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An Introduction to Spinor Differential and Integral
Calculus from g-Lorentzian Algebra

JuLio CESAR JARAMILLO QUICENO 2,

Universidad Nacional de Colombia, Bogoté, Colombia.

Abstract.  In this paper we introduce the differential and integral calculus from
g-Lorentzian algebra. We establish the g-spinorial variables, the g-differential calculus
and the g-complex spinorial integrals. We also define the g-spinor differential equation
and the ¢-Lorentzian spinor differential equation. Some comments are presented at
the end of the paper.

Keywords: g-Lorentzian algebra, g-spinor derivative and integral, differential spinor
equation.
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Una Introduccién al Calculo Diferencial e Integral Espinorial a
partir de la g-Algebra Lorentziana.

Resumen. En este articulo introducimos el célculo diferencial e integral a partir de la
g-algebra lorentziana. Establecemos las g-variables espinoriales, el g-calculo diferencial
y las g-integrales espinoriales complejas. También definimos la g-ecuacién diferencial
espinorial y la g-ecuacién diferencial espinorial lorentziana. En el final del articulo se
presentan algunos comentarios.

Palabras clave: g-adlgebra Lorentziana, g-derivada e integral espinorial. ecuacién dife-
rencial espinorial.

1. Introduction

Based on the work of Beretetskii et al., Lachieze-Rey, Gori et al., and Cartan, the spinor ¥® is
defined as a magnitude components o« = 1,2 expressed as

wa _ wl
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44 J. C. JARAMILLO QUICENO

and its complex conjugate ¢ in terms of the rotation matrices (see [2],[3],[5],[4] for more details).
Based on the work of the aforementioned authors, there are two types of operations on spinors,
which are reflections and rotations. In group theory, the set of rotations described by the matrices
with complex entries is group SU(2), whose generators are the Pauli matrices, described in the
work of Zettili [7]. In regards to rotation matrices, Gori et al. mentioned in their work that rotation
matrices originated Pauli matrices in the form of:

cos(6/2) isin(6/2) cos(0/2) sin(6/2) /2 0
Ra(0) = isin(0/2) 008(9/2)] 12y (0) = [sin(9/2) cos(9/2)} » R (0) = { 0 e‘i‘g/Q} (M)

being 6 the angle of rotation [4]. Beretetskii et al. defined the covariance and contravariance over
the spinors by the relation ¢! = 45, 1'> = —; from the matrix

0 1
Jof=1-1 0

and, similarly, for pointed spinors, ¥; = %295 = —! [3]. The same author defined bispinors
as the pair (¢, p4), which form a broader group of Lorentz, and, with them, the scalar product
is formulated as (Y%, ¢s) - (f*, ha). The author of the reference [5] mentions algebra CI(3) as
a space-time formulation generated by vectors e,, which form a basis for R'3 that satisfies the
relation e, - €, = g, inducing a 16-membered basis, as described below:

1 1 scalar,

2 (eg,e1,ea,e3) 4-vector,

3 (ege1, epea, epes, e1€2, eses, eser) 6- bivectors,
4 (ejeges, epeses, egeres, egees) 4-trivectors,

5 e5 = egpejeses pseudoescalar.

In accordance with the previous statements, the same author described the Weyl spinors as

e

2]

The g-Lorentzian algebra was defined in the reference [1]. The quantum complex spinors have

and the Dirac spinor

as defined in the work of Beretetskii et al [3].

components v and 2 and conjugates <pi and ¢;. They meet the following g-relations.

Ui = @2, el = gply?, (2)
Yo' = o' —alg+ a7 ) P50, P20t = ply2?, (3)
Y1y = qpath,  ©los = g Lpspt (4)

Definition 1.1. Considering spinors ¢%, % and {T17T2,Sl,0'2} as the generators of the
g-Lorentzian algebra for the group U,(su(2)) [6], we have:
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An Introduction to Spinor Differential and Integral Calculus from g-Lorentzian Algebra

1. For %, a=1,2

2. Their complex conjugates ¢,

17/} = 1;[}17_17
Th? =t —q(g+q-
Ty = q ' T2,

)2¢1T27

Sty = qir ST,

T?y* = q°T?,

Sty? = ¢ W?St — o,
o’y = P10,

o2 = 2o,

a=1,2

Tlcpi _ q_lgoiTl,

T'ps = qosT,
T2<pi _ (piTQ +q—1(p27_17
T Py = ‘PQT )
Sl<p1 _ Sl’

o’p' = qp'o® + (q+q )%y S,
0'24,02 = qchO'Z.

