/ (R) such that the determinant
works as the norm of the elements of the ring.

Definition 4.2. (1) For Z = (z0,...,%Zn—1) € R™ define

) TTp_1 TTp_2 ... Ty rT
I Zo r’n—1 ... TX3 rTo
T(7) «—
M (z) :=
Tp—2 Tp-3 Tp—g ... To TIp-1
Tn—1 Lpn—2 Lpn—3 ER Z1 Zo

and denote its determinant by D] (Z).

(2) If z € R] we denote M) (z) := M!(z) and Dl (z) := DI (z) where T =
(xgy...,Zn—1) € R™ is the unique tuple such that z = 2?2—01 xul.

(3) Define M7 (R) := {M](z) : & € R™}. When R is understood from the context we
just write M.

These matrices actually describe the shift endomorphisms in R :

Lemma 4.3. If z € R! then the matriz M) (z) characterizes the endomorphism R}, — R},
given by w +— zw. Concretely, M (z) is the unique matriz with the following property:
if w= """l aul for some T € R™, then zw = Y1 yiu' where § = M (2)Z.

As a consequence M is a subring of the ring of n x n matrices with entries in R, even
more, M} is commutative and so it is an R-algebra. In fact, it characterizes R},.

Lemma 4.4. The function M, : R, — M is an R-algebra isomorphism, and the map
D! : R — R satisfies D% (zz') = DI (2)D.(2') for any z,2' € RL,.

The function D;, has the role of a norm for R},. In fact, when F'is a field and =™ —r is
irreducible in Fz], F is a field and D!, is its norm as an F-extension.

We list the exact form of some few DI (zZ) with z € R™:

T 2 2,..
D2 (ZZ?) =Ty — X1 T
- 3 3 3.2
Di(Z) =x¢° + x1°r + 22°1° — 3xpw1227;

2

Dy (z) =x0* — 21 + dwom 2aar — 2m02 w2 — dxglaimsr 4+ 2o r? — Ay aoaari+

211225212 + dzoxoxs®r? — z3trd.

We can also talk about conjugates in R,. In field extensions like Q(i) and Q(v/2), the
conjugate z of some element z satisfies that zZ is the norm of z. In the general case
we can look at the matrix characterization: for any matrix A of dimensions n x n (with
entries in R), A -adj(A) = |A|I, where I, is the identity matrix of dimensions n X n,

adj(A) is the adjugate of A and |A| is the determinant of A. Since the determinant acts as
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16 YUkl Kiriu & DIEGO A. MEJIA

a norm, then adj(A) works as the (analog of the) conjugate of A. Recall that the matrix
A is invertible if there is some unique matrix A~! of dimensions n x n, with entries in R,
such that AA=! = A=t A = I,,. Recall that A is invertible iff |A| is a unit in R, in which
case A=t = |A| tadj(A). In M” (R) we obtain:

Lemma 4.5. If A € M} (R) then adj(A) € MI (R). In particular, if A € M (R) is
invertible (as a matriz) then A=1 € M’ (R).

Proof. An analog of the Caley-Hamilton Theorem indicates that
(_l)nilad.](A) = Anil + Cn—lAn72 +- ey

where ¢,_1,...,c0 € Rand A" + ¢,,_1A\" "1 4 --- + ¢ is the characteristic polynomial of
A. If A€ M, then (—1)""tadj(A) € M, by the expression above, so adj(A4) € M.

In particular, when A is invertible, A=1 = |A|~tadj(A) € M.

We also present an elementary proof in the case when A € M/ (R) is invertible as a
matrix with entries in F', where F is the field of fractions of R. Choose z € R such that
A = M (z). Since A is invertible, by Lemma 4.3 the map w + zw is an automorphism on
F’ . so there is some 2z’ € F such that zz' = 1, hence w — z’w is the inverse of the previous
map. Therefore A~! = M (2') € M7 (F), which implies that adj(A4) = |A|A~1 € M, (F).
But adj(A) is a matrix with entries in R, so adj(A) € M7, (R). v

Now that we know a bit more about the structure of R;,, we now look at sufficient and
necessary conditions for the polynomial ™ — r to be irreducible.

