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Abstract. This paper is a follow-up to a previous work where we considered
a multi-patch model, each patch following a logistic law, the patches being
coupled by symmetric migration terms. In this paper we drop the symmetry
hypothesis. First, in the case of perfect mixing, i.e when the migration rate
tends to infinity, the total population follows a logistic law with a carrying
capacity which in general is different from the sum of the n carrying capac-
ities, and depends on the migration terms. Second, we determine, in some
particular cases, the conditions under which fragmentation and asymmetrical
migration can lead to a total equilibrium population greater or smaller than
the sum of the carrying capacities. Finally, for the three-patch model, we
show numerically the existence of at least three critical values of the migra-
tion rate for which the total equilibrium population equals the sum of the
carrying capacities.
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26 B. ELBETCcH, T. BENZEKRI, D. MASSART & T. SARI

La ecuacion logistica de maltiples sitios con migracion
asimétrica

Resumen. Este articulo es un seguimiento de un trabajo anterior, donde con-
sideramos un modelo de miltiples parches, cada parche siguiendo una ley
logistica, los sitios estando relacionados por términos de migraciéon simétrica.
En este articulo eliminamos la hipétesis de simetria. Primero, en el caso de
una mezcla perfecta, es decir, cuando la tasa de migracion tiende al infinito,
la poblacién total sigue una ley logistica con una capacidad de carga que en
general es diferente de la suma de las capacidades de carga de los sitios, y
depende de los términos de migraciéon. En segundo lugar, determinamos, en
algunos casos particulares, las condiciones bajo las cuales la fragmentacion
vy la migracién asimétrica pueden llevar a una poblacién total de equilibrio
mayor o menor que la suma de las capacidades de carga. Finalmente, para
el modelo de tres sitios, mostramos numéricamente la existencia de al menos
tres valores criticos de la tasa de migracion para los cuales la poblacion total
de equilibrio es igual a la suma de las capacidades de carga.

Palabras clave: Dinamica de poblacion, migracion asimétrica, ecuacion logis-
tica, sistemas lentos y rapidos, mezcla perfecta.

1. Introduction

The study of the dynamics of a fragmented population is fundamental in theoretical
ecology, with potentially very important applied aspects: what is the effect of migration
on the general population dynamics? What are the consequences of fragmentation on
the persistence or extinction of the population? When is a single large refuge better or
worse than several small ones (this is known as the SLOSS debate; see Hanski [19])?

The theoretical paradigm that has been used to treat these questions is that of a single
population fragmented into patches coupled by migration, and the sub-population in
each patch follows a local logistic law. This system is modeled by a non-linear system of
differential equations of the following form:

Z—f = f(z)+ fl'z, (1)

where = (x1,...,2,)7, n is the number of patches in the system, z; represents the
population density in the i-th patch, f(z) = (fi(z1),..., fo(2,))T, and

fi(xi):mwi(l—xi/[(i), iZl,...’l’L. (2)

The parameters r; and K; are respectively the intrinsic growth rate and the carrying
capacity of patch 7.

The term STz on the right hand side of the system (1) describes the effect of the mi-
gration between the patches, where 5 is the migration rate and I" = (vy;;) is the matrix
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The multi-patch logistic equation with asymmetric migration 27

representing the migrations between the patches. For i # j, v;; > 0 denotes the incoming
flux from patch j to patch ¢. If v;; = 0, there is no migration. The diagonal entries of I'
satisfy the following equation

n
Yii = — Z Yiis izl?"'7n7 (3)
=15

which means that what comes out of a patch is distributed between the other n — 1
patches.

In the absence of migration, (8 = 0), the system (1) admits (K7, ..., K,) as a non-trivial
equilibrium point. This equilibrium is globally asymptotically stable (GAS) and the total
population at equilibrium is equal to the sum of the carrying capacities. The problem
is whether or not the equilibrium continues to be positive and GAS, for any 5 > 0, and
whether or not the total population at equilibrium can be greater than the sum of the
carrying capacities. The case n = 2 and I'" symmetric

-1 1
=[]
where 713 = 721 is normalized to 1 has been considered by Freedman and Waltman [14]
and Holt [18]. They analyzed the model in the case of perfect mixing (8 — +o00) and
showed that the total equilibrium population can be greater than the sum of the carrying
capacities Ky + K5, so that patchiness has a beneficial effect on the total equilibrium
population. More recently, Arditi et al. [1] analyzed the behaviour of the system for
all values of 5. They showed that only three situations occur: either for any g > 0,
patchiness has a beneficial effect, or this effect is always detrimental, or the effect is
beneficial for lower values of the migration coefficient 8 and detrimental for higher values.

Arditi et al. [2] extended these results to the case of two patches coupled by asymmetric
migration, corresponding to the matrix

= { —721 Y12 ] .
Y21 —712

See also Poggiale et al. [25] who considered two patches coupled by asymmetric migration,
in the particular case of perfect mixing. DeAngelis et al. [8, 11] considered the case of
n > 2 patches in a circle, with symmetric migration between any patch and its two
neighbours :

;i =T1;T; (1 — Ii) + 5(551'—1 —2x; + Ii+1)a t=1,...,n, (4)

where we denote zg = x,, and z,4+1 = x1, so that the same relationships hold between z;,
x;—1 and x;41 for all values of . This model corresponds to the matrix I' whose non-zero
off-diagonal elements are given by

Yin=71 =1 and -1 =7-1,=1, for 2<i<n.

The system (4) is a one-dimensional discrete-patch version of the standard reaction-
diffusion model. In [8, 11] the perfect mixing case is described.
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28 B. ELBETCcH, T. BENZEKRI, D. MASSART & T. SARI

In [12] we considered the general symmetric migration. We studied the system:

o = r,z; <1_[(i>+6 Z vij(xj — x;), i=1,...,n, (5)

j=1j#i

where (7,5 is the rate of migration between patches ¢ and j. This system can be written
in the form of System (1) with I" = (v;;), the symmetric matrix whose diagonal entries
are defined by (3). We studied the total population at equilibrium, as a function of
the migration rate 5. We gave conditions on the system parameters that ensure that
migration is beneficial or detrimental, and extended several results of [1, 8, 11].

The aim of this work is to consider the case of n patches connected by asymmetric
migration. Thus, we extend [2] by considering the case n > 2, and we extend [12] by
considering the case where I' is non-symmetric.

An important extension of (1) is the so called source-sink model, where the patches are of
two types: the source patches, 1 < ¢ < m, with logistic dynamics, and the sink patches,
m+ 1 <1i < n, with exponential decay

{ filx) = riwi(1 — 23/ K;), i=1,...,m, (6)

fi(ws) = —rizy, i=m+1,...,n.

The main problem is the number of source patches required for population persistence.
For a recent study and bibliographical references the reader can consult Arino et al. [3]
and Wu et al. [30].

There is another important extension of (1,2), where the dynamics on patch i is of the
form

fl(l'1) :Tll'z(lfl'z/Kz)f’yZSU“ Z:].,,TL, (7)

with ; > 0. This model is the limit system (when ¢ — 400) of a susceptible-infected-
susceptible (SIS) model in n patches connected by human migration. For details and
further reading, see Section 5. Note that, when r; < ; for some patches, system (1,7) is
a source-sink model. Countrary to (6), the mortality in sink patch is density-dependent.
For more details and bibliographical references the reader is referred to [15].

Another example of source-sink model is the system considered by Nagahara et al. [24],
called the “island chain” model, which is of the form:

dx i
dt

=x; (mi—xi)—i—ﬁ(a:i_l —2$i—|—.’1}i+1), 1=1,...,n, (8)

where we denote g = 1 and x,11 = x,,. This model is of the form (1), T being the
matrix which verifies (3), and whose non-zero off-diagonal elements are given by

Viji-1 = Yi—1s =1, for 2<i<n.

