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Abstract. Caterpillar trees, or simply Caterpillar, are trees such that when
we remove all their leaves (or end edge) we obtain a path. The number of
nonisomorphic caterpillars with n > 2 edges is 273 + 2L(»=3)/2] " Using a
new sum of graphs, introduced in this paper, we provided a new proof of this
result.
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Una nueva suma de grafos y arboles oruga

Resumen. Arboles oruga, o simplemente oruga, son arboles tales que cuando
les quitamos todas sus ramas (o arista final) obtenemos un camino. La can-
tidad de orugas no isomorfas con n > 2 aristas es 2”3 + 2L("=3)/2]  Usando
una nueva suma de grafos, introducida en este articulo, proporcionamos una
nueva prueba de este resultado.

Palabras clave: Grafo, arboles oruga, grafo arbol, suma de grafos.

1. Introduction

The Caterpillar trees were initially studied by F. Harary and A. J. Schwenk [1] in a series
of articles. The name was introduced by Arthur Hobbs, an American mathematician.
In 1973, F. Harary and A.J. Schwenk [1] showed that the number of nonisomorphic
caterpillars with n > 2 edges is 273 4 2L(=3)/2] " They found this formula in two ways:
first, derived as a special case of an application of Pélya’s enumeration Theorem which
counts graphs with integer-weighted points; secondly, by an appropriate labelling of the
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78 N. B. HuaMAN{, JOICE S. DO NASCIMENTO & A. CONDORI

lines of the caterpillar. In this paper, we gave a new proof of this result using a new sum
of graphs, introduced in [3, 2] and studied with great attention in [4].

The paper is organized as follows. In Section 2, we study a combinatorial problem which
will be used in the proof of the main Theorem (see Theorem 3.7). In Section 3, we
introduce the sum of graphs and use it to build the caterpillar trees, and, thus, give a
new proof of the formula enumerating caterpillar trees on n > 2 edges.

2. Combinatorial lemma

Let B ={0,1} and B™ = B X --- x B, the m-times Cartesian product of B. We define
the following functions:

7 B™ — B™ T B™ — B™
(T1,%2, ey T) — (21,22, ..., Tm), (21,22, s Tm) > (Tony T 1, e, T1)5
c: B™ — B™
(1’1,1’2,...,5Em) — (fl,fg,...,fm),
where, for k=1,...,m,
_ 0 ifzp=1
T = ) k )
1 ifxp =0.

Here, we consider for all f,g: B™ — B™ the composition fog:B"™ — B™.

Proposition 2.1. Let i,r,c: B™ — B™ be the functions defined above and take x € B™.
Then, the following properties hold:

(1) i(z) = =,

(2) r =i,
(3) 2 =1,
(4) cor=roc,

(5) (cor)? =1,

where ¢*> = coc.

Proof. By definition of i, r and ¢, it is clear that (1), (2), (3) and (4) follows. And (5)
follows from (4), (2) and (3). 4

Definition 2.2. Let z,y € B™. We will say that z is related to y when i(z) = y or
r(z) =y or c(x) =y or (cor)(z) =y, and it will be denoted by z ~ y.

Remark 2.3. The relation ~ defined in Definition 2.2 is an equivalence relation.

In this section we prove the following combinatorial lemma for the equivalence classes
associated with points in B™.
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A new sum of graphs and caterpillar trees 79

Lemma 2.4 (Combinatorial Lemma). Let z € B™ and set [z] = {y € B | = ~ y}.

Then,
#<E> —om=2 4 2[%%
B™ . )
where — = {[z] |z € B™} and |z] is the largest integer smaller than or equal to z.

Proof.  First, let’s show the following: The class [z] € %m has 2 or 4 representatives.
Indeed, if &, r(z), c(z) and (cor)(x) = (r o ¢)(x) are different from each other, we will
get that the class [z] has 4 representatives, namely

[z] = {z,r(z),c(z), (cor)(z)}.
On the other hand:

i) If x = r(z), then ¢(xz) = (cor)(x) and, thus, [z]

= {z,c(z)}.
it) If x = (r o c¢)(x), then r(z) = c¢(x) and, thus, [z] = {z,r(z) = c(z)}.