Lemma 4.6. If 2" — r is irreducible in R[x] then: whenever q | n is prime, 27 —r =0
does not have a solution in R.

Proof. Assume that ¢ | n is prime and 9 — r = 0 has a solution v in R, that is, v? = r
in R. Then, in R[z],

n n

" —r =297 — ol = (z7 —0) (270D 4 407,

so ™ — r is reducible. v
We will prove the converse in some cases of interest by using the following result. From
now on, fix a field F and r € F.
Theorem 4.7 (See [4, Ch. VI §9]). The polynomial x™ — r is irreducible in Flx] iff the
following two conditions hold.

(1) If q | n is prime then the equation % —r =0 does not have a solution in F.

(11) If 4 | n then the equation 4z* +r = 0 does not have a solution in F.
Proof. The cited reference states and proves that (i) and (ii) implies that " — r is
irreducible in F[z]. The converse implication is true for any ring R and it is easy to
prove. Assume that r € R. Lemma 4.6 shows that 2™ — r irreducible in R[z] implies (i).

To show that (ii) is also implied we prove that, whenever 4 | n and 4u* + r = 0 for some
u € R, ™ — r is reducible in R[z]. Since n = 4k for some k > 1, we get

" —r = (") dut = ((2°)* = 2uz® + 2u®) (@) + 2uz® + 2u?). v
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Some notes about power residues modulo prime 17

Corollary 4.8. Let q be a prime and let F be a field. Then x? —r = 0 does not have a
solution in F iff x7 — r is irreducible in F[z].

Condition (ii) can be suppressed when we look at fields of prime characteristic.

Theorem 4.9. Let p be a prime and assume that 4 tn ord | p—1orp=2. If F has
characteristic p then ™ —r is irreducible in F[z] iff, for any prime q | n, 27 —r = 0 does
not have a solution in F.

Proof. We showed one direction in Lemma 4.6. To see the converse, assume that, for
any prime ¢ | n, 7 — r = 0 does not have a solution in F', which means that (i) of
Theorem 4.7 is valid. By using the same theorem, it is enough to show that (ii) holds,
that is, the equation 4z + 7 = 0 does not have a solution in F when 4 | n.

Assume that 4 | n, so either 4 | p—1 or p = 2 by hypothesis. In the case 4 | p— 1 assume
towards a contradiction that 42?4+ 7 = 0 has a solution zg € F. So —r = 4z} = (222)?.
Let yo := 223, so y2 = —r.

On the other hand, by properties of the Legendre symbol,

P

<pl> — (=1)"7 =1 (because 4 | p— 1),

which means that —1 = 22 (mod p) for some zg € F,. Hence, r = (—r)(—1) = (y020)?,
that is, the equation 22 — r = 0 has a solution in F', but this is not true by hypothesis:
since 2 is prime and 2 | n, 2 — r = 0 does not have a solution in F.

In the case p = 2 we have 4z* + r = r. If 42* + r = 0 has a solution in F then r = 0,
but 4 | n so the hypothesis says that the equation 22 = 0 does not have a solution in F,
which is absurd. v

Corollary 4.10. Let p be a prime and assume that n | p — 1. If F has characteristic p
then ™ — r is irreducible in F[z] iff, for any prime q | n, 22 —r = 0 does not have a
solution in F.

Proof. Immediate by Theorem 4.9 because 4 | n implies 4 | p — 1 when p is odd. ]

In some cases, we can also characterize irreducibility of 2™ — r in Q[z].
Theorem 4.11. Let n be a natural number. If r € Q and r > 0 then x™ — r is irreducible

in Qlx] iff x2 —r =0 does not have a solution in Q for any prime q | n.