45

(13)
(14)
(15)
(16)
(17)
(18)
(19)

Deformed commutation relations for ¢-Lorentzian algebra are defined in the next proposition, on

the quantum-symmetric plane and

Proposition 1.2. Considering generator T of the set {Tl,TQ,Sl,

the quantum anti-symmetric plane.

o2} for the algebra Ug(su(2))

and the relations 2, 3, and 4, defined in [1] and [6] . The q-Lorentzian algebra for spinors in the
deformed space is defined through the following relations:

T(wﬁ — qp?n) = (p1p? — g T,
T(1? — q?ehr) = (Y19 — qu29")T
T(plos+q~ wzwl) (los +q Loz,
T(p'es +q  os0") = (0105 + g o30")T.

Definition 1.3. The following matrices are the bosonic g-deformed Minkowskian Pauli spin matrices

defined in the Schmidt work [6]:

0

@=o o @s=]d o

q'/? 0 —q'/?

3y L —1y—-1/2 0y . _ —1y—1/2
(0%)ep=ala+q ) /|:q—1/2 O]’ (0)ap=(a+a ") /[ql/Z 0

Likewise, the conjugated Pauli matrices are:

—3y. —1y-1/2 —0y.  _ —1\-1/2
@ )ap =alg+q") [q—1/2 0 ]a @ )ap=(a+q ") [—q1/2 0

Vol. 41, No. 1, 2023]



46 J. C. JARAMILLO QUICENO

The inverse Pauli matrices

B PR 0 1/2 B L 0 _,—1/2
(03 1)04[3 =qlg+q7") Yz [q—1/2 qO } (o 1)aﬁ' =(g+q7") Yz { 1/2 I } . (29)

Finally

e I e e P R

0 q1/2

o PR - L 0 _,—1/2
@ es =ata+a | S U] @ e =ara 2] S T e

q

The purpose of this article is to define the g-Lorentzian spinor variables and g-spinor differential
and integral calculus and g-differential spinor equation. The paper is organized in: section 2 where
it is presented the g-spinor variables and calculus. In section 3 we present the g-differential spinor
equation, and the final section with comments.

2. q-Spinor variables and calculus

Definition 2.1. The g-Lorentzian spinor variables or g-spinor variables are defined according to
the expressions (2), (3), and (4) as follows:

uf = P1p? — gy, (32)
2 = g2l — gply?, (33)
oy = Yol — ol + (g +1) 7V 00, (34)
y?t = g2l — ply?, (35)

2} = Y1y — 4 N30 (36)
tiy = P10y — qpsii. (37)

Definition 2.2. We consider the set U = {u%, vi2, xié, 221, y2i, tl?} C C. A function on the g-spinor
variables is defined as ) S
f(U) = f(ufv Ul2a x}@ Zélv y21’ tl?)'

Definition 2.3. Let f,g : U — C be functions and u” € U. The following properties are satisfy
on the g-spinor variables, we state some clear properties of the functions on the g-spinor variables

L (f +9)(@?) = f(u’) + g(u?).

2. (f-9)(W’) = f(u’) - g(uP).

3. (f—9)(WP) = f(uP) — g(uP).
LAY _ S ub

4' <g>( )_g(uﬁ)’ g( )750

Definition 2.4. For a function f : U — C and u” € C, the g-spinor derivative is defined as:

Qf  Faw)?) - af ()
d,u? (qu)P — quf

(38)

[Revista Integracion
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and its conjugate complex

dof _ F(q)*) ~ af (o)

&
dgv

(qu)& — qu¥

Proposition 2.5. Let V C C be the set conformed by q-spinor variables in the form

V= {uﬁ,ua,vd,vﬁ;a,ﬁ: 1,2;0’4,3:1,2}.

