

Ingeniería Energética ISSN: 1815-5901

Instituto Superior Politécnico José A. Echeverría. Cujae

Bravo de las Casas, Marta Elena; Piñeiro Morales, Alejandro; González Pérez, Luis Alejandro; Ávalos Abreu, Osvady; Quintana de Bastera, Grettel Esther Protecciones Eléctricas de la Subestación Cayo Santa María Ingeniería Energética, vol. XXXIX, núm. 3, 2018, Septiembre-Diciembre, pp. 213-222 Instituto Superior Politécnico José A. Echeverría.Cujae

Disponible en: https://www.redalyc.org/articulo.oa?id=329158816009

Más información del artículo

Página de la revista en redalyc.org

Sistema de Información Científica Redalyc

Red de Revistas Científicas de América Latina y el Caribe, España y Portugal Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso

abierto

Revista de Ingeniería Energética, 2018, vol. 39, n. 3, septiembre /diciembre, p. 213-222 Centro de Investigación y Pruebas Electroenergéticas, Facultad de Ingeniería Eléctrica, Universidad Tecnológica de La Habana, José Antonio Echeverría, Cujae

ISSN 1815-5901 RNPS- 1958

APLICACIONES INDUSTRIALES

Protecciones Eléctricas de la Subestación Cayo Santa María

Protections of Cayo Santa María Subestation

Marta Elena Bravo de las Casas¹ Grettel Esther Quintana de Bastera¹ Luis Alejandro González Pérez² Alejandro Piñeiro Morales³ Osvady Ávalos Abreu⁴

¹Universidad Marta Abreu, Las Villas, Cuba

²Empresa Eléctrica Villa Clara.

³Grupo AZCUBA Sitiecito, Sagua la Granda, Villa Clara

⁴Empresa de Grupos Electrógenos y Servicios Eléctricos. GEISEL Cienfuegos

E-mail: mbravo@uclv.edu.cu

Recibido: febrero de 2018 Aprobado: mayo de 2018

Licencia de uso y distribución Creative Commons Reconocimiento-No Comercial 4.0 Internacional

ABSTRACT/RESUMEN

El Sistema Eléctrico Aislado Cayo Santa María (SEACSM), ubicado en el norte de la provincia de Villa Clara, es de vital importancia económica para Cuba. Durante el año 2013 ocurrieron un grupo de averías que afectaron el servicio eléctrico brindado a la red hotelera. Este sistema es débil (por su condición de sistema aislado) y cualquier falla puede conllevar al colapso total del sistema o a la pérdida de un conjunto considerable de cargas. Es por ello que se decide instalar una moderna subestación, inaugurada en enero 2015 para ofrecer un suministro más confiable y estable. En este trabajo se analizan los resultados de los cálculos de los parámetros de ajuste de las protecciones MiCOM P142 y P143 de Areva T&D de la nueva subestación, de una tecnología muy moderna, que garantizarán la estabilidad y fiabilidad del sistema en cuatro variantes de operación posibles y ampliarán la capacidad de respuesta ante la ocurrencia de averías.

Palabras clave— Cortocircuito; Protección de sistemas eléctricos aislados; Sistemas eléctricos.

The Electric System Isolated Cayo Santa María (SEACSM), located in the north of province of Villa Clara, is of vital economic importance to Cuba. During 2013, a group of faults occurred that affected the electrical service provided to the hotel network. This system is weak (due to its condition isolated system) and any failure can lead to the total collapse of the system or loss of a considerable set of loads. That is why it is decided to install a modern substation, which opened in January 2015 to provide a more reliable and stable supply. In this paper we analyze the results of the calculation of the adjustment parameters of the MiCOM P142 and P143 protections of Areva T & D of the new substation, of a very modern technology, which ensure the stability and reliability of the system in four variants of possible operating and expanding the capacity of response before the occurrence of faults.

Key Words— Electric Power System; Electric; Isolated System Protection; Short Circuit.

INTRODUCCIÓN

La continua expansión geográfica e interconexión de los sistemas eléctricos en el transcurso del pasado siglo han sido motivadas por un conjunto de factores técnicos, sociales y económicos. Por ejemplo, algunos atribuyeron un sentido de progreso cultural a las redes malladas; en años más recientes, las economías de intercambio u oportunidades para la venta de electricidad, han sido las claves motivadoras para el fortalecimiento de la transmisión interconectada o el enlace entre regiones. Las principales justificaciones técnicas para la expansión y la interconexión son triples: economías de escala, mejora del factor de potencia, y el aumento de la fiabilidad por la concentración de reservas de generación [1].