Proof. This is a direct consequence of Theorem 4.7 since condition (ii) there is always
satisfied. ]

The previous result actually applies to any ordered field.

To finish this section, we show that irreducible in F,[x] is stronger than irreducible in
Q[z] when r € Z.

Corollary 4.12. Let p be a prime, r € Z and n € Z¥. If r = 1o (mod p) and z" — rq is
irreducible in Fp[x] then x™ — r is irreducible in Q[z].
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18 YUkl Kiriu & DIEGO A. MEJIA

Proof. Assume that =™ — r¢ is irreducible in Fp[z]. We first prove that 7 — r = 0 does
not have a solution in Q for any prime ¢ | n. Using Lemma 4.6 with R = F,,, we know
that 7 — rg = 0 does not have a solution in F, for any prime ¢ | n, which implies that
the equation x9 — r = 0 does not have a solution in Z, so neither in Q: if a,b € Z are
relative prime, b > 0, and (%)q —r =0, then a? = rb?, which implies that b=1 (if b > 1
then 7 = 0, so @ = 0 and, since ged(a,b) = 1, b = 1, contradiction), thus z¢ — r has a
solution in Z.

In the case 7 > 0 the result follows by Theorem 4.11; in the case n {4, the result follows
by Theorem 4.7; and when r = 0, we must have n = 1 (because we assumed z" — rq
irreducible in Fp[z]) and then 2™ — r = z is irreducible in Q.

So it remains to consider the case when r < 0 and n | 4. Here it remains to show that
(ii) of Theorem 4.7 holds for F = Q. Towards a contradiction, assume that 4a* +r =0
for some a € Q. Since r € Z and a* = —» we must have that a € Z. Therefore, modulo
p we get that 42* + rg = 0 has a solution in F,, but this contradicts (ii) of Theorem 4.7
for ™ — 1o in Fplz]. 4

5. Power residues

In this section we show the main results concerning power residues. We start with
Theorem B.

Theorem 5.1. Let p be a prime, n € Zt, r € Z and let g € F,, such thatr = ry (mod p).

(a) The polynomial ™ — o is irreducible in Fpx] iff the equation Dy, (xo,...,Zp—1) =0
(mod p) does not have a non-trivial solution in the integers.

(b) If x™—r is reducible in Q[z] then DI (Z) = 0 has a non-trivial solution in the integers.

c) If n > 2 and the equation x™ = r (mod p) has a solution, then D) (xg,...,Tn_1) =0
n
(mod p) has a non-trivial solution in the integers. Even more, this solution satisfies
—pvlT <xi<p% for all0 <i<n.

Proof. Set F :=TF,. We first show (a). Assume that 2™ — ry is irreducible in F'[z]. Then
F}o = F(u) is a field extension of F' with u := {/rg, which is isomorphic to M} (F)
by Lemma 4.4. Let Z = (zo,...,Zn-1) # (0,...,0) with z; € F, (0 <4 < n), and set
A == M!(z). By Lemma 4.5 A~! € M'°, so DI°(Z) # 0 in F,, that is, D’ (Z) # 0
(mod p).

For the converse, assume that ™ — r¢ is reducible in F[z]. Then F)° is not an integral
domain, so there are non-zero z,w € F;° such that zw = 0. Then, by Lemma 4.4,
D! (z)D] (w) =0 (mod p), so either D] (z) =0 (mod p) or D (w) =0 (mod p).

To see (b): if ™ — r is reducible in Q[z] then there are non-zero z,w € Q! such that
zw = 0. Even more, we can find non-zero vectors Z,§ € Z™ such that z’w’ = 0 where
Z = Z?;OI riu’ and w' = Z?;Ol y;u® (here u determines the basis of Q7 as a Q-vector
space). Therefore D! (Z)D:(5) =0, so D7 (Z) =0 or D, (y) = 0.