The g-spinor functions in complex variable f : V. — C can be expressed as:

) =
f(ua) =
f®) =

flvg) =

Yo l@asf@h)]",

3
I
=)

NE

[(@)ap ()]

3
Il
=)

[(Eﬁl)aﬁf(ud)}m ;

NE

3
I
<)

M8

()apt )]

0

3
Il

47

(@u)ap: (@, )as, (0u)ags b= {+,—,3,0} being the deformed spin matrices in the Minkowski space

defined in the introduction .

Theorem 2.6. Assume that f : C — C and g : C — C are spinorial differentiable functions at

uP,v® € C . Then

1. the sum g + h : C — C is g-differentiable at u® and

dof  dyg dqh

duf - duf

dguf’

2. the product gh : C — C is q-differentiable at u® and

dof _

dyu? gl(qu)’]

d,uf

dh {g[(qum —g) b

(qu)? — quP

3. (uP)" : C — C is g-differentiable at u® and

dof _ ") — q(w’)"
dguf  (¢PuP) — (quP)n

(@) + (P2 qu’ + -+ (qu)" ]

Proof. 1.
def _ gllqw)’] + hl(qw)’] — ag(u”) — gh(u”)
dguf (qu)B — quP
_ 9llqw)’] —qg(w®) | hl(qw)°] — gh(u)
(qu)P — qu” (qu)? — quP
dg  dgh
B dguf  dguf

Vol. 41, No. 1, 2023]



48 J. C. JARAMILLO QUICENO

2.
def _ gllquw)”]hl(qw)’] — qg(u”’)h(u?)
d,uf (qu)B — quP
_ 9l(qw)°1h[(qw)°] + qgl(qu)’]h(u”) — qgl(qu)°]n(u”) — qg(u”)h(u”)
(qu)? — quP
— ollaw)? hl(qu)’] — gh(u”) gl(qu)”] — g(u”)
= olle) ]{ (qu)? — quP }+q{ (qu)P — quP }
WP — a(uf
_ g[(qu)ﬁ] diqu; tgq {9[((‘21})5]_ ;7155 )}
3.

def _ (Pu)" —q(”)"
d,uf (qu)f — quf ’

. . BuB n__ u[j n
multiplying by W‘%’

dof _ (@PuP)" —q(w®)" (¢°uP)" — (qu”)"

dgu? (qu)f —quf  (PuP)m — (quP)"
_ (@) —q(uf)" (¢PuP) — (qu)"
(qu)? — (quP)™ ¢Puf — quf

(¢°uP)" — q(uP)"
(qu)? — (quP)™

Remark 2.7. The proof for f(v%) is similar.

Example 2.8. 1. For f(u®) =’

fllqw?] — af(w”) _ (qu)’ — qu”
(qu)P — quP (qu)P — quP

2. If f(v%) = u®, then % = 0.

3. f(WP) = (uP)3 + (v)uP

dof _ )P =g | ) —
dqu? (qu)B — quP (qu)? — quo
Bub)3 — g(uf)3 |

With these results, it is possible to define that g-spinor complex integral formula by the following
theorem.

Theorem 2.9. LetI'; be the closed contour of the deformed quantum complex plane, and ug, vY C Ty
point spinors contained in the contour. The q-spinor complex integral formulas are defined by:

[Revista Integracion



An Introduction to Spinor Differential and Integral Calculus from g-Lorentzian Algebra 49

/. W = LS [ enrd)] (4)

qu)® — quy
7{ f Hd ub B
(qu) ﬁ —quy
% f(” )dqv _
r, (qv)d - qvS‘
|
— qvo

Proof. dqf is found form (38) and is integrated over closed contour I'y

f((qu)?)dgu” f(uf)d,u?
% % (qu) 5 - quﬁ - qjg (qu)P —qquﬁ’ (48)

q

[(5u)aﬂf((quo)ﬁ)]n ; (45)

(2 3
(HD

0

3
I

[ Ou aﬁf UO)}ma (46)

_
I

M?