The cases i) and i) have only 2 representatives for the class [z] and the affirmation
follows.

Remark: z # ¢(x) by definition.
B’m
Now, let [z] € — be a class that only has 2 representatives. Set £ = (21,22, , Tm).

We have the following cases:
I) If x = r(z) then
L1 =Tm, L2 = Tm—1,""" ,Ti = Tm—i+1, " L | 2| = Ty | T |41

IT) If £ = (r o ¢)(x) then

T =Tm, T2 = Tm—1," " 5% = Tm—itly " T2 = Ty |2 |41
In case (I), if m is even, we have to know the || first entries of = (x1,22, -+, Zm),

that is, we can form 2l%Z) elements. Now, as pairwise elements belong to the same
class, we have that 2L2)=1 belong to the same class, and, therefore, we will have two
representatives. On the other hand, if m is odd, we first delete the central coordinate
z|m| + 1 of &, to obtain the m — 1 even case, which leads us to have 2l =1 classes
with two representatives. Now, considering the central coordinate z|m | + 1 of z, we see

that it can take the values 0 or 1, and thus, when m is odd there are 2(2Lm2_1J_1) =

ol™5+) = 21%] classes with two representatives.

Analogously, we have a similar result in case (II) when m is even. Note that when m is
odd there are no representatives, since no & with m odd entries satisfies this case.

So, from (I) and (II), if m is even, we get 2151~ 4 2l%1=1 = 2l%J classes with two
representatives each. If m is odd, we get 2L%). Therefore, in both cases we have the
same number of representatives.
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80 N. B. HuaMAN{, JOICE S. DO NASCIMENTO & A. CONDORI

The next step consists of computing #(%) It follows from the Affirmation that % is
made up of classes that have 2 or 4 elements. Thus, we can divide B™ into a collection
of disjoint classes of 2 or 4 elements each. Thus, one gets

2™ = #(B™) = 2u + 40, (1)

where p is the number of classes of % with two representatives, namely p = 2L% /-1 +
ol )=1 = 2l%]); and 7 is the number of classes of B~ with four representatives. Then,
substituting these values in (1), one gets

2m = 2(2l%])) +4q

= 5 = 9m2_9lyl-1 (2)
Therefore,
B™ 2] | om=2  olZ]=1 _ om=2 | olZ]—1 _ om=2 , o|™=2]
#l— | =p+n=22142 — 2Lz =2 + 212 =2 + 20720,

v

3. Sum of graph and Caterpillar tree

Let us denote by A the set of all tree graphs.

The sum of graphs in A is an operation that is performed between two graphs of A. This
sum is defined as follows:

g H GO
a a’ a
b v b

Figure 1. Sum of graphs.

Definition 3.1. Let G = (V,E) and H = (V', E’) be distinct graphs in A and let e =
(a,b) € E and € = (a/,’) € E' be edges. Then,

g @{e,e’} H= (V uv’'— {a/vb/}7EU E - {el})

is a new graph such that e and ¢’ and their respective vertices, connecting G and H, are
identified. The graph G @y, ./} H is the sum between G and H. This sum will be denoted
by G @ H if there is no confusion in the identification of the edges. See Figure 1 for a
graphical representation of this sum.

Definition 3.2. Consider the path P; and J = P;5. We denote by J; the graph derived
of J with two positive signs in the extreme vertices and a negative sign in the middle
vertex, and by J_ to the graph derived of J with two negative signs in the extreme
vertices and a positive sign in the middle vertex. See Figure 2.

[Revista Integracion



A new sum of graphs and caterpillar trees 81

J J-
Cox R

+ + - -

Figure 2. Graphs J4+ and J—.