In the model (8) the ratios a; = 7;/K; in (2) are equal and are normalized to 1. The
constant m; represents both the intrinsic growth rate of the species in patch i and the
carrying capacity of the patch. If m; > 0, then patch ¢ is favorable to the species. It is
a source. The case m; = 0 is permitted and corresponds to a sink. The main purpose

[Revista Integracion



The multi-patch logistic equation with asymmetric migration 29

is to find the resource allocation (myq,...,m,) that maximizes the total population at
equilibrium, under the constraint that ) . m; = m > 0 is fixed. For more details and
information on the maximization of the total population with logistic growth in a patchy
environment, the reader is referred to [24] and the references therein.

For general information of the effects of patchiness and migration in both continuous and
discrete cases, and the results beyond the logistic model, the reader is referred to the
work of Levin [20, 21], DeAngelis et al. [8, 9, 10, 11|, Freedman et al. [13], Zaker et al.
[33].

It is worth noting that System (1) appears in metapopulation dynamics, involving explicit
movements of the individuals between distinct locations. For the graph theoretic and
dynamical system context in which metapopulation models are formulated, the reader is
referred to Arino [4, Section 2].

The paper is organized as follows. In Section 2, the mathematical model of n patches,
and some preliminaries results, are introduced. In Section 3, the behavior of the model
is studied when the migration rate tends to infinity. In Section 4, we compare the
total equilibrium population with the sum of the carrying capacities in some particular
cases. In Section 5, the SIS patch model is considered, and the links with the logistic
patch model are investigated. In Section 6 the three-patch model is considered, and by
numerical simulations we show the existence of a new behavior for the dynamics of the
total equilibrium population as a function of the migration rate. In Appendix A, we
recall some results for the two-patch model with asymmetrical migration. In Appendix
B, we prove some useful auxiliary results.

2. The mathematical model and preliminaries results

We consider the model of multi-patch logistic growth, coupled by asymmetric migration
terms

dx; T; - )

dtz =T (1_I€)+ﬁz (’Yijj_’YJle)7 2217"'377‘7 (9)
J=1,5#i

where 7;; > 0 denotes the incoming flux from patch j to patch ¢, for ¢ # j. The system

(9) can be written in the form (1), where f is given by:

f(@) = (rmai(1 —z1/K1), - rn@n (1 — 20/ K) T, (10)

and I' .= (%‘j)nxu is the matrix whose diagonal entries are given by (3). The matrix

To:=T —diag(vi1, -+ ,Yan),

which is the same as I, except that the diagonal elements are 0, is called the connectivity
matrix. It is the adjacency matrix of the weighted directed graph G, which has exactly
n vertices (the patches), and has an arrow from patch j to patch i, with weight ~;;,
precisely when ~y;; > 0.

As to the non-negativity of the solution, we have the following proposition:

Proposition 2.1. The domain R} = {(x1,...,2,) € R"/2; > 0,0 =1,...,n} is positively
invariant for the system (9).
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30 B. ELBETCcH, T. BENZEKRI, D. MASSART & T. SARI

Proof. The proof is the same as in the symmetrical case [12, Proposition 2.1]. v

When the connectivity matrix T'g is irreducible, System (9) admits a unique positive
equilibrium (z3(8),...,x5(8)), which is GAS, see [4, Theorem 2.2], [3, Theorem 1] or

[12, Theorem 6.1]. In all of this work, we denote by E*(/3) the positive equilibrium and
by X7.(8) the total population at equilibrium:

n

E*(B) = (25(B),-...e5(8),  X7(B) =) ai(B). (11)

i=1

Remark 2.2. The matrix I'y being irreducible means that the weighted directed graph G
is strongly connected, which means that every patch is reachable from every other patch,
either directly or through other patches. The matrix I' is assumed to be irreducible
throughout the rest of the paper.

3.  Perfect mixing

In this section our aim is to study the behavior of E*(5) and X5(3), defined by (11), for
large migration rate, i.e when 8 — oc.

3.1. The fast dispersal limit

The following lemma was proved in [3, Lemma 2|; we include a proof for the ease of the
reader.

Lemma 3.1. Let I" be the migration matriz. Then, 0 is a simple eigenvalue of T' and all
non-zero eigenvalues of I' have negative real part. Moreover, the kernel of the matriz T’
is generated by a positive vector. If the matriz T is symmetric, then ker ' is generated
byu=(1,..,1)7.

Proof. Let s = max;—1, . n(—7:) and let B be the matrix defined by

,,,,,

B=T+sl.

First, we note that since the matrix T' verifies the property (3), then T is a singular
matrix and the vector u = (1,...,1)7 is an eigenvector of I'” associated to the eigenvalue
0. Thus u is an eigenvector of BT, with eigenvalue s.

The matrix BT is non-negative and irreducible, so by the Perron-Frobenius Theorem the
spectral radius
p(B") = max {|A| : \ is an eigenvalue of B” },

is a simple eigenvalue of the matrix BT and it is the only eigenvalue of BT which admits
a positive eigenvector, so s = p(BT) = p(B). Therefore, I' = B—p(B)I and dim(ker ') =
dim(ker I'T) = 1.

All other eigenvalues of B have modulus < p(B), so their real parts are < p(B). Since
each eigenvalue of T is A — p(B), for some eigenvalue A of B, all eigenvalues of I" have
negative real part.
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The multi-patch logistic equation with asymmetric migration 31

Furthermore, according to the Perron-Frobenius theorem, there exists a positive vector
d such that Bé = p(B)d, that is, I'0 = (B — p(B)I)d = 0. In particular, if the matrix T’
is symmetric then we may take § = u, that is, §; = 1, for all . v

In all of this paper, we denote by § = (d1,...,d,)7 a positive vector which generates the
vector space kerT'.

Remark 3.2. The existence, uniqueness (mod. multiplicative factor), and positivity of &
were also proved in Lemma 1 of Cosner et al. [5]. On the other hand, it is shown in Guo et
al. [17, Lemma 2.1] and Gao and Dong [16, Lemma 3.1] that the vector (T'},,...,T%, )T
is a right eigenvector of I' associated with the zero eigenvalue. Here, I'}; is the cofactor
of the i-th diagonal entry of I'. Therefore, we have explicit formulae for the components
of the vector ¢, as functions of the coefficients of I', at our disposal. For two patches we
have § = (v12,721)7, and for three patches we have § = (01,82, d3)7, where

01 = y127m13 + V12723 + V32713,
02 = y21713 + V21723 + V31723, (12)
03 = Y2132 + V31712 + Y31732-

The following result asserts that when S — oo, the equilibrium E*(8) converges to an
element of kerT'.

Theorem 3.3. For the system (9), we have

lim B*(8) = =107

S1ve 60),
Btoo Z;’l:l 512az( 1, ) )

where o; = 1/ K;.

Proof. Denote

D iy Oiti D i Oiti
E*(o0) = (6, &= Oy = .
) = (B s
Dividing Equation 1 at the equilibrium E*(3) by 3, for 8 > 0, yields
1
for all 8 > 0, Bf(E*(B)) +TE*(8) =0.

Thus any limit point, when § — oo, of the set {E*(8) : 8 > 0} lies in the kernel of T
Now, taking the sum of all equations in

n
Z; .
T (1 - Kl) + 8 E (vijzj — vjiwi) =0, i=1---,n,
’ j=1.#

we see that F*(f) lies in the ellipsoid
En71 = R" : = g 1— = = .
{x € O(x) E T ( Ki) O}
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32 B. ELBETCcH, T. BENZEKRI, D. MASSART & T. SARI

The ellipsoid E"~! is compact, so the equilibrium E*(3) has at least one limit point in
E"~1, when 3 goes to infinity. Since the kernel of I has dimension 1, and E"~! is the
boundary of a convex set, E"~! NkerI" consists of at most two points. Since the origin
and E*(c0) both lie in E»~1 Nker ", we get that

E" ' Nker" = {0, E*(c0)} .

Therefore, to prove the convergence of E*(f3) to E*(o0), it suffices to prove that the
origin cannot be a limit point of E*(8). We claim that for any §, there exists ¢ such that
x¥(8) > K, which entails that E*(53) is bounded away from the origin. The coordinates
of the vector I'E* () sum to zero, hence at least one of them, say, the i-th, is non-negative.