0

[(o—maﬁf«qvo)@)]m. (47)

e

the left side of (48) may be equalated to

o0

> [@asf(w?)]", obtaining

n=0
= [ 1 F((qu)?)du? f(wP)dgu”
2, [ as]" | ?{ (qu) 5 - quﬁ - q%rq (qu)? — quf’ (49)

taking into account point spinors, then [f(uﬁ)]n = [f((quo)ﬁ]n - [f(ug)} is defined and, by
substituting in (49), the following is obtained:

N o n_ c- 1) f((qu)?)dgu” -~ f(u?)dgu”
S (@ as]" [F((quo))])" = 3 (@5 as]” | 74 v . f N .

= = u) 5 - quﬁ qu)? — qu”
The expressions (44) and (45) are obtained by equalating terms that depend on f((qug)®) and
f(uoﬁ). The same process is applied to get (46) and (47) from (39). v

Example 2.10. Considering the following spinorial function f(vm) = (vi2)2, and the point spinor
v§? = qul? contained in the closed contour T'y. Applying (46) we have

vi2)2q pi2 s .
[ = & Sl @

r, (qu)'? — qu'?

taking in account the spinorial matrices defined in the Schmiditts work [6] (check Introduction) and
if uw = —, then

% (1}12.)2dq1}1.2 _ 1 i[(a 1) ]nL(q 12>2m
Iy (q’U)12 - qU12 q m=0
1 [eS)
- - Z qm(q012)2m
q m=0
[eS)
_ Zqiimfl(le)Qm7
m=0

and for the case . = + the integral is zero.

Vol. 41, No. 1, 2023]



50 J. C. JARAMILLO QUICENO

3. q-Differential spinor equation

Based on the Pauli matrices presented in the works of Gori and Zettili [4],[7], 4 x 4 rotation matrices
were defined in the following proposition.

Proposition 3.1. The 4 x 4 rotation matrices can be expressed as follows:

cos(6/2) isin(6/2) 0 0 0 cos(6/2) —sin(d/2) 0
- _|4sin(8/2) cos(8/2) 0 0O ~ |0 sin(6/2) cos(8/2) O
B (0) = 0 0 1 0/’ By (6) = 1 0 0 0f’
0 0 0 1 0 0 0 1
1 0 0 0
« 0 ei9/2 0 0
Rz(a) - 0 0 e—i9/2 0 (50)
0 0 0 1

With these rotation matrices, we can propose the following spinors, using as a starting point the
definitions proposed by Beretetskii et al and Lachieze [3], [5].

Proposition 3.2. The spinors 2 and cpg can be expressed as follows:

Ya e
_wa & _90@
wa wﬁ ) (pﬁ (pﬁ ) ( )
—pB -4
and, when related to (50), spinorial components 1z, vy, 0., ¢z, ¢y and @; are defined
Vo= Ro (0000, 0y =Ry(O000, e = Ro(0)9] (52)
vi = RLO)¢G, vy = REO)03, ¢z = R0, (53)
and explicitly:
o c0s(0/2) — ithq sin(a/2) —1hq cos(0/2) — 1P sin(6/2) Ya ]
o sin(0/2) — cos(0/2)va —1pq sin(0/2) + ¢ cos(6/2 —1pae'?/?
/17[11‘ = w Sln( / )’l/JB COS( / )’(/) ,Ql)y = ¥ Sln( / L::Qp COS( / ) 37/12 = w?efi0/2 ) (54)
_¢B ,wﬁ _wﬂ i
& - —¢® cos(8/2) — p;sin(6/2) @~ i
* cos(0/2) — ip® sin(0/2) L e g & —i0/2
- 0/2 ; 0/2 —
05 = 4 o5 = ©“sin(0/ ZO;F ¢ c08(0/2) s = :jﬁew/z . (55)
Ve —p —p5
These expressions are conveyed as:
Ym = Ru(OW03, o =RLO)5, mn=uyz (56)

Remark 3.3. Beretetskii et al., define the bispinors as the pair (%, ¢4 ), formulating the scalar
product between bispinors [3]:

W%, 05) - (Yo, ©%) = Vb0 + @50%. (57)

[Revista Integracion



An Introduction to Spinor Differential and Integral Calculus from g-Lorentzian Algebra 51

