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Abstract. This paper shows a thermoelastic system defined in Q x R, Q C
R™, n > 2 with heat conduction given by Cattaneo’s law. By introducing
a linear dissipation mechanism on a part of the boundary, we obtain the
well-posedness of the system and the polynomial decay of the energy in the
solution.
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60 R.M. CoORTES

1. Introduction

A thermoelastic system describes the behaviour of elastic bodies exposed to heat flow
(source of dissipation). The thermoelastic system described herein considers a thermal
effect and is a modified version of the Lamé system, which describes the displacement in
elastic bodies.

To barely understand a thermoelastic system, one must (i) refer to the theory of elasticity
and comprehend the equation of elasticity considering multiple conditions of the elastic
medium and, (ii) understand the modelling in heat theory.

Elastic model. For an introduction to the theory of elasticity see [6], [18], [20]. In
Narukawa [13] the author includes a pleasant explanation about how an elastic model
can be obtained from the first principles. Let us briefly outline the main ideas presented
in [13] with this respect. It is known, from the theory of elasticity, that equation (1.1)
describes the displacement u(z,t) = {u;(z,t) h1<i<n

p(2)(0%u; /0t?) (x, ) = Z 00;/0z; + gi(x,t) in Q x (0,00) (1.1)

Jj=1

where p(z), 05;(1 < 4,5 < n) and g(z,t) = {gi(x,t) }1<i<n denote the density, the stress
tensor and the external force, respectively.

n
Oij = E aijriep(u), 1<i<mn,
k=1

between the stress tensor o;; and the linearized strain tensor
ex(u) = (Ou;/0z; + Ouj/0x;)/2, 1<i<n.
The functions a1, called coefficients of elasticity, depend on ¢ and « but are independent
of the strain tensors. If the coefficients of elasticity are constant and if the medium is
isotropic, that is, if its elastic properties are the same in all directions, then
aijrr = AijOxr + p(A6idjk + dirdjr),

where {d;;} is the Kronecker tensor and A and p are constant Lamé coefficients. When
the density is equal to a constant pg, the system (1.1) can be written as

po(0*u/ot?)(x,t) = pAu(z,t) + (X + p)Vdivu(z,t) in Q x (0,00). (1.2)
Heat conduction model. It is known that heat conservation equation is given by
0" + div(g) =0, (1.3)

where ¢ and 6 are the heat flux and temperature, respectively. Fourier’s law is the most
simple empirical law widely used to explain heat conduction phenomena. It states that

[Revista Integracion



Polynomial stability of a thermoelastic system with linear boundary dissipation 61

the heat flux vector is proportional to the negative gradient of temperature in direction
of the energy flow. In isotropic materials, this law corresponds to:

g+ kVO =0, (1.4)

where the constant £ > 0 is called thermal conductivity. However, as it is well-known,
Fourier’s law entails the physical paradox of infinite velocity of heat transmission. In
particular, it is important to say that Cattaneo’s Law inhibits the physical paradox of
the infinite speed of propagation of signals, but that it maintains the essential of a heat
conduction process which presents some drawbacks at the level of physical experiments.
For instance, in dielectric crystals at low temperatures, the thermal disturbances propa-
gate at a finite velocity. From these phenomena, the need to consider other theories of
heat conduction emerges. A generalization of Fourier law, on which this article is based,
was proposed by Cattaneo in 1948 [2]; it is described as

10¢ +q+kVO =0, (1.5)

where 79 > 0 is called relaxation time. Here the time derivative term forces the heat
propagation to have finite velocity, whenever 7y > 0. This model is widely accepted as
an alternative of Fourier’s law which inhibits the above mentioned physical paradox. It
is clear that in the case 79 = 0, (1.5) coincides with Fourier’s law (1.4).