En lugares en los que, por sus condiciones geográficas, es muy dificil o económicamente injustificable la interconexión con un sistema de mayor potencia, la única solución viable es la construcción de un pequeño sistema aislado que suministre la energía con la calidad requerida. La estabilidad en este tipo de sistemas es un problema fundamental [2]. Las variaciones de frecuencia que se originan en caso de perturbaciones son muy superiores a las que se producen en un sistema fuertemente interconectado, debido a que están compuestos esencialmente por grupos de generación de baja inercia (accionados, por ejemplo, por motores fuel oíl o diésel). La inercia del sistema se considera un parámetro vital sobre el cual se basa la operación del sistema, determinando la respuesta de frecuencia del sistema en caso de un desbalance entre generación y carga [3,4]

Un sistema eléctrico aislado de vital importancia económica para Cuba lo constituye el Sistema Eléctrico Aislado Cayo Santa María (SEACSM), ubicado en el norte de la provincia de Villa Clara. La energía se suministra a través de 14 generadores de las firmas MAN, Hyundai y MTU cuya capacidad total instalada es hoy de 37.09 MW [5],[6], pero se espera llegar hasta los 40 MW para el año 2018. Desde el centro de generación se brinda servicio a los polos turísticos Cayo Santa María, Las Brujas y Ensenachos a través de redes soterradas con una tensión de distribución de 13.8 kV. A finales de 2012 contaba con 11 complejos hoteleros con un total de 6 668 habitaciones aproximadamente, pero en el 2017 se ampliaron las capacidades de los hoteles para un total en el 2017 de 13 102 habitaciones.

Anteriormente la subestación principal, desde donde se dirigían todas las redes y la conexión con los generadores, estaba controlada por celdas de SF₆ de tecnología ABB de doble barra, un centro de conmutación con celdas *Ormazabal* (Celda de distribución de carga) y un grupo de reenganchadores *NULEC*. Las principales dificultades de este esquema son su "exceso de interconexiones que debilitan la fiabilidad del sistema y limitan la capacidad de respuesta de este ante las averías" [7]. Es por ello que se decide instalar, en el 2013, una subestación más moderna para ofrecer un suministro más confiable, también compuesto por celdas de SF₆, pero con salida directa desde los interruptores y con protecciones capaces de responder en tiempos reducidos.

Durante el año 2013 ocurrieron varias averías que afectaron el servicio eléctrico brindado a la red hotelera [7].

Hoy día el Sistema Aislado Cayo Santa María es responsable de ofrecer el suministro de energía eléctrica a uno de los polos turísticos más importantes del país y con más capacidad de clientes, motivado por esto y a los problemas presentados en los últimos años en la explotación del mismo se han elaborado grandes inversiones económicas en la red eléctrica y en una moderna subestación eléctrica, inaugurada en el 2015 que aumentó la capacidad de respuesta ante la ocurrencia de fallas, con el único objetivo de garantizar un servicio eléctrico confiable para una carga que no admite interrupciones y que cada día crece más y más

Sin embargo, el SEACSM continúa siendo un sistema muy débil (por su condición de sistema aislado), cualquier avería en una unidad generadora puede conllevar al colapso total del sistema o, en el mejor de los casos, a la pérdida de un conjunto considerable de cargas [8].

El reciente incremento de la demanda instalada y el montaje de la nueva subestación exigen un estudio de sus protecciones eléctricas. Lograr un adecuado ajuste de las mismas que garanticen la estabilidad y fiabilidad del sistema en todo momento, ampliando la capacidad de respuesta ante la ocurrencia de fallas. Por otro lado se suma la necesidad de tener grupos de ajustes predeterminados para cada una de las variantes de operación más probables por las que pueda transitar el sistema, aprovechando que las nuevas protecciones numéricas instaladas ofrecen cuatro grupos de ajustes.

Una vez ajustadas las protecciones de la nueva subestación se garantizará:

- Proteger al sistema ante contingencias.
- Evitar el disparo incorrecto durante la operación normal del sistema.
- Disponer de ajustes predeterminados para los tres estados más probables en los que se pueda encontrar el sistema.

MATERIALES Y MÉTODOS

Descripción del Sistema Eléctrico del Cayo Santa María

La red eléctrica del Cayo Santa María se caracteriza por estar aislada del Sistema Eléctrico Nacional, por lo que su generación depende de máquinas de baja inercia que conforman baterías de generadores MAN, Hyundai y MTU, las cuales continúan ampliándose por el crecimiento de la carga. El servicio se brinda a los consumidores mediante redes soterradas a una tensión de distribución de 13,8 kV

La generación actualmente está compuesta por 26 generadores de tecnología MAN, Hyundai y MTU que totalizan cinco baterías, como se describe a continuación [9]:

- Una batería de ocho generadores MTU (de procedencia de Alemania) alimentados con diesel, cada máquina tiene una capacidad de 2,36 MVA (1.9 MW) a 0,48 kV y están unidas a una barra de 13,8 kV por medio de un transformador de 2,5 MVA cada una, para un total de 15,2 MW.
- Dos baterías de doce generadores MTU (chinas) alimentados con diésel, cada máquina tiene una capacidad de 2,70 MVA (2,1MW) a 0,48 kV y están unidos a una barra de 13,8 kV por medio de un transformador de 2,5 MVA cada una, para un total de 25.2 MW
- Una batería de cuatro generadores Hyundai alimentados con fuel oíl, cada máquina tiene una capacidad de 1,95 MVA (1.7 MW) a 4,16 kV, posee un transformador de 8,5 MVA que eleva la tensión a 13,8 kV, para un total de 6,8 MW.
- Una batería de dos generadores MAN, alimentados con fuel oíl, cada máquina tiene una capacidad de 4,85 MVA (3,85 MW) y despachan directo a la barra de 13,8 kV, para un total de 7,7 MW.