Then
\ 7 (B)
- 1- %) <,
i) (1- 520 ) <
and since z7(f) cannot be negative or 0, we have z}(8) > K;. v

As a corollary of the previous theorem, we obtain the following result, which describes
the total equilibrium population for perfect mixing:

Proposition 3.4. We have

Xj(+o0) = lm 3 ai(8) = (Z&) g—;a (13)

foteoi ] i=19;

Denote K = (K1,...,K,)T. If K = X6 with A\ > 0, that is to say K € kerD, then
X%(Jroo) = )\Z?:l (Sz = Z?:l K,’.

Proof. For the proof of (13), it suffices to sum the n components of the point E*(00).
For the case K € ker T, it suffices to replace K; by A\d; in (13). [t

Actually, when K € ker T, we have X7.(3) = >, K; for all 8 > 0, see Proposition 4.5.

In the case n = 2, one has §; = 712 and d = 721, as shown in Remark 3.2. Therefore,
(13) becomes
) Y1271 + Y2172

X7 (400) = (712 + 721 )
7(+00) = (M2 +7 o T2

which is the formula given by Arditi et al. [2, Equation 7] and by Poggiale et al. [25,
page 362].

If the matrix I" is symmetric, one has §; = 1, for all i, as shown in Lemma 3.1. Therefore,
(13) specializes to the formula given in [12, Equation (24)]:

E:‘L:l T
ZzT'L:l i/ Ki

X7 (+o00)=n

[Revista Integracion



The multi-patch logistic equation with asymmetric migration 33

3.2. Two time scale dynamics

In [12] we also obtained the formula (13), in the symmetrical n-patch case (i.e the matrix
T is symmetric), by using singular perturbation theory, see [12, Theorem 4.6|.

We showed that, if (x1(¢,5),...,2,(t,8)) is the solution of (5), with initial condition
(29,...,29), then when § — oo, the total population > x;(¢, ) is approximated by
X(t), the solution of the logistic equation

dX X ST ST T4
— =rX(1-— h ===l ' g 2=l oand o = — 14
i r ( nK) , where r — 2?21 o and a X (14)

with initial condition Xq = Y ?. Therefore, the total population behaves like the
solution of the logistic equation given by (14). In addition, one obtains the following
property: with the exception of a small initial interval, the population densities x;(t, 3)
are approximated by X (t)/n, see [12, Formula (37)|. Therefore, this approximation shows

that, when ¢ and 8 tend to oo, the population density x;(t, 3) tends toward %;l, and

in addition, z;(¢, 3) quickly jumps from its initial condition z{ to the average Xo/n and
then is very close to X (t)/n. Our aim is to generalize this result for the asymmetrical
n-patch model (9) (i.e the matrix I' is non-symmetric). To avoid any confusion with
X (t), which is the total population, we denote Y (¢) the solution of the logistic equation
(15), and we prove that X(t) is asymptotically equivalent, when 8 goes to infinity, to
Y (t). We have the following result

Theorem 3.5. Let (xl(t B),...,xn(t,B)) be the solution of the system (9) with initial
condition (x9,---,29) satzsfymg 29 >0 fori=1---n. Let Y(t) be the solution of the
logistic equation

? n

dX ( X )
— =X\l =, (15)
dt Doimy 0 K
where s g S5
i=19iT4 i=19iT4 T
r= = K = and q; = —, 16
Zi:l 0i Zz 1 512 K; (16)
with initial condition Xo = > 1, x9. Then, when 3 — oo, we have
Zmi(t, B) =Y(t) + o(1), uniformly for t € [0, +00) (17)

and, for any ty > 0, we have
d;
Z?:l 0i

Proof. Let X (t,8) = Y.i_,xi(t,8). We rewrite the system (9) using the variables
(X, 21, ,xn_1), and get:

% = Zﬁ% (1—),

dl‘i .
= (1—)+B Z (vijxj — vjizi), i=1,---,n—1.

Jj=1,j#1

x;i(t, B8) = Y(t)+o(l), i=1,...,n, uniformly for t € [tg,+00). (18)
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34 B. ELBETCcH, T. BENZEKRI, D. MASSART & T. SARI

This system is actually a system in the variables (X, 1, ,z,—1), since, whenever x,,
appears in the right hand side of (19), it should be replaced by

Th=X =) (20)

When 8 — oo, (19) is a slow-fast system, with one slow variable, X, and n — 1 fast
variables, x; for i = 1---n — 1. As suggested by Tikhonov’s Theorem [22, 28, 31|, we
consider the dynamics of the fast variables in the time scale 7 = 5t. We get

de; 1 T; = :
d’]‘l = B’I“ixi (1 - }.{1) —‘v‘j_lzj:;éi(’)/ijl‘j — ’inl‘i), 1= 1, e, N — 1.

where z,, is given by (20). In the limit 8 — oo, we find the fast dynamics

n

dz; ‘
dq-Z - Z (Vij®j — Vjizi), i=1,-,n—1
J=Lj#i

This is an (n — 1)-dimensional linear differential system in the variable Z :=
(z1, -+ ,&p—1), which can be rewritten in matricial form:

Z=LZ+ XV, with L:=1-T, (21)

where L := (V;j)n—1xn—1 is the sub matrix of the matrix I', obtained by dropping the
last row and the last column of I, V is the vector defined by V := (yin)n—1x1 and
U= (V;..;V).

By Lemma B.1, the matrix £ is stable, that is, all of its eigenvalues have negative real
part. Therefore, it is invertible and the equilibrium of the system (21) is GAS. This

equilibrium is given by
( T X) !
Z?:l & Z?:l 0i .

Indeed, we denote by L®) U and V® the i-th row of the matrix L, U and the vector
V respectively. We have:

On ; ; b S T o n—ls.
R S T T § e > L P

Thus, the slow manifold of System (19) is given by

g .
X, 1=1,...,n—1. 22
Zi:l(si ( )

As this manifold is GAS, Tikhonov’s Theorem ensures that after a fast transition toward
the slow manifold, the solutions of (19) are approximated by the solutions of the reduced

Ty =

[Revista Integracion



The multi-patch logistic equation with asymmetric migration 35

model, which is obtained by replacing (22) into the dynamics of the slow variable, that

is:
n

WLt mmart) (0 mmnaw)
ar ricen—0i |l - =0 | =X (1 - =% |
dt ; 2 iz 0 (Xim1 00) K 0K

where r and K are defined in (16). Therefore, the reduced model is (15). Since (15)

admits
i 2= 0 57"1
(o) - (B0) Eoi

as a positive equilibrium point, which is GAS in the positive axis, the approximation given
by Tikhonov’s Theorem holds for all ¢ > 0 for the slow variable and for all ¢ > ¢y > 0 for
the fast variables, where t is as small as we want. Therefore, letting Y (¢ ) be the solution
of the reduced model (15) with initial condition Y (0) = X (0,8) = Y ., 2?, then, when
B — 0o, we have the approximations (17) and (18). 4

In the case of perfect mixing, the approximation (17) shows that the total population
behaves like the solution of the single logistic equation (16) and then, when ¢ and S tend

to oo, the total population Y z;(t, ) tends toward (Y.~ 6;) K = (31, 8;) %(;522 as
stated in Proposition 3.4. The approximation (18) shows that, with the exception of a
thin initial boundary layer, where the population density x;(t, ) quickly jumps from its
initial condition 2? to §;Xo/ ZZL:I d;, each patch of the n-patch model behaves like the

logistic equation

Cf;::ru<1—

D D L

Y here r =
v B Z?:l 5i ’ Zz 1612 Kl

0K

ST
12520‘ ’

Hence, when ¢t and f tend to oo, the population density z;(¢, ) tends toward ¢;
as stated in Theorem 3.3.

Remark 3.6. The single logistic equation (23) gives an approximation of the population
density in each patch in the case of perfect mixing. The intrinsic growth rate r in (23) is
the arithmetic mean of the rq, ..., r,, weighted by d1, ..., J,, and the carrying capacity K
is the harmonic mean of K;/¢;, weighted by d;r;,4 = 1,...,n. We point out the similarity
between our expression for the carrying capacity in the limit 8 — oo, and the expression
obtained in spatial homogenization, see e.g [32, Formula 81] and also [33, Formula 28].