Thermoelastic model. The system we proposed to study is defined by a bounded
n-dimensional domain €, n > 2, homogeneous, isotropic and with border I' = 9 of
class C?, where the equations of thermoelasticity in 2 are of the form:

v — pAu— A+ p)Vdiv(u) + aVe =0 in Q x (0,00), (1.6)
0" + vy div(q) + d div(u’') =0 in Q x (0,00), (1.7)

with u = u(z,t) € R™ being the displacement vector, § = 6(x,t) € R the difference
in temperature over time ¢ with respect to a reference temperature measured in ¢ = 0,
q = q(z,t) the heat flow, x € R and ¢ € R U {0} the spatial and temporal variables,
respectively. On the other hand, Au = (Aug,...,Auy,), div(u) =Y, gg& and V rep-
resent the Laplacian operator, divergence, and gradient for spatial variables, respectively.
The symbol (') denotes the derivative with respect to the temporal variable. The con-
stants A, g > 0 are the Lamé constants, and « and § are positive coupling parameters.
The therms aV6 and §div(u') are added to equations (1.2) and (1.3), respectively, in
such a way that the temperature gradient acts as a force on the elastic component, while
the wave pressure acts as a heat source in the heat equation.

Results on the exponential stability of solutions for system (1.6)-(1.7) are widely known
in the case of n = 1 with different boundary conditions, see for instance [4]. When con-
sidering n > 2, one finds that depending on boundary conditions, the decay of solutions
can be exponential or polynomial. In fact, the usual technique considers two behaviours
at the boundary: one to define a dissipative term and another to fix the variable w,
obtaining thus exponential or polynomial decays according to the type of dissipation, see
for instance [9], [11], [10]. This technique was initially applied to models that do not
involve a heat flow, see for instance [7], [8], [20]. It should also be noted that many of
these results have occurred in the case where the law of heat flow is modeled by Fourier’s

Vol. 40, No. 1, 2022]



62 R.M. CoORTES

law (1.4). Some exponential stability results for the linear and non-linear thermoelastic
systems with Fourier’s flow law in 1,2 and 3 dimensions can be found in [15].

Regarding the thermoelastic systems with heat flow given by Cattaneo (1.5), also known
as thermoelastic systems with second sound, several results have been published. Chan-
drasekharaiah [3]| presents the first references about thermoelastic systems with second
sound and, Tarabek in [19] establishes the existence of solutions for small data in the
case of problems defined in bounded and unbounded one-dimensional domains. It has
also been established in [19] that the solutions converge to equilibrium when t — oo,
but no results are presented for the study of decay rates. Later, Racke [17] establishes
uniform decay for linear and nonlinear initial value problems in dimension n = 1. In
addition, the author studies the behaviour of stability when 79 — 0; the exponential
stability is also shown in the non-linear case. In a follow up study, Ismscher and Racke
[5] explicitly established the exponential decay rate for the classical thermoelastic sys-
tem and the thermoelastic system with second sound in one dimension, and presented a
comparison of the asymptotic behavior of the solutions of the two systems. In the case
n > 1, the dissipation given by the heat conduction is, in general, not strong enough
to guarantee exponential decay of the solutions as in the one-dimensional case. Finally,
Racke [16] presents exponential decay for dimensions n = 2 and 3 with the condition
rot u = rot ¢ = 0, which has radial symmetric domains as applications.

The main goal in this article is to show polynomial stability of energy for the system (1.6)-
(1.7) with a heat conduction law (1.5) and boundary conditions (2.1). In the remaining of
this article, Section 2 summarizes the main results and some definitions. Section 3 proves
existence and uniqueness of the solution of system (1.6)-(1.7) with conditions (1.5) and
(2.1). Section 4 presents the polynomial stability of the system. To simplify the notation
of the article, generic constants will be denoted by c, ¢1, ¢2, ¢, among others.