Por lo tanto la capacidad instalada total es de 68,78 MVA (54,9 MW), un valor muy superior a la demanda máxima que en el abril 2017 fue de 18,2 MW. Se espera para el futuro la instalación de dos parques de generación fotovoltaica de 1 MW cada uno y dos baterías MAN cada una de 7,7 MW.

Existen, limitaciones en cuanto a la salida de la batería de las cuatro unidades Hyundai, pues el cable de salida solo permite que puedan entregar el 75% de la potencia instalada cuando las cuatro están de servicio. Además, las máquinas trabajan de forma tal que las unidades MAN se mantienen regulando frecuencia en modo isla, haciendo regulación primaria y secundaria para mantener la frecuencia cercana a 60 Hz y el resto de las unidades se mantienen en régimen de trabajo de potencia constante [7].

La nueva subestación instalada de tecnología muy moderna comprada a Italia cuyo diagrama esquemático se muestra en la figura 1, cumple con las expectativas deseadas para brindar un suministro de calidad y fiable como se requiere y está equipada con interruptores ABB de SF₆ (extraíbles) y cinco baterías de generadores que despachan la energía a los alimentadores mediante un sistema de doble barra a 13,8 kV y un mínimo de interconexiones. Tiene posibilidades de conexión de nuevas baterías.

Está equipada con protecciones numéricas de bajos tiempos de operación lo cual resulta crucial para este sistema. De igual forma dispone de equipos de medición y control modernos. El crecimiento de la carga y el consecuente aumento de la generación traerán consigo que la operación de la subestación y sus protecciones se complejice y cobre mayor importancia.

Las salidas están compuestas por nueve circuitos radiales y la alimentación de la carga se hace mediante redes soterradas que permiten dos niveles de tensión, 34,5 kV y 13,8 kV, éste último es el que se emplea actualmente [9].

Existen en total cuatro circuitos generales que se dividen en los nueve ya mencionados, con una configuración doble o triple radial equipados con centros de conmutación y una cabina Ormazabal [10] que distribuyen toda la energía a los consumidores con la peculiaridad de que 900 m después de los alimentadores hay un cambio de calibre propio de la unión interruptor – centro Ormazabal que permiten cambiar manual o automáticamente la entrada de alimentación a los consumidores en caso de falta de servicio por el alimentador. Este esquema es mucho más fiable para servir cargas de primera categoría como son los hoteles.

Los conductores empleados pueden ser desde los 35 mm² hasta los 240 mm², del tipo Eprotemax H, cable monoconductor con aislamiento a base de polímeros, etileno-propileno, conocido por las siglas EPR; y Voltalene, cable aislado con polietileno reticulado (XLPE) y con cubierta exterior de una mezcla de policloruro de vinilo (PVC) [11-12]

El circuito Dunas Punta Madruguilla se subdivide en los circuitos 1 y 2 alimentados por los interruptores V1080 y V1090 (celdas 2 y 21) respectivamente. Cada uno tiene una configuración radial y pueden cambiar de alimentador en caso que falle la vía principal ya que cuentan con un centro de conmutación. La longitud total de este circuito es de 3,4 km y los conductores utilizados tienen diámetros de 35; 70; 95; 120; 150 y 240 mm², el más usado es el de 95 mm² y pueden ser de cobre o aluminio. La carga está representada por la Planta de Tratamiento de Residuales (PTR), Rebombeo I, Hotel Sol, Hotel Meliá, Hotel Dunas III y IV, las Canchas de Tenis y el Servicio de Recreo (Spa), Pueblo Dunas, la Casa Criolla y el Hotel Punta Madruguilla para un total de 8.455MVA instalados. Los transformadores usados en las cámaras de transformación de estas instalaciones son trifásicos inmersos en aceite excepto PTR y Rebombeo I que emplean bancos trifásico.

215

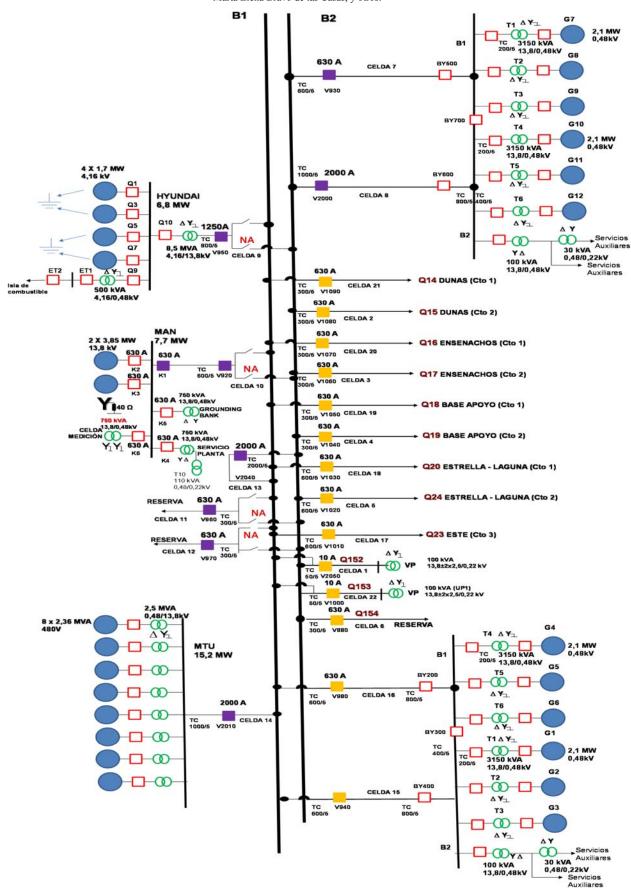


Fig. 1. Diagrama esquemático de la subestación.