3.3. Comparison of X7}(+00) with . K;.

According to Formula (13), it is clear that the total equilibrium population at 5 = 0 and
at = +oo are different in general.

In the remainder of this section, we give some conditions, in the space of parameters
ri, K;, a; and d;, for limit of the total equilibrium population when 8 — oo to be greater
or smaller than the sum of the carrying capacities. We show that all three cases are
possible, i.e X5(+00) can be greater than, smaller than, or equal to X}.(0). First, we
start by giving some particular values of the parameters for which equality holds.
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T
Proposition 3.7. Consider the system (9). If the vector ( o ai) lies in ker ", then

Xj(+o0) = ¥, K.

1
ar )’

Proof. Tt is a direct consequence of the Equation (13). %]

Note that, if the matrix I' is symmetric, then by Lemma 3.1, Proposition 3.7 says that
if all a; are equal, then X7.(co0) = >, K;, which is [12, Proposition 4.4].

In the next proposition, we give two cases which ensure that X7.(0) can be greater or
smaller than X7 (+00). This result can be stated as the following proposition:

Proposition 3.8. Consider the system (9).

K K, K K,
1. If(Tl <...<— and a1 < ... < dpap, orzf6—1 > > 5 and oy > ... >
1 n 1 n
SnQun, then X3 (400) > X5(0).
K K, K K,
2 Ile > > 5 and d1aq < ... < dpay, 0rzf6—1 <...< 5 and 1o > ... >
1 n 1 n
Inaun, then X3 (400) < X3(0)
K K, K K,
In both items, if at least one of the inequalities in 5—1 <...< 5 L oor 5—1 > ... > 5—"
1 n 1 n

18 strict, then the inequality is strict in the conclusion.

Proof. Apply Lemma B.2 with the following choice: w; = §;, u; =
foralli=1,...,n. ]

If the matrix I" is symmetric, one has §; = 1, for all 4, as shown in Lemma 3.1. Therefore
Proposition 3.8 becomes

Corollary 3.9. Consider the system (9). Assume that I' is symmetric.

1L IfKh <...<Kjpandoay < ...<ap,orif K1 > ... > K, and a1 > ... > ay,
then X% (400) > X3.(0).
20IfKy > ...>2 K, andog < ...<ap,orif K1 <...< K, and a1 > ... > ay,

then X7.(+00) < X7.(0).

This result implies Items 1 and 2 of [10, Theorem B.1]|, which were obtained for the
model (4) in the particular case r; = K;.

4. Influence of asymmetric dispersal on total population size

In this section, we will compare, in some particular cases of the System (9), the total
equilibrium population X5(8) = 5(8) +. ..+ (), with the sum of carrying capacities
denoted by X75.(0) = K; + ...+ K,,, when the rate of migration 8 varies from zero to
infinity. We show that the total equilibrium population, X7.(3), is generally different
from the sum of the carrying capacities X5 (0). Depending on the local parameters of
the patches and the kernel of the matrix I', X5(8) can either be greater than, smaller
than, or equal to the sum of the carrying capacities.
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4.1. Asymmetric dispersal may be unfavorable to the total equilibrium population

When I' is symmetric, we have already proved that if all the growth rates are equal then
dispersal is always unfavorable to the total equilibrium population, see [12, Proposition
3.1]. We also noticed that the result still holds in the general case when I' is not necessarily
symmetric, see [12, Proposition 6.2]. Hence we have the following

Proposition 4.1. Ifry = ... =r, then
Xp(8) =Y ai(B) <D Ki,  forall B >0.
i=1 i=1

For a two-patch logistic model, this result has been proved by Arditi et al. [1, Proposition
2, item 3| for symmetric dispersal and for asymmetric dispersal [2, Proposition 1, item
3.

4.2. Asymmetric dispersal may be favorable to the total equilibrium population

In this section, we give a situation where the dispersal is favorable to the total equilibrium
population. Mathematically speaking:

Proposition 4.2. Assume that for all j < i, a;vij = a;v5:. Then
X7(B) =Y K;  forall B>0.
i=1

Moreover, if there exist ig and jo # io such that r;, # rj,, then X;5(8) > > | K;, for
all 8> 0.

Proof. The equilibrium point E*(3) satisfies the system
0=} (8) (Ki —2f(8)) + 8 Y (riaj(B) —iai(B)), i=1---n.  (24)
j=1,5#i
Dividing (24) by a;x}, one obtains

BB =K+p Y 9l

J=Lj#i

(B) = vz (B)
a;zi(B) '

Taking the sum of these expressions shows that the total equilibrium population X7
satisfies the following relation:

x50 =Y Ki+8Y Y 2 <§}$: iy (B)
i=1 iy

=1 =1, j£i (8)
e Yigzi (B) — viiw; (B)  vjiwi(B) — vijz;(B)
_;KZ—Fﬂ;( a3 M )
Re (vigz; (B) — vjwf(B)) (ajx3(B) — aiw}(B))
- ;K +ﬁj§ i (Bat B) : (25)
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The conditions o;7y;; = a;y;; can be written x;; = ai/wji = a;/; for all j < ¢, such
that v;; # 0 and ;; # 0. Therefore, there exists x;; > 0 such that

o = Ki;vi; and o = K;57y;; for all 4, 7 with ;; # 0 and y;; # 0.

Replacing «; and o in (25), one obtains

Xi5) =YK+ 8y ki (vi 5 (B) — viix;-*(ﬁ)) >3 K. (26)

2T e (0B &

Equality holds if and only if 8 = 0 or v;;25(8) — vj:27 (B) = 0, for all i and j. Let us
prove that if at least two patches have different growth rates, then equality cannot hold
for 5 > 0. Suppose that there exists 8* > 0 such that the positive equilibrium satisfies

Vi, 3, i (BY) = vz (BY). (27)
Replacing the Equation (27) in the system (24), we get that z7(8*) = K;, for all i.
Therefore, from (27), it is seen that, for all ¢ and j, K;~v;; = K;7,;. From these equations

and the conditions o;7y;; = a;7;:, we get r; = r;, for all 4 and j. This is a contradiction
with the hypothesis that there exist two patches with different growth rates. Hence the
equality in (26) holds if and only if 8 = 0. %

When the matrix I is irreducible and symmetric, the hypothesis of Proposition 4.2 implies
that a; = a; for all i and j. Indeed if two patches i and j are connected (i.e v;; = ;; # 0),
then we have a; = o;. As the matrix I' is irreducible, for two arbitrary patches, there
exists a finite sequence (i,...,7) which begins in 7 and ends in j, such that v, # 0 for
all successive patches a and b in (4,...,7). Hence oy = v for all @ and b in (4,...,7).
Hence, o; = ;. So, when the matrix I' is symmetric, Proposition 4.2 says that if all o
are equal, dispersal enhances population growth, which is [12, Proposition 3.3].

Note that, when n = 2, Proposition 4.2 asserts that if as/a1 = y12/721, then X5.(58) >
K1 + Ko, which is a result of Arditi et al. [2, Proposition 2, item b|. See also Proposition
A.1, and note that the condition as/ay = vy12/721 implies that (y12,721) € Jo.

For three patches or more, if the matrix I does not verify the condition (Vi, j, v;; = 0 <=
v;i: = 0), then the hypothesis of Proposition 4.2, that for all j < ¢, o;v;; = a7y cannot
be satisfied. Note that the hypothesis a;v;; = a;y;; implies that, forall i =1,...,n, one

has
n

n n n
I M
— Ly iR ¢ 7} . Qi

=17 g=lg# 7 =15 J=1,j#i J
Therefore we can make the following remark:

o 2)T € ker T

1
al"' a’V‘L

Remark 4.3. The hypothesis of Proposition 4.2 implies that (

We make the following conjecture:

AT e kerT then

1
al ) an

Conjecture. If (

X3(8) =Y K, for all B > 0.
=1
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This conjecture is true for the particular case of Proposition 4.2. It is also true for
two-patch models and for n-patch models with symmetric dispersal. It agrees with
Proposition 3.7.