2. Main Result

The aim of this work is to prove polynomial decay of enegy for the solutions of the ther-
moelastic system with second sound and linear boundary dissipation, whose equations
correspond to (1.6)-(1.7), (1.5) and:

u(z,0) =u’, u'(x,0) =ul,

0(z,0) = 0°(z), q(z,0) =¢°(x) in Q,

0=0 on T x (0,00), (2.1)
u=0 on T x (0,00),
,u%—l—(/\—ku)div(u)u—k am-vu+m-vu =0, on Ty x (0,00),

where I' =T'y UT5, T'; and I'; are defined as
I :=T1(x) ={z €T :m(z) v(z) <0},

(2.2)
Iy :=T9(xg) ={z €T :m(z) v(z)> 0},
xo € R", m(x) = x —xo, and v(x) = (v1(x), -+ ,vn(z)) is the exterior unit normal vector
at I' at the point « of I'. The function a = a(x) > 0 satisfies
a < Cl(FQ). (23)
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Polynomial stability of a thermoelastic system with linear boundary dissipation 63

We also suppose that
intrT'1 #0  or a(z) Z0, (2.4)

where intr is the relative interior of I". The following observations can be made from the
above conditions:

» The assumptions (2.2) imply that the domain  is simply connected and star-
shaped with respect to zg € 2. Especially, the domain €2 can be a bounded smooth
convex open set.

= Note that in I" there are no thermal changes, however, at I'y the displacement u is
null, this is, the fixed part of the system.

s On the other hand, a dissipation acts in I's which is linear in the term u’ and,
in particular, describes a displacement in this part of the boundary by virtue of
elasticity.

= Since I' and I'; are closed and I'; the complement I'y in T, it follows that T'y N\Ty C
T'y so it is not necessary to impose compatibility conditions.

The polynomial decay of energy of solutions is obtained by using the energy method.
The definition of the energy FEi(t), known as first-order energy, can be motivated by
multiplying (1.6) by kdu', (1.7) by kaf and (1.5) by vyag, and integrating in Q. The first
order energy is defined as follows

1
E\(t):= Ey(t,u,0,q) :5/[k5\u'|2+ kSp|Vul>+ k(A + p)| div ul? 4+ ka|0)?
Q

ko
+ranlgllde+ = | am-v]uf*dT (2.5)
1)
satisfying
d
—E1(t,u,0,q) = —’ya/ lgl?de — [ kém - v|u/|?dT, (2.6)
dt Q Iy

which indicates that the system is dissipative. Analogously, for the second-order energy
E5(t), applying a derivative with respect to ¢ in (1.6), (1.7) and (1.5), multiplying by
kéu", kat, vaq' respectively and integrating in €2 , is defined as

Ea(t) = Bu(t,,0',q) (2.7)
with

d

— By (t) = f'yoz/ |d'|2dx —/ kém - v|u”|*dT. (2.8)
dt Q I

Now we can state the main result of this work.
Theorem 2.1. Suppose the geometrical conditions (2.2) are valid and

2 1%

ag < 2 for n =2, (2.9a)
(n—2)p
ag < “oRT forn >3, (2.9b)
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64 R.M. CoORTES

where R = max [m(x)|, ap = max a(z) and a(-) is the function stated in (2.1). Then, for
zEQ xel'2
all initial data Uy € D(A), there exists a constant M = M (Up) > 0 such that the energy

of the system (1.6)-(1.7) and (1.5)-(2.1) satisfies

Eq(t) <

%(E1 (0)+ Ex(0)  Vt>0, (2.10)

where D(A) is defined in (3.7).

Remark 2.2. On the asymptotic study of solutions of differential equations, it is impor-
tant to note that:

= in the case of damped wave equations, that includes our system, the rate of decay
of solution corresponds to the rate of decay of the energy of the system; therefore,
energy decay estimates allow us to determine decay estimates of the solutions of
our system;

= the theoretical advances in the study of asymptotic behavior that have been ob-
tained recently carry methods involving Cy- semigroups and in fact they focus on
theoretical aspects of resolvent operators, i.e., they involve spectral theory. Impor-
tant and recent examples are the remarkable optimality results obtained at [1] and
the work referenced therein. It is therefore interesting to compare the result (2.10)
with the estimates found in [1].

To following section shows the well-posedness of the system.

3.  Well-posedness of the system

In order to guarantee the existence and uniqueness of solutions for the system (1.6)-
(1.7) with conditions (1.5) and (2.1) the linear semigroups theory will be used. The
system can be rewritten as an abstract Cauchy problem for a linear operator and Hilbert
space, to be defined later in the paper, mainly by virtue of the linear dissipation at the
boundary (2.1). As a tool to obtain the result, we will use the Lumer-Phillips Theorem
and consequences arising from this theorem.