El circuito Sur – Oeste (actualmente en crecimiento) se subdivide también en dos radiales alimentados por los interruptores V1060 y V1070 (celdas 3 y 20) y cuenta con un centro de conmutación. Los conductores empleados son de 35; 70; 120; 150 y 240 mm², la carga más alejada es el Hotel Villa Las Brujas a 13 km.

Se le presta servicio además al Hotel Ensenachos, Delfinario, Gasolinera y al Aeropuerto para un total de 10.925 MVA instalados. Los transformadores usados en cada instalación son trifásicos inmersos en aceite menos en el Gasolinera y el Aeropuerto que emplean bancos trifásicos.

El circuito Base de Apoyo es el más pequeño con el que cuenta el sistema ya que su distancia máxima es de 1 km. Al igual que los demás tiene una configuración doble radial, se alimenta por los interruptores V1040 y V1050 (celdas 4 y 19), y cuenta con un centro de conmutación. Está compuesto por conductores de 35; 70 y 95 mm² y alimenta a todas las cámaras de la Base de Apoyo, a la Policía, la Clínica Internacional, el Servicio de Rebombeo II, Planta de Prefabricado, Copextel, Base Transgaviota, Base de Apoyo 4, 5 y 6, Motelera y Geisel para un total de 4,8 MVA instalados. Se emplean transformadores trifásicos inmersos en aceite y en algunos casos bancos trifásicos.

Por último el Circuito Este que cuenta con una configuración triple radial por ser el más grande de los circuitos y está alimentado a través de los interruptores V1010, V1020 y V1030 (celdas 5, 17 y 18). Se encuentra actualmente en expansión y cuenta con una carga representada por los hoteles La Estrella I y II, Piedra Movida, Planta Real, Laguna del Este I, III y IV y los servicios ETECSA, PTR Estrella, Casa de Negocios y Tropas Guarda Fronteras (TGF) para un total de 26,18 MVA instalados. Los conductores utilizados son de diámetro 95 y 240 mm², el primero se usa para conectar las cámaras de transformación con los centros de conmutación y los dos restantes para conectar los centros de conmutación con la subestación. Cuenta además con cuatro casetas de empalme y nueve centros de conmutación, siendo el centro de conmutación de ETECSA el más importante ya que maneja el 99% de toda la carga en el circuito.

Actualmente tiene una distancia total de 11 km entre la subestación y el consumidor más lejano. Los transformadores más usados son trifásicos inmersos en aceite, aunque en los hoteles Laguna del Este, Piedra Movida y Planta Real se emplean transformadores trifásicos secos, existen además dos bancos de transformadores trifásicos. Con el montaje de la nueva subestación también fueron instalados nuevos relés, los cuales no tenían parámetros de ajuste, por eso se estudiaron los posibles estados de operación de la red, ya que estos constan de cuatro grupos de ajuste y de esta forma garantizar la operación óptima del sistema ante probables circunstancias.

Actualmente la red eléctrica del SEACSM está configurada tal y como se muestra en la tabla 1. Sobresale el tamaño del circuito Este y el desbalance existente. Aunque aparentemente el circuito Sur-Oeste es el que más porciento de desbalance presenta, la diferencia entre el V1060 y V1070 es de tan solo 5.175 MVA, sin embargo en el circuito Este la diferencia entre V1010 y V1030 es de 15.655 MVA, aunque su porciento es menor.

Tabla.1.Configuración actual de la red.						
Circuito	Carga	% Carga	Subcircuitos	Barra	Carga Instalada	% Carga del
	Instalada	Total		Conexión	(MVA)	Circuito
	(MVA)					
Dunas-Punta	8,455	17%	V 1090	B1	6	71%
Madruguilla			V 1080	B2	2,455	29%
Sur - Oeste	10,925	22%	V1070	B1	7,105	65%
			V1060	B2	3,82	35%
Base de	4,7875	9%	V1050	B1	1,8875	39%
Apoyo			V1040	B2	2,9	61%
Este	22,6025	52%	V1030	B1	8,2	37%
			V1020	B1	3,94	17%
			V1010	B2	10,4625	46%

Las posibles variantes en que el sistema puede operar de forma estable son:

Variante 1. No operación de uno de los alimentadores de cada circuito general. Las barras B1 y B2 balanceadas. Se fundamenta en la ocurrencia de una avería o mantenimiento en cualquier sub-circuito o alimentador y considerando que cada barra lleva igual cantidad de carga. Para lograr este estado de operación, específicamente en el circuito Este, por su configuración triple radial, se consideró la no operación del alimentador de V1020 cuyas cargas se conmutaron al V1010 y además fueron conmutados del V1010 al V1030 ETECSA, los hoteles Piedra Movida y Planta Real, Pueblo Estrella I y II.