Now we show (c). Assume that 2™ = r (mod p) has a solution ¢, that is, t" = r (mod p).
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Consider the set )
S={x€Z:0<z<pn}

and let
S™i={(zg,...,Tp-1): z; €5 (0<i<n)}

Note that S™ has more than p elements (because n > 2). Now define the function
f:8"—=TF, by

f(@o,- - an_1) =xo+ @1t 4 -+ 2p_1t"" (mod p).

Since F,, has p many elements, S™ has more elements than F,, so by the pigeonhole princi-
ple there are two (mg,...,Mu—1) # (Mg, ...,m,_;) in S™ such that f(mg,...,muy_1) =
fmg,...,ml_y). For 0 <i < nleta; :=m},—my, so

flag,...,an-1) = f(my,...,m,_y) — f(mo,...,mp—1) =0 (mod p),
a:= (ag,...,an-1) # (0,...,0) and —pw < a; < pv, We show that @ is as desired.

We proceed in a similar way as in the proof of (a) first assuming that ™ —r is irreducible
in Q[z]. Then K := Q! = Q(v) is a field extension of Q with v = {/r, and it is isomorphic
to M’ (Q) by Lemma 4.4. Set A := M/ (a). Since this matrix is not zero, it is invertible,
so A=l € M" (Q), and even more B := adj(A4) € M"(Z) by Lemma 4.5. So choose § € Z"
such that B = M (7).

Since K is Q[z]/(¢(x)) with ¢(x) := 2™ — r, we have that A = M (g(z) (mod (¢q(x))))
and B = M"(h(z) (mod (¢(z)))) where
g(x) == ao+arz+ -+ ap_ 12",
h(x) = yo +y12 + -+ y_12" "
Since AB = |A|l,, we get that =™ — r divides g(z)h(z) — |A| in Q[z], and actually
in Z[x] because both polynomials have coefficients in Z and 2™ — r is monic. Then
g(@)h(z) = j(x)q(z) + |A] for some j(z) € Z[z].

To finish the proof, note that g(t)h(t) —|A| = (t" —r)j(¢t) =0 (mod p), so g(t)h(t) = |A]
(mod p). On the other hand, we know that ¢g(t) = f(ag,...,an—1) = 0 (mod p) so
|A] =0 (mod p), that is, D! (ag,...,an—1) =0 (mod p).

For the general proof of (c) we work in F, which is isomorphic to M’ (F). Again set
A := M (@) which is in M} (F), so B := adj(A) € MJ (F) by Lemma 4.5. Like above,
since AB = |A|l,, we have two polynomials g(x), h(z) € F[z], which g(z) as above, such
that ™ — r divides g(x)h(x) — | 4], so g(x)h(z) = j(z)g(z) + |A| for some j(z) € Flx].
Exactly as in the last part of the previous argument, we conclude that D! (a) = 0
(mod p). v

Thanks to the results in Section 4, the previous result takes a simple form when n is a
prime.

Corollary 5.2. Let p and q be primes. Then the equation 7 = r (mod p) has a solution
iff the equation Dy(zo,...,Tn—1) =0 (mod p) has a non-trivial solution.
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Proof. The direction from left to right follows from Theorem 5.1(c). For the converse,
if the equation 2?7 = r (mod p) does not have a solution then the polynomial % — r
is irreducible in Fp[z] by Corollary 4.8 where ro € F,, is the residue of r modulo p, so
Dy (xg,...,2n—1) = 0 (mod p) does not have a non-trivial solution by Theorem 5.1(a).

[t

The next result is Theorem C, which is a weakening of (2) = (1) of Problem 1.9. This
actually checks this implication when n is a prime (for any r € Z).

Theorem 5.3. Assume that p is a prime, r € Z, r = ro (mod p) with ro € Fp, and n > 2.
If the polynomial ™ — ¢ is irreducible in Fy[x] then D] (xo,...,Tn—1) = p does not have
a solution in the integers.

In particular, if q is a prime and z? = r (mod p) does not have a solution then
Dy (xg,...,24-1) = p does not have a solution in the integers.