Proposition 3.1. Let A be a dissipative linear operator with dense domain D(A) in X.
If 0 € p(A), with p(A) the resolvent set of A, then A is the infinitesimal generator of a
Cy semigroup of contractions on X.

Proposition 3.2. Let (A, D(A)) be the infinitesimal generator of the strongly continuous
semigroup (T(t))e>o. Then, for every x € D(A), the function

u:t—u(t) =Tz

is the unique classical solution of the abstract Cauchy Problem associated to (A, D(A))
and the initial value x
{ u'(t) = Au(t),

u(0) =uzx.
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Polynomial stability of a thermoelastic system with linear boundary dissipation 65

For more details on the theory of linear semigroups and in particular on the proof of this
proposition, see for instance [12, 14]. In order to define the abstract Cauchy problem
associate to System (1.6)-(1.7) one can define the phase space H and the norm induced
by the energy of the system as follows. Let HJ (2) be the space

Hp (Q) ={ue H'(Q) :u=0onT4}, (3.1)
and

H = (Hp, (2))" x (L*(2))" x L*(2) x (L*(2)", (3.2)
where H'(Q) is the usual Sobolev space. Define the norm in (Hp. (Q))" as

1 .
ey e = 5 [ OV + A+ )l div()do + | Ram - vluar (33)

and the norm in H as
1
V& = 5(\|U||?H;1(Q))n +k6||0][F12(qyyn + kll0l720) +vamollalfreyyn)s  (34)

where V' = (u,v,0,q). The following notations will be taken to reformulate the initial
value problem (1.6)-(1.7), (1.5)-(2.1) in a first-order system. Let V and V; be the vectors

Vi U u®
V2 U " ul
V=1 s [ =] 4 | R VO =Vo=] 4 (3.5)
ve q ¢
Note that equations (1.6)-(1.7), (1.5)-(2.1) can be written as — = AV with
0 1 0 0
| pA+ N+ p)Vdiv 0 —aV 0
A= 0 —sdiv. 0 —ydiv | (3.6)
0 0 —-iv X

where the domain of A is

D(A) = {(v1,v2,v3,v4) € H : vy € (H*(Q))",
ve € (Hf, (Q)™, vs € Hy(Q), div(vs) € L*(Q)}; (3.7)

thus, to solve the system (1.6)-(1.7), with conditions (1.5) and (2.1) is equivalent to solve
the following abstract Cauchy problem associed to the A operator,

(3.8)

V= AV, vt >0,
V(0) = Vp € D(A).

Some properties of the A operator are shown in Proposition 3.3.
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66 R.M. CoORTES

Proposition 3.3. Let (A, D(A)) be the operator defined in (3.6) with domain (3.7). Then

(a) D(A) is dense in H.
(b) A is a dissipative operator.

(c) 0 € p(—A) where p(—A) is the resolvent set of the operator —A.

As a consequence of this proposition and by the semigroup theory, we have the following
result:

Theorem 3.4. Problem (3.8) has a unique solution V € C°(]0, 00), D(A))NC* ([0, 00), H)
given that V (t) = e"tAVy. Consequently, the functions u, 6 and q, as the solutions of the
system (1.6)-(1.7), (1.5)-(2.1), satisfy

u € C*([0,00), (Hyp, (2))") N C([0, 00), (H*(2) NHy, (2))"),

0 € C°([0,00), H*(Q) N Hj () N C ([0, 00), L*(2)),

q € C1([0,00), (L2(2))™).

In the proof of proposition 3.3, the regularity estimates described in Theorem 3.4 are
outlined. The proof of the proposition 3.3 is proved as follows.