En los demás circuitos no están operando los interruptores V1080, V1070 y V1050.

Variante 2. Circuitos balanceados y barras balanceadas. Este es el caso de operación óptimo de la red, pues al estar los circuitos balanceados el sistema responderá mejor y con mayor rapidez ante la pérdida de determinado grupo de carga y se repondrá con más facilidad.

Variante 3. No operación de una barra. B2 fuera de servicio, y circuitos del Este balanceados. Se seleccionó, teniendo en cuenta la posible salida de operación de una de las barras, en este caso B2. En el caso del circuito Este la carga alimentada por V1010 será conmutada al V1030 ya que no queda otra alternativa, cargándose este último aún más, por eso del V1020 al V1030 se conmutará el hotel Laguna del Este I, única posibilidad.

Variante 4. No operación de uno de los alimentadores de cada circuito general. Cargas no balanceadas y B1 y B2 no balanceadas como se encontraba la red operando en el momento de hacer el estudio. La barra 1 más cargada.

Existen otras variantes por las que puede transitar el sistema, pero no tiene sentido estudiarlas por diversas razones entre ellas la poca posibilidad de ocurrencia de dichas variantes.

Potencialidades de los relés instalados y ajustados.

Los relés ajustados en la nueva subestación son de la firma Areva tipo MiCOM P142 y P143 [13]. Estos cumplen con las exigencias del sistema [14-16] ya que forman parte de una nueva generación de relés digitales multifuncionales de gran avance en tecnología numérica óptimos para hacer frente a disímiles aplicaciones y circunstancias.

El relé de alimentador como también se le llama, ha sido diseñado para proporcionar protección a líneas aéreas y cables subterráneos, desde niveles de tensión de distribución hasta niveles de tensión de transmisión. Tienen la capacidad de compatibilidad con otros productos, además de reunir indispensables funciones de protección, medición, control y monitoreo, unido a la precisión y velocidad que les brinda el procesamiento digital de señales [14-16].

Las funciones de protección que fueron ajustadas y que resultan de mayor interés para el caso en cuestión pues estos relés cuentan con una gran diversidad de funciones aplicables a sistemas con disímiles son las siguientes:

- Sobre corriente de fase 50/51P
- Sobre corriente de tierra 50/51N (FT)
- Direccional de fase 67P
- Direccional de tierra 67N (FTD)
- Sobre corriente de secuencia negativa 46 (SFI)
- Sobre/Baja tensión 59/27
- Falla del interruptor 50BF
- Sobre corriente controlada por tensión (51 V)
- Auto reenganche 79 (4 ciclos de auto reenganche de tres polos
- Conductor roto 46BC

RESULTADOS Y DISCUSIÓN

Se realizaron los ajustes de los relés P143 y P142 para las diferentes variantes de operación, solo se mencionan los resultados de la variante 4 por ser la de operación actual. La no operación de uno de los alimentadores en cada circuito general, es decir, que cada circuito en caso de ser necesario pueda asumir toda la carga. Este es un caso muy crítico para el ajuste de las protecciones, fundamentalmente por la sobrecarga a la que están sometidos ahora los circuitos que se mantienen energizados.

Los criterios de ajustes de funciones de protección se encuentran en [14-16]. Donde se tuvieron en cuenta las sugerencias dadas por el fabricante del relé [13]. Los estudios de cortocircuito necesarios para los ajustes fueron realizados con la ayuda del software PSX. La comprobación de las coordinaciones fueron realizadas con el trazado de las curva el Matlab.

Ajustes de la función de sobre corriente de fase y tierra de los alimentadores.

Los relés P142 y P143 proporcionan cuatro umbrales de sobre corriente y se puede seleccionar cada umbral como no direccional, direccional hacia adelante o direccional hacia atrás.

Los dos primeros umbrales se pueden configurar como de tiempo inverso (IDMT) o de tiempo definido (DT); los dos restantes sólo pueden ser configurados en DT. Para los ajustes y chequeo de sensibilidad se calcularon los niveles de cortocircuitos en cada uno de los nodos de cada circuito. Se tuvieron en cuenta además los regímenes de máxima y mínima generación con el objetivo de garantizar las condiciones de cortocircuitos máximos y mínimos respectivamente.