Proof. By Theorem 5.1, if ™ — 7 is irreducible in F,[z] then DJ(zo,...,2n—1) = 0
(mod p) does not have a non-trivial solution. Thus, if D7 (zg,...,z,—1) = p has a
solution ag,...,a,—1 € Z, then every a; must be a multiple of p. But this implies that
D’ (ao,...,an—1) is a multiple of p™, so it cannot be equal to p because n > 2. v

We can use Theorem 5.1 to solve Problem 1.9 for n = 2, i.e., Theorem 1.8. In fact, this
is valid for —1 and —2 in the place of 2, which yield well known results.

Theorem 5.4. Let r € {—2,—1,2}. If p is a prime then the equation x?> = r (mod p)

has a solution iff the equation D%(xg,x1) = p has a solution in the integers.

Proof. One implication follows by Theorem 5.3 because 2 is prime. So we show that,
whenever 22 = r (mod p) has a solution, the equation Dj(xo,z1) = p has a solution in
the integers, for r € {—2, -1, 2}.

By Corollary 5.2, the equation Dj(xg,z1) =0 (mod p) has a non-trivial solution (a,b).
Hence p divides D5(a,b) = a? — b?*r. According to Theorem 5.1(c), we can find a and b
between —p% and p%.

Case r = 2. We claim that —2p < a® — 2b?> < p. Two cases: if a® > 2b? then 0
a? — 2b? < a? < p; if a? < 2b% then —2p < —2b% < a? — 2b% < 0, so the claim follows.

Now, since —2p < D3(a,b) = a® —2b*> < p and p | D3(a,b), we must have that D3(a,b)
—p (it can not be zero because p must not divide both a and b).

Note that D3(1,1) =12 -2-12 = —1, so

IN

e 2b
b a

a+2b 2(a+Db)
a+b a+2b

2
11

Hence xg := a + 2b and 21 = a + b form an integer solution of D3(zg,z1) = p.
Case r = —1. It is clear that 0 < a? + b? < 2p, so a? + b? = p.

Case r = —2. Note that 0 < a? + 2b% < 3p, so either a?® + 2b> = p or a® + 2b% = 2p.
In the first case we are done; in the second case a must be even, so a = 2aqg for some
ag € 7, and 2p = a® + 2b* = 4a? 4 2b%, hence D5 2(b, ao) = p. %]
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6. Discussions

Problem 1.9 cannot be generalized by simply replacing 2 by any r € Z. For n = 2, it is
known it is fine for r € {—2,—1,2} as shown in Theorem 5.4, but other values of r are
problematic. For example, 3y? + p is never a square when p = 3 (mod 4) (because it is 3
or 2 modulo 4), so Dj(z,y) = p does not have a solution for those p. However, there are
primes p = 3 (mod 4) such that 22 = 3 (mod p) has a solution, for example, p = 11. In
this case, it could be conjectured that the equation D3(x,y) = p has a solution iff 2% = 3
(mod p) has a solution and p =1 (mod 4). This motivates:

Problem 6.1. Forn > 2 (particularly n = 2) and r € Z (or just free of n-powers), what
are suitable necessary and sufficient conditions for a prime p to get that DI (Z) = p has
a solution in the integers?

As discussed in the introduction, the solution of Problem 1.9 should be related to the

n

characterization of primes (or irreducible) elements in Z[3/2], which looks very complex
for general values of n. In the post [10] it is hinted that Problem 1.9 is true for n = 3 by
looking at Z[+/2] with tools that we did not deal with in this paper.

Some results of Section 5 can be generalized when x™ — r is replaced by any monic
polynomial in Z[z]. If R is an integral domain and ¢(z) € R[x] is a monic polynomial of
degree n > 0, the theory in the first part of Section 4 can be generalized in the context

of Ry(qy := R[x]/(q(x)):

(I) Ry is a free R-module (and an R-algebra) with basis {1,u,...,u" "'} where
u:=z (mod (¢(x)))

(IT) For any z € Ry(,) there is a unique matrix M(,)(2) that characterizes the endo-
morphism Ry, — Ryz), w = 2w as in Lemma 4.3.