Proposition 4.4. The derivative of the total equilibrium population X3(8) at = 0 is
given by:

hsi (0)= l PRCLAR (28)

4p i=1 j=1,j#i @iz (0)
which gives (28), since z}(0) = K; for alli =1,...,n.
If K € ker[, then Y7, 7;;K; = 0 for all 4, so that 5 (0) = 0. %

Actually, when K € kerT', we prove that X7.(3) is constant, so that d;(—ﬁT(ﬂ) = 0 for all
B > 0, not only for 8 = 0, see Proposition 4.5.

4.3. Independence of the total equilibrium population with respect to asymmetric
dispersal

In the next proposition we give sufficient and necessary conditions for the total equilib-
rium population not to depend on the migration rate.

Proposition 4.5. The equilibrium E*(3) does not depend on [ if and only if
(Ki,...,K,)T € kerT. In this case, we have E*(3) = (K1,...,K,) for all 8 > 0.

Proof. The equilibrium E*(8) is the unique positive solution of the equation
f(z) + Bz =0, (29)

where f is given by (10). Suppose that the equilibrium E*(53) does not depend on f,
then we replace in Equation (29):

f(E*(B)) + BTE"(B) = 0. (30)
The derivative of (30) with respect to 8 gives
TE*(B) =0. (31)

Replacing the Equation (31) in the Equation (30), we get f(E*(8)) = 0, so E*(8) =
(Ki,...,K,). From the Equation (31), we conclude that (Ki,...,K,)T € kerT.

Now, suppose that (K1, ..., K,)T € kerT, then (Kj,..., K,,) satisfies the Equation (29),
for all 8 > 0. So, E*(8) = (Ky,...,K,), for all 8 > 0, which proves that the total
equilibrium population is independent of the migration rate 3. ]
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If the matrix I' is symmetric, the previous proposition asserts that the K;, fori =1,...,n,
are equal if and only if E* = (K, ..., K), where K is the common value of the K;. This
is [12, Proposition 3.2]. For n = 2, Proposition 4.5 asserts that if K7/Ks = y12/721 then
X4(8) = K1 + K> for all 8, which is [2, Proposition 2, item c |. See also the last item of
Proposition A.1.

4.4. Two blocks of identical patches

We consider the model (9) and we assume that there are two blocks, denoted I and J,

of identical patches, such that TU J = {1,--- ,n}. Let p be the number of patches in T

and ¢ = n — p be the number of patches in J. Without loss of generality we can take

I=A{1,---,p} and J = {p+1,--- ,n}. The patches being identical means that they

have the same specific growth rate r; and carrying capacity K;. Therefore we have
==, K ==K,

32
Tp+1 =" =Tn, Kpi1=-=K,. ( )

For each patch ¢ € I we denote by ~;; the flux from block J to patch ¢, and for each
patch j € J we denote by 7, the flux from block I to patch j, as defined in Table 1. For
each patch ¢ we denote by T; the sum of all migration rates 7;; from patch i to another
patch j # i (i.e. the outgoing flux of patch i) minus the sum of the migration rates ~;
from patch k to patch i, where k belongs to the same block as i. Hence, we have:

Ifiel, then T,»:iji—i- Z (Yri = Yik)-

jer keI\(i} (33)
Ifje, then T;=> i+ > (v — V)
il keI

We make the following assumption on the migration rates:

YiJ = ="pJ> Yp+1)I = " = Inl 34

T =--=T, Tpoy=--- =T, (34)
where 7,7, for i € I and 7,1, for j € J are defined in Table 1 and T; are given by (33).
We have the following result:

Lemma 4.6. Assume that the conditions (34) are satisfied, then for alli € I and j € T
one has

Yis =13/, Vit =7s1/0  Ti =s1/p, Tj=11/9 (35)
where 1y and 51 are defined in Table 1.

Proof. The result follows from Ziel Yid = VIJ, Zie.l’yjj = JI, Zie[ T; = ~v55 and
>ics i =11 v

In the next theorem, we will show that, at the equilibrium, and under certain conditions
relating to the migration rates, we can consider the n-patch model as a 2-patch model
coupled by migration terms, which are not symmetric in general. Mathematically, we
can state our main result as follows:
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Table 1. Definitions and notations of fluxes.

Flux Definition
Z For i € I, v;; is the flux from block J to patch 4, i.e. the sum
Vs = 'eJ%J of the migration rates -;; from patch j € J to patch i.
j
Z For j € J, ;1 is the flux from block I to patch j, i.e. the sum
W= — i of the migration rates ;; from patch i € I to patch j.
(]

is the flux from block J to block I, i.e. the sum
Vg = Z Yij fet

S of the migration rates -;; from patch j € J, to patch i € I.
i€l

_ Z - ~s1 is the flux from block I to block J, i.e. the sum
V= i of the migration rates ;; from patch i € I, to patch j € J.

el jed

Theorem 4.7. Assume that the conditions (32) and (34) are satisfied. Then the equilib-
rium of (9) is of the form

* * * *
T =T],..., Tp =27, Tpp1 =Lp,..., Ty =T,

where (x5, x)) is the solution of the equations

prizry <1 - K> + B (yrsrn —v121) =0,
1

(36)

qTnTn <1 - K> + B (vsrer — yrgxs) =0,

that is to say, (x7,x)) is the equilibrium of a 2-patch model, with specific growth rates
pr1 and qr,, carrying capacities K1 and K, and migration rates yj; from patch 1 to
patch 2 and ~yry from patch 2 to patch 1.

Proof. Assume that the conditions (32) are satisfied. Then the equilibrium of (9) is the
unique positive solution of the set of algebraic equations

T ( Kl) + Bk lzk?éz YikTl — 'mez) = 07 1= 1a Y 2
(37)

7ﬁn:cj<1l(>+5 > (ukwk =) =0, j=p+1,--,n
k=1 k#j

We consider the following set of algebraic equations obtained from (37) by replacing
zi=xyfori=1---pand z; =x, fori=p+1---n

11 (1 — > +6(’Yzj.'lfn Tixl) = O7 1= 17 cee D,
Ky

In .
rnxn<]-_>+ﬁ(’yj1x1_Tj$n):07 ]:p+]—van
K,
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Now, using the assumptions (34), together with the relations (35), we see that the system
(38) is equivalent to the set of two algebraic equations:

'YIJ YJI
]_ [ - —
7“1$1< Kl>+5( » $1> )

Tn
T'ndn (1 - > + 5 (le - ml‘n) =
Ky q q

We first notice that if 1 = z7, =, = x} is a positive solution of (39) then z; = =7 for

(39)

i=1,---,pand x; =z} for j =1,--- ,n is a positive solution of (37). Let us prove that
(39) hab a unique solution (z7,x ) Indeed by multiplying the first equation by p and
the second one by ¢, we deduce that (39) can be written in the form (36). 4

As a corollary of the previous theorem we obtain the following result which describes the
total equilibrium population in the two blocks:

Corollary 4.8. Assume that the conditions (32) and (34) are satisfied. Then the total
equilibrium population X5(8) = pxi(8) + gz (8) of (9) behaves like the total equilibrium
population of the 2-patch model

dy:
— = 1—— n ;
5 = ( pK1> + B (712Yn — Y2191)

(40)

dyn Yn
— — 'nYn 1- - n)
5 =Ty ( qKn) + B (v2191 — 712Yn)

with specific growth rates r1 and ry, carrying capacities pK, and qK,, and migration

rates Y21 = b, y1p = 12

Proof. From Theorem 4.7, we see that (z3,x) is the positive solution of (36). Hence,
(y7 = pxy, v = qxl) is the solution of the set of equations

T1Y1 (1 - ) +8 (WJ - WIZM) =0,
pK1 D
’711 Y1J B

obtained from (36) by changing variables to y; = px1, ¥, = qz,. The system (41) has a
unique positive solution which is the equilibrium point of the 2-patch model (40). ]

(41)

We can describe when, under the conditions (32) and (34), the migration pattern is
beneficial or detrimental in Model (9).