Proof. To prove (a), the following auxiliar set is defined

D = {(v1,v2,v3,v4) € H:vy € (H2(Q))", ve € (HYHQ))", v3 € HF(Q),

div(vy) € L2(Q), p22

g (A + p) div(vy)v +am - voy = 0 in Ty}

It must be shown that D C D(A) as well as D is dense in H. The inclusion D C D(A) is
due to the fact that if (v, ve,vs,v4) € D, then vo = 0 in I'; thus

Oy
Fou

in I'y. For density of (C§°(Q2))™ and C§°(Q) in (L%*(Q))™ and L?(Q), it is enough to show
the density in (Hp (Q2))™. If W is defined as

+ A+ p)div(vy)v +am - vo; + m-vvg =0

W = {w e (H*(Q) NHf, ()" : ,ug—f + A+ p)div(w)y + am - vw =0 in Ta},
then, W is dense in (Hf (Q))". In fact, if v € (Hf (22))™ such that
(v, w)(H%l(Q))n =0 forallweW,
then for every fixed function f € (L?(Q2))", the elliptical problem

—pAu — (A4 p)Vdivu = f inQ
u=20 on Fl
u%—!—()\—ku) diviu)v +am-vu=0  onTy,
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Polynomial stability of a thermoelastic system with linear boundary dissipation 67

has a solution v € W. Thus
(f,0) (L2 = (u, v)(Hlll(Q))" =0,

showing that v = 0; therefore, W is dense in (Hf, (€2))" due to the Hanh Banach theorem.
Thus, the density of D(A) in H is proved.

To prove (b), considering the definition of the inner product in H, it is easy to show that
A is dissipative, since if V'€ D(A) with V' = (v1,v2,v3,v4), then

ko
Re(AV, V>’H: Re ((1}2, Ul)(Hh Q)n + ?(,UA’Ul + ()\ + ,u)Vvl - OzV’U?,, UQ)(Lz(Q))n

ko . . QT
77(5d1v(v2) + 7y div(vs), v3) (L2 () — ! 9 -

1
=—- (ké/ (m-y)|v2|2df+’ya/ |v4|2dx) <0.
2 Iy Q

The following proves that —A~! exists and is a continuous operator required to prove
(c). Let W be a vector such that W = (wy, we, ws,ws) € D(A) with AW = 0. Then

k 1
B s+ vy, 04, .,
(7_0 vz + 7_0114 V4, ) (12(Q)) )

—wy =0, (3.9)
—pAw; — (A4 p)Vdivw; + aVws =0, (3.10)
0 div(ws) + ydiv(wy) = 0, (3.11)
1
Eng + —wy =0. (3.12)
7o 70

It is clear that wy = 0, given that AW = 0, then Re(AW, W) = 0; therefore, concluding
from (b), wy = 0. In addition, from (3.12), Vws = 0, from (3.7) w3 € H{(£2), and due to
Poincaré’s inequality, ws = 0. On the other hand, from (3.10), w; would be the solution
of the problem

—pAu — (A4 p)Vdiv(u) =0 in €,

u =0, on I’y

M%Jr()\Jru) diviu)v +am-vu=0  on Ty,

thus, w; = 0. Consequently, W = 0 showing that —A is an injective operator.

To show that —A is a surjective operator, that is, if F' = (Fy,---,Fy) € H, there exists
W € D(A) such that AW = F, the following system must be solved:
—wy = FY, (3.13)
—pAw; — (A4 p)Vdivw; + aVws = Fy, (3.14)
0 div(ws) + ydiv(wy) = F3, (3.15)
k 1
*V’U}g + —wy = F4. (316)
70 70

Thus, wy € (Hf, (€2))" can be obtained from (3.13) and by using the equivalence of norms
(Hp, (22))™ and (H'(£2))™ the following estimation is obtained

k6wl |tz ayyn < kOl F1l[Fr2a)yn < cl[FIIE-
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68 R.M. CoORTES

From (3.15) is shown that div(w,) € L?(2), from this result and considering (3.16) one
gets

vkAws = vy div Fy — F3 — 6 div F} in H_l(Q).
As a consequence of the previous expression and the Riesz Theorem, w3 € Hg () is the
unique solution of the problem —Aw = g in § with g € H~1(£2). Moreover,

w20y + [IVws|[(z2)yn < cllyrodiv Fy — F3 — 0 div Fi||g-1(0)
< clllvmoFullwe @ + 1F3ll2 ) +10F @y o))
< c|[F|la. (3.17)

Considering (3.16) and given that w3 € Hg(Q), it holds that wy € (L?(2))". Thus, wy
satisfies the conditions of the domain D(A), that is, wy € (L*(Q))" and div(w4) € L2(£2).
In addition, from (3.16) and (3.17), one obtains the following estimation

[lwall (2 < cf|F||a.