3.1. Spinorial partial differential equation

Definition 3.4. Let ¢, 1,, wy,wz,wg be functions in C, and a, b, f are also constants in C. The
partial spinor differential equation is given by:

a(% Lo, O

B _ B
5+ o + o ) +bug = fuf, (58)

where 1,1, 1), are defined in (54) and spinors z/)g , 8 are expressed as

Ve Ve
o = :jﬁg . b= j/jé“ , (59)
ql,ﬂ —1/Jﬂ

and, similarly, for pointed components:

Dpi 5’%) i & &
a(@x + By + 9, —+ by —f<p5-, (60)

and the spinors g, py, p: are given in (55) and ©s, @g are expressed as:

& o

L L

o —p” o —p°
- ot , 61
Ll B R (61)

Ps —¥Ps

The following theorem shows the solutions of equations (58) and (60).
Theorem 3.5. For 0 = 7/2, the solutions of equations (58) and (60) are given by:

o= e (2 sass) . -
— f+b g L m « v, X —oxr — m (63 z
Yo = {( aﬂ>+5+\/§< a + +/B>} aﬁep|: By+< a + —|—,3> :|, (63)
g = Ugp XD [—o’zm—@y—k <fa+b+o'z+5.> z} , (64)
& f+b _g L f+b a+ 6 vdBex —axr — f ﬂ a+p)z
go_{<m) 5’+ﬂ5(a + +ﬁ>} p[ By+<a + +ﬂ>} (65)
Proof. Taking § = w/2 in (54), these spinors are obtained:
e /4 —1)o cos(m/4) — P sin(r/4) Ya
by = —tpge i/ b, = — 1y sin(m/4) + 1P cos(m/4) b, = — et/
r = wﬁ s y = 'l/)a ) z = ,(/}ﬂe—i‘n'/él
—’l/)ﬂ 71!16 —¢57
and, taking the real part, we find
€ b — B ta
wa\/% ( wa 7/) )\? _wai
| =, — — (= By _—_ _ 2
do= | a5 | = (et v | = W{ , (66)
P Ya V2
—yP —P —pP

Vol. 41, No. 1, 2023]



52 J. C. JARAMILLO QUICENO

and replacing (66) in (58), we obtain the following system of partial differential equations

o O o O O oSl (= b, (67)
LoD jiagf - T (] = (69)
aaaf +aa§’; \jiaiﬁ — (f + b0, (69)

aaéf +aa§; “agf = (f + )’ (70)

Applying the method to solve partial differential equations by separation of variables in (70); in
other words, by defining v* = F(2)G(y)H(z), we obtain

1 dH(z) _f+0

1
F(z) dz +G(y) dy +H(z) dz a ’ (71)
equating each component to the separation constants «, 3:
1 dF(z) o
Fa) dr —a, F(z)~A,e™ ", (72)
1 dG(y) _
T = 3 G(y) ~ Bge ™, 73
SR ) = By (73)
1 dH(z) f+b
= 4
H(z) dz tat+h (74)
f+b
H(z) = Dagexp |ax + By + T+a+6 z| . (75)
Therefore, the solution is given by
¥ = (ae) - (B Dogoxp | (T2 vt 5) 2] (76)
VP = u*P exp [aa:—&—ﬁy—l—(f—i—b—&—a—i—b’) z} (77)
a

To find ), (77) is replaced in (69), resulting in

O = <f+b>ua5exp {am+6y+<f+b+a+ﬁ) z]

oy a a
+ aexp [aw—i—ﬁy—i— <fa+b
! (T—Fa—&—ﬁ)exp[am—kb’y—k(

rats)]

f+b
a

7 +a+6>4. (78)

On the other hand, for the pointed spinors described by eq. (60), the same angle § = 7/2 is used
in (55), resulting in the following system of differential equations:

[Revista Integracion



An Introduction to Spinor Differential and Integral Calculus from g-Lorentzian Algebra 53

a Op® a Op® a Opg 8@

For oy 5o = (f —b)¢", (79)
—;;gﬁx%%j—j;gﬁx%%fz—w—ww, (80)
?j+ﬂifi ;%%?(f+MW@ (81)

aag;ﬁ +aa;; +aaai3 = (f +b)gg, (82)

and, by solving equation (82) in the same way as it was done in (70) and defining ¢4 as the product
of functions M (xz)N(y)P(z), the following expressions analogous to (72 - 75) are obtained:

Aﬁ@mﬂﬂz—’ M(z) = Kae™™, (83)
1 dN(y)_ . gy

W dy = -0, N(y)—Lﬁeﬁ, (84)
1 dP(z)  f+b . .