En el caso de los alimentadores, P142, se ajustaron los siguientes elementos de sobre corriente de fase y tierra siguientes: un tiempo inverso con característica IEEE muy inversa, un tiempo constante y un instantáneo, todos ellos con direccionalidad hacia delante, o sea, hacia la carga, aunque no es necesario por ser circuitos radiales. En el caso de tierra se utilizó también un relé de secuencia negativa, también con direccionalidad hacia delante. En el caso de las protecciones de DT solo se utilizó el escalón que se ajusta por corriente de carga máxima. Los criterios de ajustes con los cuales se trabajó aparecen en la literatura clásica de las protecciones eléctricas. [14-16]

Para el caso de relé de fase el ángulo característico de la direccionalidad dado fue de 45° ya que su polarización es por tensión. La polarización del relé de tierra será con tensión residual lo cual es factible ya que la familia de relés relé P140 deriva esta tensión internamente a partir de la entrada de tensión trifásica que debe ser proporcionada ya sea a partir de un transformador de potencial de 5 columnas o de tres monofásicos. Estos tipos de diseño de transformadores de potencial permiten el paso de flujo residual y, consecuentemente, permiten al relé derivar la tensión residual requerida. El ángulo característico se fijó en - 45°.

Se deben señalar problemas encontrados a la hora de hacer los ajustes como que los circuitos que pertenecen a los interruptores (V1080 y V1090), (V1060 yV1070) deben cambiarse los transformadores de corriente TC de 300/5 a 600/5 debido a la corriente de carga en estado de máxima y conociendo que los TC instalados poseen estas características de conmutar a el valor superior. No es un problema grave en estos momentos pues la corriente de carga solo los supera en un valor no muy grande y es para la máxima instalada, pero de acuerdo a los principios de selección de los TC esto no debe ocurrir.

Para el caso específicos de los alimentadores que pertenecen a (V1030 ,V1010,V1020) las corrientes de carga son mucho mayores que el TC de 600/5 y por lo tanto deben balancearse estos circuitos teniendo en cuenta que el circuito Este es el más grande del Cayo, pero tiene dos circuitos sobrecargado V1020 y V1010, y el V1030 casi sin carga a partir de lo cual, si se realiza el reacomodo de la carga no es necesario el cambio del TC que pudiera reportar un costo grande, y reducir sus afectaciones que son fuertes en el ajuste de las protecciones en especial del enlace.

En la selección de los TD (curvas o dial de tiempo) de los relés de sobre corriente tiempo inverso se tomó el criterio de seleccionar el primer relé con un valor de 0.55 lo que representa que para un múltiplo cuatro de la corriente de arranque el tiempo de operación será 0.1 s.

Donde no se obtuvo sensibilidad se usó la función de sobre corriente controlado por tensión (51 V) donde se activa para una tensión de 80 V, y el coeficiente k definido por el fabricante [13] para cada caso.

Se consideró en el ajuste del enlace de la barra que cada barra en caso de una avería pueda llevar toda la carga que es de 46,77 MVA. Este enlace no le brinda gran flexibilidad al sistema ya que en caso de existir un avería al inicio de uno de los alimentadores este no puede conectarse automáticamente a la otra barra, solo puede cambiarse la alimentación a los consumidores a través de los centro de conmutación manualmente.

Hubo dificultades con la sensibilidad en varios alimentadores, por lo que se utilizó la función disponible 51V. En el caso del tiempo inverso de fase hacia adelante, el proceso de coordinación a partir del enlace fue imposible de lograr puesto que los cálculos dieron valores negativos para el TD puesto que el ajuste del enlace posee un valor muy alto. Ante esta situación y lo necesario de coordinar con el relé de los alimentadores se hizo necesario emplear un relé de tiempo constante en el enlace y en las salidas de las máquinas con un adecuado retardo de tiempo. No fue así para los relés de tierra donde sí se pudo efectuar la coordinación.

En los ajustes de los transformadores de servicio, un P142, se tuvo en cuenta los efectos de la corrientes de "*inrush*" donde el umbral de tiempo inverso no se ve tan afectado pues este posee gran tolerancia para los estados transitorios por lo que decidió tomar un factor de seguridad de 2.5. Se ajustaron los umbrales tiempo inverso, dos tiempos contantes uno tiempo definido, uno instantáneo, uno de secuencia negativa, todos con direccionalidad hacia delante.

Se ajustó y coordinó también en el enlace un tiempo constante hacia detrás, mirando hacia los generadores, con el tiempo definido del más lento del grupo de máquinas ajustado hacia atrás que en este caso resultó el grupo de las MTU alemanas para fases y para la tierra fue con el de las MAN.

El P142 tiene entre sus funciones la protección térmica. El relé incorpora una réplica o modelo térmico basado en la corriente, utilizando la corriente de carga rms para modelar el calentamiento y el enfriamiento del elemento protegido. La característica puede estar pre ajustada para proporcionar una alarma y un disparo térmico. La corriente de ajuste se calculó como: disparo térmico igual a la carga continua permitida del transformador entre la relación del TI. Se consideró la carga continua permitida que fuera un 50% por encima de su valor nominal.

Para el buen funcionamiento de las protecciones de la subestación fue necesario también ajustar los relés de los grupos de motores, P143, para los cuales se ajustaron los siguientes umbrales de sobre corriente: un tiempo inverso hacia adelante, dos tiempo constante hacia adelante los cuales están ya dados por el problema que presentó el enlace en fase, no así en tierra, y un tiempo constante hacia atrás, en dirección a la generación para darle respaldo a las barras de las máquinas.