(IIT) Set My(a) = Mq(w)(R) = {Mq(w)(z) Tz € Rq(gj)}. The function M) Ryz) =
My (z) is an R-algebra isomorphism.

(IV) For any z € Ry(y) set Dy(y)(2) := |My)(2)|. Then, for any 2,2’ € Ry,
Dq(w)(zzl) = Dq(w)(z)Dq(m)('zl)

When Z = (zg,...,2n,) € R, denote Dy, (Z) := Dy, (2) where z = Z::Ol zul €
Rya)-

(V) IfAe Mq(m)(R) then ad] (A) € Mq(r)(R)'

Using this theory, we obtain the following results (with similar proofs as in Section 5).

Theorem 6.2. Let p be a prime, q(x) € Z[x] a monic polynomial of degree n > 0, and let
qo(z) € Fplx] be the polynomial resulting from q(x) by changing its coefficients by their
residues modulo p. Then:

(1) qo(x) is irreducible in Fy,[x] iff the equation Dy (xo,...,2n—1) = 0 (mod p) does
not have a non-trivial solution in the integers.
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(2) If q(x) is reducible in Q[x] then the equation Dy, (Z) = 0 has a non-trivial solution
in the integers.

(3) If n > 2 and the equation go(x) = 0 (mod p) has a solution then the equation
Dy (2o, .., xn—1) = 0 (mod p) has a non-trivial solution in the integers with

1 1 .
—pn < x; < pn for anyi.

(4) If n > 2 and qo(x) is irreducible in Fplz] then the equation Dy, (Z) = p does not
have a solution in the integers.

As a digression, the equation D3 (zg,x1,72) = p motivates the following.

Problem 6.3. Assume that a,b,c € {1,2,3} and that p is a prime. Does the equation
2% 4+ 2y® + 42° = p have a solution in the integers?

Primes p where a solution was not found
(a,b,c¢) || with FindInstance among the first

1000 primes

(2,3,3) || 2069, 5303, 6101

(3,2,3) || 2207, 2383

(3,3,2) || 2039, 2083, 3371, 4027, 6143, 6997, 7699
(3,3,3) || 4079, 4091, 6449, 7507

9 )

DN Qo W

Table 1. Instances among the first 1000 primes where a solution of 2% + 2y® 4+ 42° = p was not found
in Wolfram Mathematica with the command FindInstance, in the case when at least two of a, b, c are
equal to 3.

First four primes p where a
(a,b,c) || solution was not found with
FindInstance

(2,2,3) || 22691, 25903, 27191, 27241
(2,3,2) || 37571, 39191, 41263, 44357
(3,2,2) || 24907, 51043, 51637, 53717

Table 2. First four prime p instances where a solution of 2® + 2y® + 42¢ = p was not found in Wolfram
Mathematica with the command FindInstance, in the case when only one of a, b, ¢ is equal to 3.

For any p € Z (not necessarily prime): it is easy to find a solution when either a, b or
¢ is equal to 1; and the case a = b = ¢ = 2 has a positive answer, as mentioned in [,
§13.3, Prob. 8(a)].

So this leaves the case 2 < min{a,b, ¢} < max{a,b,c} = 3. By running computations in
Wolfram Mathematica with the command FindInstance (see below), a solution was not
found for some primes in all the subcases (but this is not a proof that the solution does
not exist).

FindInstance [x"a+2y b+4z"c==p,{x,y,2z}, Integers]

[Revista Integracion



Some notes about power residues modulo prime 23

See details in Tables 1 and 2: in Table 1 we look at the case when at least two of a, b, ¢
are equal to 3, where solutions were not found for some primes below 10000; in Table 2
we look at the case when only one of a, b, ¢ is equal to 3, where solutions were not found
for some primes beyond 20000.
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