We consider the regions in the set of parameters v;; and ~;;, denoted Jy, J1 and Ja,
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g an 1 Ky

YrJ YJI [e51 YJI Ky
J1
Jo
T2
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Case ry, >y (ie. 02> &)

arr . Ka
Y1Jg YJr Ky,
T2
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YJ [e3}

Jo
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n K
ar <)

43

Figure 1. Qualitative properties of Model (9) under the conditions (32) and (34). In Jo, fragmentation
benefits the total equilibrium population. This effect is detrimental in J2. In J1, the effect is beneficial

for 8 < Bop and detrimental for 8 > (.

depicted in Figure 1 and defined by:

K

If r,, > rq then Jo

S
I I Il
=

If r,, <7y then

S
I

T2 =

where oy = r1/K; and o, = 1, /K.

(yor, 1)
(yar,717)
(yor,710) -

(’YJh ’YIJ) .

(varsvrr) - &

(Vor, V1) + B

IN A
|

2|

)
=22
<SS
~

ke
——

JrJg Qp
YJI > a1}
Qn > JrJg Ki
L = YgI > Kn}
K3 y1J
Ky > ’YJI}
yrJ (67D
YJI al
<

3
N
=22
SIS
~ |~

(42)

Proposition 4.9. Assume that the conditions (32) and (34) are satisfied. Then the total
equilibrium population X3.(5) = pxi(B) + qx}(B) of (9) satisfies the following properties

1. If ry =7y then X5(8) < pKy + qK,, for all B > 0.

2. If rp, # 1, let Jo, J1 and Ja, be defined by (42). Then we have:

v if (Yor,v10) € Jo then X5(8) > pKy + gK,, for any B> 0,
= if (Ys1,710) € Ji then X5.(B) > pKi + qK,, for 0 < f < By and X} (B) <

pK1 + qK,, for B > By, where

TR 1
bo= 77 i on | a
Qp Q] p q

o If (Vor,v10) € J2 then X5(8) < pKi + qK,, for any 8 > 0.
= If = %’ then X7.(B) = pK1 + qK,, for all 3> 0.
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Proof. This is a consequence of Proposition A.1 and Corollary 4.8. %]

Let us explain the result of Proposition 4.9 in the particular case where p = n — 1. In
this case, the condition (34) becomes

Vin=-..=Yn—1n and Ty =...=T,_q, (43)

where T; = Yn; + Y. (Yki — Yik)- Therefore, if the matrix T' is symmetric, the conditions
k#i

(43) are equivalent to the conditions v,; = ... = Ypn—1, which mean that the fluxes

of migration between the n-th patch and all n — 1 identical patches are equal. Hence,
Proposition 4.9, showing that the n-patch model behaves like a 2-patch model, is the
same as [12, Proposition 3.4], where the model (9) was considered with T' symmetric,
n — 1 patches are identical and the fluxes of migration between the n-th patch and all
these n — 1 identical patches are equal. Thus Proposition 4.9 generalizes Proposition
3.4 of [12], to asymmetric dispersal and for any two identical blocks, provided that the
conditions (34) are satisfied.

5. Links between SIS and logistic patch models

5.1. The SIS patch model

In [15], Gao studied the following SIS patch model in an environment of n patches
connected by human migration:

ds; Sil; - :
dt7 =B Jif:JF%IﬁgZ%ij’ i=1....n,
dl, S I J .
dTZ:ﬁi &,Z—%Iﬁspr i=1...m
[ j=1

where S; and I; are the number of susceptible and infected, in patch ¢, respectively;
N; = S; + I; denotes the total population in patch i. The parameters 5; and ~; are
positive transmission and recovery rates, respectively. The matrix I' = (v;;) satisfies (3)
and describes the movement between patches. The coefficient € quantifies the diffusion,
as our § in (9).

Using the variables N;, I;, i =1,...,n, the system (44) has a cascade structure
dN; - ,
i ZEZ%jNi, i=1,...,n, (45)
j=1
dl; (N; — L) I; - .
E:ﬂzT—’WIZ—FE;’Y”IJ, Z:].,...,’n, (46)

Therefore the infected populations I; are the solutions of the non-autonomous system of
differential equations

dl; I; - .
— =01 (1- — v 1; E iils, =1,...,n, 47
dt B ( Nl(t)> Fy +5j=1’y] J ? n ( )
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where the total populations N;(t) are the solutions of the system (45). Hence, the
autonomous 2n-dimensional system (44), is equivalent to the family of n-dimensional
non-autonomous systems (47), indexed by the solutions N;(t) of (45). Note that since
the ~;; verify the property (3), the total population is constant: Y ., N;(t) = N, where
N = 3" (Si(0) + I;(0)). If the matrix I' = (v;;) is irreducible, then N;(t), the total
population in patch i, converges towards the limit

N

tilgloo N;(t) = N} where N} := méi, i=1,...,n, (48)
where § = (01,...,6,)T is a positive vector which generates the vector space kerT.

Therefore, (47) is an asymptotically autonomous system, whose limit system is obtained
by replacing N;(t) in (47), by their limits NV}, given by (48):

dI; I; & .
_le( NZ*)—’%I,L—FEZ’Y”IJ, 1=1,...,n. (49)

j=1

The main problem for (44) is to determine the condition under which the disease free
equilibrium, corresponding to the equilibrium I = 0 of (49), is GAS, or the endemic
equilibrium, corresponding to the positive equilibrium of (49), is GAS. It is known, see
[15, Theorem 2.1], that the disease free equilibrium is GAS if Ry < 1, and there exists a
unique endemic equilibrium, which is GAS, if Ry > 1. Here Ry is the basic reproduction
number of the model (44), defined as:

Ro=p (FV_l) where F' = diag(f1, -+, Bn) and V = diag(y1, -+ ,vn) — el

A reference work on the basic reproduction number for metapopulations is Arino [3],
whereas Castillo-Garsow and Castillo-Chavez [7] and van den Driessche and Watmough
[29] give a more general account of the subject.

5.2.  Comparisons between the results on (9) and the results on (49)

Gao [15] gave many interesting results on the effect of population dispersal on total
infection size. Our aim is to discuss some of the links between his results and the results of
the present paper. We focus on two results on the total infection size T, (¢) = >, I (g),
where (I (¢),...,I}(€)) is the positive equilibrium of (49). We consider the results of
Gao [15] on T}, (400) and T}, (0).

Proposition 5.1 ([15, Theorem 3.3], [15, Theorem 3.5]). If Ro(+00) > 1, then

= —; wi 00 :M
Ty (400) = (1 Ro(+oo)>N’ th  Ro(+00) A (50)

If B; # v, for all i, then

LO=2 |ﬁz

%

Z%J ) (51)

l
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It is worth noting that the formulas (50) and (51) involve the system (49). An important
property of this system is given in the following remark.

Remark 5.2. Let N* = (Nf,...,N;)T be the vector of the carrying capacities in the
system (49). One has N* € kerT', as shown by (48).

Our aim is to compare the results given by the formulas (50) and (51) when 7; — 0, to
our results, for the system

dl‘i Z;
=Bz [1-
a = ( -

N )—FE;’)@]‘I‘J‘, 1=1,...,n. (52)

Note that the system (49) reduces to (52) when «; = 0 for all ¢. More precisely we show
that, as 7; — 0, the formulas (50) and (51) are the same as the results predicted by
Proposition 3.4 and Proposition 4.4.

Proposition 5.3. Let T, (c) be the total infection size of (49). Let X}.(g) be the total
population size of (52). One has

lim  Tp(+00) = Xi(+00) = N, im 70 = BTy =0, (53)

max; {; } =0 max;{~v; } =0 de

Proof. When v; — 0 for all 4, one has Ro(4+00) — 400 and I}(0) — N;. Therefore,
from (50) and (51) it is deduced that

T,(+o0) » N, T,(0) = Bi > iiN; =0. (54)
i Tty

Using the property N* € kerI', from Proposition 3.4 and Proposition 4.4, it is deduced

that:

dX;
de

From (54) and (55) we deduce (53). [t

X3 (+00) = N, (0) = 0. (55)

Actually as shown in Proposition 4.5, we have the stronger result X}.(8) = N for all
£ > 0. But our aim here was only the comparison between (54) and (55).