Definition 3.3. Let {J;}%_, be a family of graphs, where J; € {J.,J_}. We define
JL DI ® - @ Ji, as follows:

e For k =1, we have J;.

e For k = 2, we choose an edge in J; and add with J; in the chosen edge. Thus, we
obtain J; @ Jo. Finally, we mark in J; & Jo the edge of J, where the addition was
not performed. (See part (i) of Figure 3).

e For k =j, weadd J; @--- @ J;j—; with J; on the marked edge of J;1 ®--- ® J;_1,
and, thus, obtaining J; @ ---® J;j_1 & J;. Finally, we mark J, ®---® J;_1 ® J; in
the edge of J;, where the addition was not performed.

We note that the identification of edges should be done while preserving the signs.

Notation. Given {J;}¥_,, where J; € {J,,J_}, we will denote by @le J; the sum
J1D- - -®Jy, in Definition 3.3. Thus: @le Ji = J16- - -BJg. By convention, @?:1 Ji=1,
where Z, is the graph of one edge.

Example 3.4. In Figure 3 (i), we have the construction of J» ® J+ and J- & J—,
according to the Definition 3.3, where we can see that Jy & J+ = J- & J—, as graphs.
Similarly, in Figure 3 (ii) we have the construction of Jy & J— and J— ® J4+, where we
can see that 7y @ J- = J_ ® J+.

Proposition 3.5. Let {J;}_, be a family of graphs such that J; € {JTy,J_}. Then, the
following statements holds:

7. T _ j+7 Zf Ji=J-
Ji, where J; { T i Ji=d

D~
P~

Ji

1 i=1

.
I

Ji
1 i

'E‘B”
D~

Jrt1-i-

% 1

Proof. For (1), since Jy = J_ we have J; = J; for all i = 1,--- k. Then, if we replace
J; by J; in @le J; we get @le J; and since the sums of the graphs continue to be

performed on the same edges, we have @le Ji =2 @le J;, see Figure 4.

For (2), we note that the sum @le Ji=I1BSP - PJp_1 8 Ji is built starting from J;
which is added to Js to obtain J; ®.J5, latter we added J3 to obtain J; ®J>®J3, and, thus,
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.
]

1 o - o .
i1) J@
4 — 3 — o
J.

12

= =

112
112

®

+ = - P %
Jr@J-=J-0J+ J- T+

Figure 3. Sum between J+ and J_, where “2” is the isomorphism of graphs.

until we get the sum of J1 ®Jo @+ B Jr_1 and Ji to finally get J1 D JoB - - DJp_1DJp =
@le J;, but we also noted that this same sum is built as the sum of J; and J,_1, and,
thus, until we get to add Ji®- - -®Js with J; to get JyDJr_1D---BJoBJ; = @le Jpr1—i-
Thus, @, Ji = B | Jri1 s &

Example 3.6. The graphs J1 ©J-©J+ & T+ and J- & T+ ®J- S J- are built in (i) and
(i) of Figure 4, respectively. Furthermore, J-®©J1 ©J-0J- =T 0J- 0T+ ® T+ =
T - &Jr®J_®J_, and, thus:

Jodied-od 2T oJr0T-oJT-.

+ —_
) te— P o % = X e ;- % = ;-
)
= ) =~
+
= = Ll £ % = £
Jr0J- T+ JrdJ-d It JroJ-0 I+ T+ JreIJ-oJrd T+
N . I
- D & g + - 1y o . —. 4
. H .
— — s 4 —
J- oI+ J- JoJ-0J- J0J-dJ- J- J-eJrdIJ-J-

Figure 4. 7, @ J- 0 J+ 0T+ 2T 0T+ T-d T -

The following Theorem is the main result of the paper (it was initially showed by F.
Harary and A.J. Schwenk in [1]), for which we gave an alternative proof.
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Theorem 3.7. LetJ={J1 & J;, & DIn€A| J, =T orJ;, =T, Vi=
1,---,m, and m € N}. Then, the number of different nonisomorphic graphs with n > 2
edges in J, is given by

on=3 4 ol"z”)