Finally, to prove w; € (H?(Q)NHy, (Q2))", it follows the same reasoning as in [10], so we
summarize the most important results below.

As wy € HE (€2))", then if h is defined as
h=—(m-v)wsr, (3.18)
then h € (H'/2(I"))"; and, therefore, wy € (HL (£2))" is the unique solution of
—pAw; — (A + p)Vdivw, = (Fp — aVws) i Q,
wy; =0 on I'y, (3.19)
u% + A+ p)div(wy)v +am - vwy = h on Ty,

where f = (Fy — aVws) € (L*(Q))". In fact, if ¢ € (H%I(Q))”, then
- /Q(/zAwl(x)—i—()\ + )V divwy (z))p(z)dz (3.20)
= /Q(uvqul(x) -Vo(x) + (A + p) divw; (z) divg(z))dx  (3.21)
+ [ (o vn(@) - 6(0) — hix)o()r,
1)
and considering the bilinear application in (Hf. (Q))™ x (Hf, (€)™ as
a(wy, ) = %WL Oy, ()" (3.22)
and functional F € [(Hp, (Q2))")

F(g) = / (Fa(z) — aVws(2))p(x)dz + | h(z)é(z)dT, (3.23)

s

we have the assumptions of Lax-Milgram Theorem and then there is a unique solution
wy € (Hp, (Q))" satisfying

llwillz @y < Nl < 1F|]a-
1
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Polynomial stability of a thermoelastic system with linear boundary dissipation 69

In order to prove w; € H?(2), it is necessary (i) to solve another elliptic problem and, by
Nirenberg’s translation method, (ii) to find the regularity in w;. To do so, it is necessary
to apply important results in Sobolev spaces, such as the trace Theorem. In this case,
the reasoning and theoretical developments are similar to those obtained in [10]. v

4. Stability

This section presents the asymptotic behaviour of the energy of the system (1.6)-(1.7),
(1.5) and (2.1), when time ¢ tends to infinity. The aim is to show the result of the
polynomial stability of the energy associated with the system by using the multiplier
methods of [10] for the thermoelastic system with boundary dissipations, as well as the
ideas discussed in [17] where a one-dimensional thermoelastic system with second sound
is studied. As mentioned in Theorem 2.1, the energy decay to be determined is of the
form

Ei(t) < T(B(0) + Ex(0)) Vi >0, (4.1)

and it depends on the first and second order energies defined in (2.5) and (2.7), respec-
tively. The expression (4.1) will be called polynomial decay of energy.

In addition to the constants defined in Theorem 2.1, let Ay be denoted as the least positive
constant such that

[ tur <ollull s, @ voe @ @), (42)
2
and let F'(t) and L(t) be the functionals definied as follows

F(t) = /Q[Zk’cm,’i(m Vi) + (n — 1) (kdu - u;)]dx, (4.3)

L(t) = F(t) + M(E1(t) + Ex(t)), (4.4)

where M > 0 is determined later on. Note that the notation in F'(t) simplifies

F(t) = Z /{2[2k5u2(m V) + (n — 1)(kdu - u;)]dx.