As shown in Proposition 5.2, the results of Gao [15] on the logistic patch model (49) yield
results on the logistic patch model (52) by taking the limit ~; — 0. However, the scope
of this approach is weakened by the fact that it only applies to the logistic model (52),
for which the vector of carrying capacities satisfies N* € ker I, see Remark 5.2. But this
property is not true in general for our system (9), where the condition K € kerI’ does
not hold in general.

Our aim in this section is to show that any logistic patch model (9), without the condition
K € kerT', can be written in the form (49), with the condition N* € kerI". Indeed we
have the following result:

[Revista Integracion



The multi-patch logistic equation with asymmetric migration 47

Lemma 5.4. Considerr; >0, K; > 0 and T as in the system (9). Let §; > 0 be such that
= 1’

(01,...,6,)T € kerT'. Let N be such that N > Zé%iéil(i for i ...,n. Let N} defined
by (48). Let 8; = I?Z N and v; = i —r;. Then one has

riz; (1 —x;/K;) = Bix; (1 — x;/N) — vixs, fori=1,...n (56)

Proof. The conditions (56) are satisfied if and only if r; = 8; —v; and r;/K; = 8;/N;}.

Therefore
B; = Nl*% = N/,
{ Y= i~ 1 = (Nf = Koo, &7

To ensure that v; > 0 for all ¢, just choose N in (48) such that N} > K, fori =1,...,n,

that is to say, N > %Ki. ]
Remark 5.5. According to the change of parameters (57), the logistic patch model (9)
can be written in the form of Gao (49), i.e. with the property that N* € kerT. For
the perfect mixing case, the formula (50) and our formula (13) are the same. Indeed
replacing ; and 7; by (57) in (50), and using (48), we get:

For the derivative, the formula (51) and our formula (28) are the same. Indeed, if we
replace §; and 7; by (57), in (51), we get:

Bi = T
I:(0) = N! = N:=K..
J() 6] J N;Oéj J J

Therefore

> 7|ﬂi DRTHONEDY l_Z%‘jKj
P 7 f}/ll J i T J
The theory of asymptotically autonomous systems answers the question “under which
conditions do the solutions of the original 2n-dimensional system (44) have the same
asymptotic behavior as those of the m-dimensional limit system (49) ?”. For details
and further reading on the theory of asymptotically autonomous systems, the reader is
referred to Markus [23] and Thieme [26, 27]. For applications of this theory to epidemic
models, see Castillo-Chavez and Thieme [6].

Hence, it is important to know whether or not some of the results of Gao [15] on the SIS
model (44) can be deduced from our results on the logistic model (9). It is worth noting
that the discussion in this section shows that our results on the logistic patch model
imply results on the model (49) and hence, results on the original model 2n-dimensional
system (44). However, it is needed that 5; > 7; for i = 1,...,n. Indeed, according to
(57), one has r; = ; —7; > 0. On the other hand, the condition 3; > ~; is not required
in all patches of the system (44). Another challenging problem is the study of the model
(49), in the general case where N* = (Ny,..., N)T is not necessarily in the kernel of T.
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6. Three-patch model
In this section, we consider the model of three patches coupled by asymmetrical terms of

migrations. Under the irreducibility hypothesis on the matrix I', there are five possible
cases, modulo permutation of the three patches, see Figures 2 and 3.

AYAY

Gi G

Figure 2. The two graphs G; and Gz for which the migration matrix may be symmetric, if v;; = ;.

The connectivity matrices associated to the graphs G; and G are given by

W 0 72 ms3 @ 0 v2 ms3
FO = Y21 0 Y23 5 and FO = Y21 0 0
vs1 vz O v1 0 0

For the remaining cases, the graphs Gs, G4 and Gs, cannot be symmetrical:

TAWARVAS

Gs N Gs

Figure 3. The three graphs G3, G4 and G5 for which the migration matrix cannot be symmetric.

The associated connectivity matrices are given by

0 72 m3 0 0 s 0 0 ms
FSS) =71 0 0 ,F64) =1 721 0 23 ,FE)S) =71 0 0
Y31 32 0 0 732 0 0 732 0

In Table 2, we give the formula of perfect mixing X(400) for each of the five cases.

In the numerical simulations, we show that we can have new behaviors of X5(8). In
the case n = 2, it was shown in [1, 2] that there exists at most one positive value of
such that X75(8) = Ky + K3. In [12], in the case n = 3 and I" is symmetric, we gave
numerical values for the parameters such that there exists two positive values of 8 such
that X3(8) = K1 + K2 + K3, and we were not able to find more than two values. The
novelty when I' is not symmetric is that we can find examples with three positive values.
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Table 2. The generator § of kerT', for the five cases. The perfect mixing abundance X7 (+o0) is
computed with Eq. (13).

Graphs | The formula of perfect mixing X7 (+00)

G1 The coefficients J; are given by the Equation (12)

Go 01 = 712713, 02 = V21713, 03 = V12731,

Gs 01 = 712713 + 32713, 02 = V21713, 03 = Y2132 + V31712 + V317325
G 01 = Y3213, 02 = V21713 + V21723 + V31723, 03 = V21732

Gs 01 = Y3273, 02 = V21713, 03 = Y217Y32-

Indeed, we may have the following situation : %(0) > 0 and X7 (+00) < K1+ Ko+ K3,

and there exist three values 0 < 8 < f2 < f3 for which we have

>Ki+Ky+ Kz for pB€]0,5[U]B2, B3],
X7(8) (58)
< Ki+ Ky+ Kz for BE]Bl,ﬂQ[U]Bg,+OO[.

The same situation holds for each of the five graphs G1, G2, G3, G4 and Gs, i.e, there exist
three values 0 < 1 < 2 < B3 for which (58) hold. See Figures 4, (for the graph G;),
5, (for the graph Gs), 6-a, (for the graph Gs), 6-b, (for the graph G,), and 6-c, (for the
graph Gs).

Table 3. The numerical values of the parameters for the logistic growth function and migration coeffi-
cients of the model (9), with n = 3, used in Figures 4,5,6-a,6-b and Figure 6-c. For all figures we have
(r1,m2,73, K1, K2, K3) = (4,0.7,0.6,5,1,4). The perfect mixing abundance X}.(4o00) is computed with
Eq. (13) and the derivative of the total equilibrium population at 5 = 0 is computed with Eq. (28).

Figure | 721 72 731 713 Y32 723 %(0) X7 (+00)
4 0.15 3 0.2 0.04 11 0.1 1.06 9.21
) 149 10 02 004 O 0 77.20 9.86
6-a 144 0.01 0.2 0.04 1 0 3.11 8.93
6-b 1.52 0 0 1 1 0.002 3.52 8.72
6-c 1.51 0 0 1 1 0 3.46 8.75
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*

X7 Xz

10,002

114 10,001+

K+ K>+ K3

10,54
9,999

9,998+

O+ K5

9,997

9,996

T T T T B 1 9,995+ B

T T T T 1
0 10 20 30 40 50 0 0,001 0,002 0,003 0,004 0,005

9,54

Figure 4. Total equilibrium population X7. of the system (9) (n = 3) as a function of the migration
rate 8. The figure on the right is a zoom, near the origin, of the figure on the left. The parameter values
are given in Table 3.

X *
g T wsg T
10,7 10,74
10,6 10,6
10,51 10,5
1041 104
103 103
102 1021
10,11 K1 + K2 + K3 10,1
10 10
T T T T T T T T T T :
0 20 40 60 80 100 120 6 0 1 2 3 4 B

Figure 5. Total equilibrium population X7. of the system (9) (n = 3) as a function of the migration
rate 8. The figure on the right is a zoom, near the origin, of the figure on the left. The parameter values
are given in Table 3.

7. Conclusion

The aim of this paper is to generalize, to a multi-patch model with asymmetric dispersal,
the results obtained in [12] for a multi-patch model with symmetric dispersal.