El ajuste del umbral de tiempo definido mirando para los generadores se coordinó con los totalizadores de los grupos de máquinas (MAN, HYUNDAI, MTU china) y para el caso de las MTU alemanas con las protecciones de la línea de cada generador. Las cartas de ajuste de los generadores fueron suministradas por la Empresa Eléctrica de Villa Clara aunque los responsables del buen funcionamiento de estas protecciones son de otra empresa, GEYSEL.

Se comprobó que para las fallas en las barras de las máquinas los relés de los totalizadores de las máquinas mirando hacia el enlace con los ajustes calculados coordine correctamente con el relé de los otros grupos mirando hacia atrás, es decir para una falla en la barra de las máquinas primero tiene que operar el relé que mira hacia atrás del totalizador correspondiente antes que el relé de un totalizador de máquinas mirando hacia adelante

Otras funciones

Fallo de interruptor. El nivel de corriente de arranque de la protección de falla de interruptor (50BF) debe ajustarse por encima de la corriente máxima de carga y menor que la corriente mínima de falla en el extremo remoto. La protección de falla de interruptor debe ser coordinada para una actuación con anticipación a las protecciones de respaldo. El ajuste de la corriente de arranque es para el 5% de la corriente nominal.

En este caso de acuerdo al tipo de configuración de la red radial no se utiliza reenganche por ser una práctica en las redes cubanas.

El relé de secuencia negativa como su nombre lo indica en todos los casos se hizo para el valor menor de corriente de secuencia negativa en fallo de los alimentadores y con una temporización de 3 s para dar tiempo a que las funciones de sobre corriente operen primero.

También se ajustaron las funciones de sobre y baja tensión de acuerdo a las recomendaciones dadas por el fabricante de los relés [13].

Conductor roto. Para un circuito abierto en un punto concreto de una red, se buscó la relación entre las corrientes de secuencia negativa y positiva (I_2/I_1) que es prácticamente constante en presencia de variaciones de la carga y se obtiene un ajuste más sensible. Esta relación puede variar en función de la localización de la falla, por tanto es necesario aplicar un ajuste tan sensible como sea posible. Se necesitó comprobar que al menos la corriente de secuencia negativa estuvo en el orden del 8% para asegurar el buen funcionamiento del relé de protección. La temporización de 5 s, asegurando una buena coordinación con los otros dispositivos de protección utilizados.

CONCLUSIONES

- Los relés del tipo MiCOM P142 y P143 de Areva T&D resultan adecuados para hacerle frente a las diversas formas en que se pueda operar la red eléctrica del SEACSM, dado por la variedad de funciones de protección que poseen, tal y como se ha comprobado en la práctica.
- Algunos de los circuitos del SEACSM presentan grandes problemas de sensibilidad debido a la larga extensión. En los
 puntos donde no hubo sensibilidad el uso de relés de sobre corriente controlados por tensión permitieron aumentar la
 sensibilidad para este tipo de protecciones.
- El desbalance acentuado en el circuito Este no permite la correcta operación de las protecciones del circuito. Los TC existente están sobrecargados afectando además el ajuste de las protecciones del enlace, e incluso el interruptor de 630 A resulta pequeño.
- Para el ajuste del enlace y los grupos de motores no resultó posible utilizar los relés de sobre corriente tiempo inverso hacia adelante pues estos no coordinan debido a que la palanca de tiempo TD da negativo debido al alto ajuste de la protección del enlace.
- Existieron problemas de coordinación con los relés de sobre corriente tiempo inverso hacia adelante entre el enlace y alimentadores por lo que fue aconsejable no poner este umbral y coordinar con tiempos constante.
- El conjunto de ajustes de los relés que actualmente se encuentran en servicio se ven afectados profundamente con el desbalance de la red. No obstante, los ajustes de las funciones de los relés quedaron correctamente para poder brindar un servicio confiable y seguro.

RECOMENDACIONES

 Realizar un balance de las cargas por los circuitos para lograr la operación mejor del sistema y una mejor respuesta de las protecciones.