The proof of Theorem 2.1 is based on the demonstration of a series of properties for
the functionals F(t) and L(t). These properties are shown in the following sequence of
lemmas.
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Lemma 4.1. The functional F(t) satisfies

F'(t) = ko |uz\2m vdl' — ké/ [ 2dm+/ kS| Vg |*m - vdT
F2 1—‘1

+ [ 2ké[p a + (A + p) div(u )Vi](moVui)dI‘—/ kSp|Vu;[*m - vdl
T T

—kéu/ |V |2de + kS(A + ) [ | div(u)*m - vdl — kS(\ + ,u)/ |div u|?dx
r, Q

—kS(\ + p) / |div u|*m - vdT + / 26a(q; + Toq;)(m - Vu;)dz
I's Q

—kd(n — 1)/ am - v|u;|?dl’ — (n — 1)k5/ m - vuu,dl
FQ FQ

+(n — 1)/ch5a0div(u)dx
(4.5)

Proof. Multiplying (1.6) by kdu in (L?(£2))" and integrating it in €, it holds
/ kou" - u dx = / ké(pAu+ (A + p)Vdiv u— aVe) - u dr. (4.6)
Q
This expression can also be expressed as

/ kéu" - udx = 4 </ kou' - ud:v) —/ ko|u'|?d. (4.7)
Q dt \Jo %

By using Green'’s identity and the boundary condition (2.1), the right-side terms in (4.6)
have the following expressions

/Au-udxz Vui-uuidf—/ |Vu,|?de, (4.8)
Q Iy Q
/lev u)-udr = dlv( Yu; - v dl — /|d1v )da, (4.9)
/V9 udx—/dlv (Ou) dac—/ 0 div(u :—/Qdiv(u)da:, (4.10)
Q

because § = 0 in I'. When replacing (4.7)-(4.10) in (4.6), it holds

(Z(/ kou' - udx) /k5|u| dx — /,uk5|Vu|2dx—k5()\—|—,u)/ | div(u)|*dx
Q

ksam - v|u|*dl’ 7/ kém - vu - u'dl + / kda div(u)dz.

T2 s Q
(4.11)
Similarly, multiplying the equation (1.6) by kdm - Vu in (L?(Q))", given that m - Vu =
(m-Vuy,...,m-Vu,), and integrating it in €2, it holds

kou (m - Vu)dr = | ko(pAu+ A+ p)V(div u) —aVo) - (m- Vudr.  (4.12)
Q Q
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Besides, from the condition (2.1), it holds

1
/ u (m - Vu)dz = 4 / ul(m-Vug)dr | — = [ |ul]*m - vdl + 2/ lul|?dz. (4.13)
) dt \Jo 2Jr, 2 Ja

By applying the Green’s identity to the right-side terms in (4.12), and considering the

fact that v = 0 in I'; satisfies ai dui — v and |V, |? = |8u|2 it holds

Oz, Ov

[ Awtn-Vugde =5 [ (G vt [ S Guar
Q T2

v

(4.14)

1 2 2

-3 5 [V |“dx,
1
/V(div w)-(m-Vu)dx = 3 | div(w)|*m-vdl + [ div(u)v;(m-Vu;)dD
Q Iy o

(4.15)

-2 1
/\div ul?dx — f/ |div u|*m - vdl.
Q 2Jr,

By using condition (1.5) and replacing the results (4.13)-(4.15) in (4.12), one concludes

that
a4 (/ kéu(m - Vui)dx) _ ko |u}|*m - vdl’ — Lk(s/ %
t U > )y,

k i
—|—/ kop, Ou |*m - vdl +
Iy

du; (m - Vu;)dT

2 v o
-2
_ w|Vug|*m - vdl + M/ w|Vu;|*dx (4.16)
2 Jr, 2 Q

ko
+ > (A + p)| div(u)|?m - vdl + / kES(A + p) div(uw)v;(m - Vug)dD
Fl FZ

+ W/(Aﬂmdiv ul?dz
Q

ko

5 (A + )| div uf*m - vdl' + / ad(qi + 10q;)(m - Vu;)dx
I

Q

So, from the condition (2.1), and from the expressions (4.11) and (4.16), the functional
F(t) defined in (4.3) satisfies (4.5). [t
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Lemma 4.2. For all € > 0 and under the conditions (1.5) and (2.1), F' satisfies