In Section 3 we considered the particular case of perfect mixing, when the migration rate
goes to infinity, that is, individuals may travel freely between patches. As in [12], we
compute the total equilibrium population in that case, and, by perturbation arguments,
we proved that the dynamics in this ideal case provides a good approximation to the
case when the migration rate is large. Our results generalize those of [2] (asymmetric
migration matrix, only two patches), [10] (arbitrarily many patches, but the migration
matrix is symmetric and zero outside the corners and the three main diagonals), and [12]
(arbitrarily many patches; arbitrary, but symmetric, migration).
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(a) (b)

10,08 10,087

10,074
10,06
10,06
10,05
10,04
10,04

10,02 10,034

Kl + KQ _|_ K3 10,02

10,00
\/ ™ K1+ Ky + K3

10

: : , B pl B

10,05+

K+ Ky + K3

9,954 T T T

Figure 6. Total equilibrium population X7. of the system (9) (n = 3) as a function of the migration
rate 8. The parameter values are given in Table 3.

In Section 4 we considered the equation
total equilibrium population = sum of the carrying capacities of the patches. (59)

We gave a complete solution in the case when the n patches are partitioned into two
blocks of identical patches. Our results mirror those of [2], which deals with the two-
patch case. Specifically, Equation (59) admits at most one non-trivial solution.

In Section 5, we consider a SIS patch model and we give the links with the logistic model.

In Section 6 we give numerical values for the dispersion parameters such that Equation
(59) has at least three non-trivial solutions. In [12] we proved that for three patches
and symmetric dispersal, there may be at least two solutions. A mathematical proof
that, when n=3, Equation (59) has at most three solutions, would certainly be desirable,
and could spur further work. Upper bounds for arbitrarily many patches would also be
interesting.
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Appendix
A. The 2-patch asymmetric model

We consider the 2-patch logistic equation with asymmetric migrations. We denote by
712 the migration rate from patch 2 to patch 1, and 9, from patch 1 to patch 2. The
model is written:

dx x

== = (1 - 1> + 5 (71222 — y2121)

dt Ly (60)
B (1222 4 B(rmz1 — y1om2)

i = 222 L, Y211 — Y12%2) -

Note that the system (60) is studied in [1, 8, 13, 14, 18| in the case where the migration
rates satisfy 721 = 712, and in [2] for general migration rates. This system admits a
unique equilibrium which is GAS. We denote by E*(5) = (z3(8), 25(53)) this equilibrium
and by X5 (58) the sum of z}(3).

Jiz @z 12 Ly Ji2 Ly
Y12 Y21 [e31 Y21 Lo Y12 Y21 Lo
Ji T2
Jo Y2 _ sz
Y2 aq
Jo
T2
Ji
0 Y21 0 Y21
: Qaz Ly : Qs Ly
Case 2 > 1y (ie. 02 > 71) Case rp <71 (ie. 02 < 71)

Figure 7. Qualitative properties of model (60). In Jy, patchiness has a beneficial effect on total
equilibrium population. This effect is detrimental in J>. In Ji, the effect is beneficial for 8 < By and
detrimental for 3 > Bp. In the figure @y = r1/L1 and ag = r2/Lo.

We consider the regions in the set of the parameters 2, and 72, denoted Jy, J1 and
Jo, depicted in Fig. 7 and defined by:

_ Sm2 oy an
J = {(7217’)’12) P> af}
If ro > r1 then 502{(721,712):%2%>%}
T2 = {(7217712) : % > %}
(61)
J = {(721,712) P12 < %f}
If ro < rq then ._70:{(7217712):%§%<%}
_ Ly o2
J2 = {(”721,712) tI < ’Y;f}
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We have the following result which gives the conditions for which patchiness is beneficial
or detrimental in model (60).

Proposition A.1. The total equilibrium population of (60) satisfies the following proper-
ties

1. If r1 = ro then X} (B8) < Ly + Lo for all 8 > 0.

2. If rog £ ry, let Jo, J1 and Jo, be defined by (61). Then we have:

v If (v21,712) € Jo then X3(8) > L1 + Lo for any 8 > 0.

w If (Yo1,712) € Ji then X5(B) > L1+ Lo for 0 < B < By and X5(8) < L1+ Lo
for B> By, where

ﬁ r9o —7T1 1
07 M2 Mlatay
(&) aq

w If (v21,712) € J2 then X3(8) < L1 + Lo for any 8 > 0.
w If % = %, then x3(8) = L1 and x5(8) = Lo for all B > 0. Therefore

X5(B) = L1+ Ly for all B > 0.

Proof. This result was established by Arditi et al. [2]. Part (1) is Proposition 1 of [2].
The first three items of part (2) are Proposition 2 of [2|. For the last item of part (2),
see the last paragraph in page 12 of [2]. The explicit expression of 8y was not given in
[2], however, it is easy to deduce it from the formulas given in [2]. v

B. Some useful results

We begin with a

Lemma B.1. The matriz L defined by (21) is stable, that is to say, all its eigenvalues
have negative real part.

Proof. We consider the two matrices

L-U Vv I 0
G'_{o 00]’ P'_[1...11}’

where L, V, and U are defined right after (21). We prove that the two matrices I" and
G are conjugate by the matrix P, that is to say P"'GP =T.

The inverse of matrix P is given by

i I 0
P _{1 -1 1]'

We have
v . L 1%
PGP = n =T.
Tnl -+ Tnn—-1 — Zj:Lj;ﬁl Yin

Two conjugate matrices have the same eigenvalues. As the matrix G is block-triangular,
its eigenvalues are zero and the eigenvalues of the matrix L — U. Therefore, since 0 is a
simple eigenvalue of the matrix I', the eigenvalues of the matrix L — U are the eigenvalues
of the matrix I" except 0. By Lemma 3.1 all non-zero eigenvalues of I have negative real
part. v
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Lemma B.2. Let (tup)n>1, (Un)n>1 and (wp)n>1 be three real and non-negative sequences.
Then,

1. if (up)n>1 and (vn)n>1 are both non-increasing, or both non-decreasing, then we
have, for all N > 1,

B (B ). e

2. if (up)n>1 is non-decreasing and (vp)n>1 s non-increasing, or if (up)n>1 is non-
increasing and (vp)n>1 s non-decreasing, then, we have, for all N > 1,

<Z wn) (Z wn”n”n) < (Z wn”n) <Z wnvn> . (63)

In both items, if (un)n>1 is not constant, then the inequality in the conclusion is strict.

Proof. We prove Item 1 by induction on N, in the case when (u,),>1 and (v,),>1 are
both non-decreasing, the other case being identical. Obviously, Equation (62) holds for
N = 1. Now, assume that (62) holds for N, then we proceed to show that (62) holds for
N + 1. Since

Upt1 [W1(Vnt1 —01) + oo+ W (Vng1 — n)] 2 wrwi(Vng1 —v1) + oA Up Wy (Vng1 — n),

the inequality being strict if (uy)n>1 is not constant, we observe that

N N N N
Z Wy UnVp + (Z wn) UNF1UNE1 = (Z wnvn> UN+1 + (Z wn“n) UN+1- (64)
n=1

n=1 n=1 n=1

From the induction hypothesis and the Equation (64), it follows that

N+1 N+1 N N N
<Z wn) (Z wn“n”n) = <Z w'n) <Z wnunvn) + WN+1 <Z wn“n”n)
n=1 n=1 n=1 n=1 n=1

N
2
+ WN4+1UN+1UN+1 + ( E wn> WN4+1UN+1UN+1

n=1

N
§ : 2
< wn) <Z wnunvn> +’LUN+1UN+1UN+1
N

( g wnvn> UN+1WN+1 + ( E wnun> UN4+1WN+1

n=1

N
<anun> (Z nvn) +'LU]2\7+1'U/N+1UN+1

N
(Z WnUn | UNF1WN+1 + (Z wnun> UN+1WN+1
N+1 N+1
n=1 n=1

n=1
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This completes the proof of item 1. Equation (63) can then be proved by reversing all
the inequalities in the proof of (62) above. v

This result is proved by DeAngelis et al. [9, Lemma 2.6] for Part (2) and in [10, Propo-
sition A.3| for part (1), where w,, = 1 for all n > 1. Here we generalize this result to any
positive sequence.
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