REFERENCIAS

- [1]. Von Meier, A. "Electric power systems: a conceptual introduction". 1st Edition. Wiley-IEEE Press.2006. 328p.ISBN: 978-0-471-17859-0.Disponible en: https://www.wiley.com/WileyCDA/WileyTitle/productCd-0471178594,miniSiteCd-IEEE2.html
- [2]. Arenas, P. Mediavilla, F. García, & P. Garcés (2013) "Estabilidad en los Sistemas Eléctricos de Potencia con Generación Renovable". OLADE. p.28 .Disponible en: http://biblioteca.olade.org/opac-tmpl/Documentos/old0322.pdf
- [3]. C. Rahmann& A. Castillo."Fast Frequency Response Capability of Photovoltaic Power Plants: The Necessity of New Grid Requirements and Definitions". Energies, 2014. ISSN 1996-1073.Disponible en: https://www.google.com/search?q=%E2%80%9CFast+Frequency+Response+Capability+of+Photovoltaic+Power+Plants %3A+The+Necessity+of+New+Grid+Requirements+and+Definitions%E2%80%9D&ie=utf-8&oe=utf-8
- [4]. Yuan-Kang Wu and Guan-Ting Ye. "Improvement of Frequency Stability in an Isolated Island System by Using Demand Response". International Journal of Electrical Energy, vol. 3, n. 3, September 2015,p.151-156.Disponible en: https://www.researchgate.net/publication/296681835_Improvement_of_Frequency_Stability_in_an_Isolated_Island_System_by_Using_Demand_Response
- [5]. R. A. Pérez y D. Torna del Rio. "Evaluación de la disponibilidad de los motores en la central eléctrica Cayo Santa María, Cuba". Universidad Central del Este (UCE) Ciencia. Revista de postgrado. vol. 3(1). 2015. p.12.Disponible en: https://www.google.com/search?q=%E2%80%9CEvaluaci%C3%B3n+de+la+disponibilidad+de+los+motores+en+la+cen tral+el%C3%A9ctrica+Cayo+Santa+Mar%C3%ADa%2C+Cuba%E2%80%9D&ie=utf-8&oe=utf-8
- [6]. J. J. Valdivia y E. Jiménez. "Modifications to automation project of a Hyundai genset in Cayo Santa Maria" Journal of Engineering and Technology for Industrial Applications. ITEGAM-JETIA. Edition. 12. Vol. 3. No 11. 2017. p. 111-116. Consultado el: 15 enero 2017. ISSN ONLINE: 2447-0228. Disponible en: https://www.itegam-jetia.org DOI: https://dx.doi.org/10.5935/2447-0228.20170086.
- [7]. Martínez, A. "Recomendaciones para mejorar la confiabilidad del suministro eléctrico a instalaciones turísticas de Cayo Santa María relacionadas con el modo de explotación de las unidades generadoras" Informe técnico. Empresa Eléctrica Villa Clara. 2013.p. 43.Disponible en: https://www.google.com/search?q=Recomendaciones+para+mejorar+la+confiabilidad+del+suministro+el%C3%A9ctrico +a+instalaciones+tur%C3%ADsticas+de+Cayo+Santa+Mar%C3%ADa+relacionadas+con+el+modo+de+explotaci%C3%B3n+de+las+unidades+generadoras&sa=X&ved=0ahUKEwi7kcG48rTaAhUS2lMKHf8GB8sQgwMIJA&biw=1360&b ih=634
- [8]. O. Erdinc, N. G. Paterakis & J. P.S. Catalão. "Overview of insular power systems under increasing penetration of renewable energy sources: opportunities and challenges". Renewable and Sustainable Energy Reviews 52. 2015. p. 333-346. DOI:10.1016/j.rser.2015.07.104.Disponible en: https://www.researchgate.net/publication/282739724_Overview_of_insular_power_systems_under_increasing_penetration of renewable energy sources Opportunities and challenges
- [9].Y. Gallego, Z. García, L. Casas, & Y. Rivas. "Impacto de los paneles fotovoltaicos en el sistema eléctrico Cayo Santa María" Revista Ingeniería Energética. Vol.XXXVIII, n. 2. 2017. p.76-87 ISSN: 1815-5901.Disponible en: http://scielo.sld.cu/scielo.php?
- [10]. Ormazabal. "Centros de transformación prefabricados. Hasta 36 kV". 2012.p.26. [Consultado el: 15 enero 2017]. Disponible en: www.ormazabal.com.
- [11]. Prysmian Cables & Systems. "Cables y accesorios para media tensión".2013, p.219. [Consultado el: 15 enero 2017]. Disponible en: http://www.prysmian.es
- [12]. Viakon. "Media Tensión XLPE 5 a 35 kV con Pantalla de Plomo y Cubierta". Cables de Media Tensión". Conductores Monterrey S.A. de C.V. 2012, 40p. [Consultado el: 15 enero 2017]. Disponible en: http://www.viakon.com.
- [13]. Areva." *MiCOMP14x. MiCOM P141, P142, P143,P144 & P145. Feeder Management Relay" Areva T&D*, Ed., ed. París. Guía Técnica. P14x/ES T/A44, 201, p.610.

- [14]. COES, SINAC. "Requisitos mínimos para los sistemas de protección del SEIN". 2014,p.132. [Consultado el: 15 enero 2017]. Disponible en: https://likedoc.org/the-philosophy-of-money.html?utm_source=requisitos-minimos-para-sistemas-de-proteccion-del-sein-jul2014-pdf.
- [15]. T. J. Blackburn & T. Domin. "Protective Relaying Principles and Applications". Fourth Edition. CRC Press Taylor & Francis Group, LLC. 2014.p.256. ISBN: 978-1439888117.Disponible en: http://scholar.google.com.cu/scholar?
- [16]. R. M. Mujal. "Protección de sistemas eléctricos de potencia". UPCPOSGRAU. Universidad Politécnica de Barcelona. 2014.p.107. ISBN 978-84-7653-973-6.Disponible en: https://books.google.com.cu/books?id=KgNqBQAAQBAJ&pg=PA4&lpg=PA4&dq=ISBN+978-84-7653-973-6.&source=bl&ots=lgQyavgxRV&sig=4BNC773_mGb_OMB_v0lCJkjVoRc&hl=es&sa=X&ved=0ahUKEwjl483Y97Ta AhXM6lMKHYW4DGoQ6AEIJjAA