2R%ks
F'(t) <—2E1(t)+(csc + 1)eEy (t) +(kd +

R
— 12— "2m - vdDl
+ k3(n )2eu)/p2“1| m - vd

2058  SaP4R?

0
2c20 )220 / 2

2c0078 400’ R27¢ 2 2078 / "
—1 de (417
He—— T +((n = 1Da) eVt 1) lq'|*da )
2 2
ko [ am-v(Z B ()~ 2))jug 2

I

Proof. From the expression (4.5), the following estimates are obtained. First, from the
geometric conditions (2.2), the right-side terms in (4.5) satisfy

/ |V, |*m - vdT < 0, —/ |div u|?*m - vdl' <0, and / | div(u)[*m - vdT < 0
I I 'y

(4.18)
On the other hand, due to the Poincaré inequality for § and considering equation (1.5),
the following estimation for @ is obtained

2,72 2
k/ 10]2dz < ﬂ/ |q’|2dm+ﬂ/ lq|2dz.

Thus, (n — 1)/ kéad div(u)dz in (4.5) is estimated as
Q

i 9 1 0272 "2 2, o
(n— 1)/Qk<5a9dlv(u)dx <d((n—1)a) Ot (/Q ko |¢'|*dx —l—/ﬂ ?|q| dx)
kS / me( )|2de, (4.19)
Q

where ¢y is the Poincaré constant. At the same time, due to the Young inequality,
the trace Theorem, and Poincaré’s inequality applied to the function u, the following
inequalities are obtained:

2¢*R? 2R?
/ + (A 4 p) div(w)y;](m - Vu;)dD] < ké m -y a [ui|? + p| Vs |2 + == |u}|?]dT,
Ta Ty 122 H

and

—1)2
—(n—1)k8§ | m-vuuldl < kéM/(m )| 2T + 6356@ |V, |2 da,
2ep r 2 Ja

FQ 2
(4.20)
where ¢ is the constant given by the trace Theorem. v
From the Hoélder inequality, one finds that
4R?60? 0
| 200t ro)m-Vudo < | EEE o+ o+ [ S VP (4.1
Q Q
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By replacing the expressions (4.18)-(4.21) in (4.5) and adding the terms to complete the
energy of first order defined in (2.5), (4.17) is obtained.

Lemma 4.3. Under the hypothesis of Theorem 2.1, L(t) satifies
(a) L'(t) < —Er(t),
(b) L(t) = Ex(t) + Ex(t).
Proof. The proof is given by analyzing the dimension: n =2 and n > 3. Let M be

2 12
M > max{k(5+ 2R + k5(n2 VR )
€

u u
2¢26 n §a?4R?  ((n —1)a)?dcy

YToa+ k kep ke(A+p)
2¢907¢ n 4502 R? 2 Scatd((n — 1)a)?
k ke ° ke(\ + )

In the case n = 2, the function a(x) satisfies (2.9a), then, by using the inequality (4.2),

it holds
k6/ am - v|ug)*(
2

3
(1- 253

(cser + 1)
from Lemma 4.2. Analogously, by using (2.9b) and by taking e <

RB

2aR2 2
M < SN ) (4.22)

thus, if € is given by € < , then, the case (a) for dimension n = 2 is obtained

from Lemma

e3¢y +
4.2, one can deduce (a) for the case n > 3.

Finally, in order to demonstrate (b) for the Lemma 4.3, one combines the inequality (4.2)
and the Cauchy inequality applied to F'(¢) as shown in (4.3), and defines M as

- R? n—1) (n—-1)

thus, functional L(t) satisfies (b). v
Theorem 2.1 is demonstrated by using the results of the sequence of Lemmas as follows.

Proof of Theorem 2.1. Given Ej(t) < —%L(t), integrating it on [0,¢], and by using the
equivalence of Lemma 4.3, one obtains

[ Bias < 10) = M 0) + B(0)
0

Moreover, due to

%{tEl(t)} =FEi(t) + t%{El(t)}a
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and being £{E(t)} <0, then £{tE(t)} < Ey(t); thus

tE4 (t) = /0 El(s)ds < M(E1 (O) + EQ(O)),

proving the result of Theorem 2.1, and consequently, showing the polynomial decay of
the thermoelastic system. ]
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