O +a+ 8, (85)

P(z) = E,; exp [(fzb +a+ B) z] , (86)

and substituting the solutions for M (x), N(y) and P(z) into the product M (z)N(y)P(z), we have

g = (Kae %7 (LBe_By) “Ezexp {(Jc:b +a+ ﬁ) Z} (87)
Pg = Uspexp [—o’zw—ﬁ'y+(f+ —I-OH-B) ] (88)

which corresponds to (64). Now, to obtain %, the previous solution is substituted in (80),
multiplied by dy, and finally, integrated both sides to obtain (65). Regarding the terms

u®s, VaBs Ugg v3P, these are the coefficients of the previously mentioned solutions. v

3.2. The lorentzian q-spinor differential equations

Definition 3.6. We consider the ¢-Lorentzian spinor variables z°,y* € C, and a function f : C —»
C. The g-Lorentzian differential equations are defined as:

dof(z”) _ W(y*)

- = — 89
e (59)
dgaf xf — oy’
Lemma 3.7. The solutions of (89) and (90) over the contour I'y can be written as
1 = —1 m 91
> 1o et @™, (1)
q m=0
1 oo
6 Z aﬁq) )] (92)
m=0

Vol. 41, No. 1, 2023]



54 J. C. JARAMILLO QUICENO

Proof. In order to solve (89), it is sufficient to use (46), resulting:

def(=”) _ W(y*)

dgy®  y&—af’

integrating both sides over the contour I';,

28 = q’(yd)dqyd
ﬁqdqf( )_fi_‘q ya_.')fB )

oty = H

taking into account (46) finally

1 e, _ .
fa?) = p D (02 (”)
m=0
The same process is applied to get (92) from (90). v

4. Comments

In section 3, a combination of the g-Lorentzian algebra formalism and the deformed complex vari-
able is proposed based on section 2, though the latter is not explicit in the literature. Nevertheless,
its development can be totally formulated from its derivatives mentioned in expressions (38) and
(39), and its spinor contour integral g-forms, described by (44) - (47). These last expressions
contain deformed spin matrices (o) ,4), (0,,")ap defined in Schmidt work [6]. Tt should be empha-
sized, that in this case, these matrices are formulated in the Minkowski space and that they are
also spin-boson matrices. Hopefully, in future works, the spinor complex g-variable formulation can
be achieved, but for the fermionic part. In section 3, a spinor partial differential equation (given
by (58)) was proposed, and its solutions are given by theorem 4. Its solutions were obtained using
angle 0 = 7/2. Clearly, (77) and (87) are not unique, which means that, when the rotation angle
varies, other solutions are obtained; consequently, other spinor deformed algebras are obtained.
For future works on this matter, it is possible to propose the formalism of a general expression of
the spinor partial differential equation. Using this formalism, it is possible to formulate another

kind of relativistic wave equation as spinor representation substituting a = —ific,b=mc?>y f = E,
obtaining
o (O | 0Py O
— il y S 93
ZC<8x+8y+82 +mey = By, (93)

and its interpretation in their solutions. It is important to consider that this formulation was
done without deformation. Other suggestion for further work, is the problem of describing the
g-relativistic wave equation

WO0YE +myp = By, k=1,2,3. (94)

for some Minkowskian-valued spinors

1/2 a . ko= 1.,. a
w;r = |:k5q1/20)\+(,05:| 7w; = |:kq é\+w :| 7w2 - |:k];(i;po¢6:| 71/)0 = |: kgwa@ﬁ} and w = |:1/}:| )

and is subject to Pauli matrices in the Minkowskian space proposed in [1].

[Revista Integracion
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