Proof. Given m € N, we define the functions ¢, ¢, : J — J by

m

W(EP i) = P Tms1—i-
=1

=1

We say that @, J; and @~ L; are ~,, related in J, denoted by

L(@ Ji) = @LZ— or cp(EB Ji) = @Li or

Now, we affirm that the relation ~,, is an equivalence relation. Indeed, it follows
immediately by the combinatorial Lemma (Lemma 2.4), where we take J;, = x;,
Jr =1, J- =0, & ,Ji = (x1,-,xm) and ¢ =4, ¢ = f, ¥ = g, ~p=~. Fur-

thermore,
#<J) :#<B> —9m—2 4 ol 72| (3)

~m ~

Thus, we have 2™ 2 +21772] different graphs of the form @, J;, where J; € {J}, J_}.
Since the graphs @.", J; have m + 1 edges, making n = m + 1 and substituting in (3)
we have that the number of nonisomorphic different graphs, with n > 2 edges in J, is
given by

on=3 4 ol"3% ],

v

Given a Caterpillar tree fixed, the following result allows us to obtain a family {J;}%_,,
where J; € {J4, J-}, such that K = @le Jj.

Vol. 40, No. 1, 2022]



84 N. B. HuaMAN{, JOICE S. DO NASCIMENTO & A. CONDORI

Proposition 3.8. Let n be a positive integer and K be a Caterpillar tree with n+1 edges,
then there exists a family {J;}_,, where J; € {J4+, J-}, such that

K%éji.
=1

Proof. By induction on the number E of edges of K.

= For a graph with 1 edge, then by convention we have K =2 @?:1 J;.
= For a graph with 2 edges, we take K = @;:1 J;, where J; = J4 or J; = J_.
= Suppose that it is true for a graph with n edges, then K =2 @?;11 J;.

= Now, we show that it is true for a graph with n + 1 edges. Indeed, K’ is the
graph that is obtained when deleting an end edge from K. Thus, K/ has E' = n
edges. Then, by induction, we have that K’ = @?:_11 J;. Now, in @;:11 J; we
insert an end edge by adding conveniently J, or J_, so that @;_,J; = K as
follows: first, we identify the sign of the vertex where the edge will be inserted
(it is clear that said vertex is positive or negative). Then there will be a j such
that @7 J; = (@' 7 J) @ (@::nlﬂ J;) so that the last vertex to the right of
EB?:}I*J J; become the vertex where the missing edge will be inserted. If the vertex
is positive (resp. negative) we immediately add @?:_11 ~7 J; with J_ (resp. J4), and
adding @7, _; Ji, we get (B, 7 Ji) & T- @ (B;,_; i) (vesp. (D=, i) @
T. @ (@I . Ji). As was inserted the missing edge to @?;11 Ji to be isomorphic

i=n—j Ji

to K, we have that

n—1—j

n—1 n
(P wese( 1) =P =K,
k=1

i=1 i=n—j

where J = J_, if the last vertex created in @;lefj J; has a positive sign and
J = Jy, if the last vertex created in @;_,' 7 J; has a negative sign.

An example for Proposition 3.8 is given in Figure 5.

Theorem 3.9. Let Jo be the set of all different nonisomorphic graphs in J and let K be
the set of nonisomorphic Caterpillar trees, then

Jo=K and #(Jo) = #(K) = 2" 4+ 2l"7").

Proof. By Definition 3.3 we have that the graphs in Jo are Caterpillar trees (thus J, C K)
then, by Proposition 3.8, we get that every Caterpillar tree is isomorphic to an element
of Jo, thus K C Jy and therefore Jo = K. Furthermore,

#(To) = #(K) =2 + 2L,
v
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i) [ [ 1
- ¥ = ¥ & - 7 = T =

Jedred-eJ- JoJ oI dI-0IT-

i) I I {
- + = + = = - + = T -

JeJ eJ - oJ- Jediedrod-&J-

Figure 5. Way to insert an edge in positive vertex (i) or in negative vertex (7).
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