RESUMEN: Todos los parques fotovoltaicos en explotación en Cuba utilizan paneles fotovoltaicos monofaciales. Con la madurez tecnológica de la producción de paneles bifaciales, a partir de 2018, estos han ido ganando una creciente presencia, y se presume que en 2021 constituirán el 30% del mercado mundial de paneles solares. Los paneles bifaciales, al generar también por el reverso, pueden aumentar eficiencia entre un 5 y un 30% de una misma área. Se revisó la literatura nacional e internacional sobre el tema y se realizaron simulaciones de un proyecto real con paneles bifaciales de un parque que será ubicado en la provincia de Las Tunas, asumiendo un albedo de 0,202. En el artículo se concluye que es factible evaluar la introducción en Cuba de paneles fotovoltaicos bifaciales para futuros proyectos de parques de ángulo fijo y de seguimiento horizontal de un solo eje.
Palabras clave: albedo, paneles bifaciales.
ABSTRACT: All the photovoltaic farms in operation in Cuba use monofacial photovoltaic panels. With the technological maturity of the bifacial panel production, since 2018, these have been gaining a growing presence, and it is presumed that in 2021 they will constitute 30% of the world market for solar panels. Bifacial panels, also generating on the reverse side, can increase efficiency between 5 and 30% of the same area. The national and international literature on the subject was reviewed and simulations of a real project in the province of Las Tunas were carried out, assuming an albedo of 0,202 and bifacial modules. This paper was concluded that it is feasible to evaluate the introduction of bifacial panels for future fixed tilt and horizontal single axis tracking projects in Cuba.
Keywords: albedo, bifacial panels.
Trabajo teórico experimental
Uso de paneles bifaciales en sistemas fotovoltaicos de ángulo fijo y de seguimiento horizontal de un eje
Use of bifacial panels in fixed tilt photovoltaic and horizontal single axis tracking systems
Recepción: 30 Julio 2020
Aprobación: 24 Septiembre 2020
El uso de paneles bifaciales es una tendencia a nivel mundial y cada año va en aumento, ya que la gran mayoría de los fabricantes han apostado por esta tecnología. Diversos estudios demuestran una mejora de la eficiencia energética de esta tecnología respecto a los paneles monofaciales, sin embargo, el impacto económico no solo está relacionado con la eficiencia energética, por lo cual cada caso debe ser analizado particularmente. En este trabajo se analiza el impacto financiero que puede tener el uso de la tecnología bifacial respecto a la monofacial, no solo teniendo en cuenta parques con sistemas de ángulos fijos, sino en sistemas de seguimiento en un eje. A pesar de que estudios anteriores realizados en Cubas han demostrado la tecnología de seguimiento es más factible que la de ángulo fijo [1], en el caso del uso de paneles bifaciales no tiene que comportarse necesariamente de esta manera. Existen un grupo de factores que deben ser tomados en cuenta para mejorar el aprovechamiento de las potencialidades de los paneles bifaciales, entre los cuales se pueden mencionar el coeficiente del albedo, la altura, la distancia entre filas y los ángulos de inclinación.
Sin embargo, para valorar el impacto de la tecnología bifacial respecto a la monofacial solo se tendrá en cuenta el coeficiente de albedo, el resto de los parámetros serán mantenidos constantes de acuerdo a los proyectos reales utilizados en el sistema eléctrico cubano y que han sido estudiados en anteriores artículos [1].
Los autores han revisado la literatura internacional sobre los paneles bifaciales, utilizaron las bases de datos meteorológicos del Centro de Física de la Atmósfera, realizaron pruebas prácticas para la determinación del albedo, realizaron simulaciones mediante el software PVsyst v 6.81 (en su versión de prueba gratuita por un mes) [2] y elaboraron la evaluación financiera mediante el descuento de flujos y el efecto en la sustitución de importaciones de combustibles fósiles.
Los datos mensuales promedio de radiación global horizontal y temperatura en el día, según la latitud y longitud de cada sitio en Cuba, se obtuvieron del libro en Excel “Interp” (figura 1), uno de los resultados del proyecto “Determinación de la distribución de radiación solar sobre el territorio nacional partiendo de la información que brinda la red heliográfica”, del Centro de Física de la Atmósfera, del Instituto de Meteorología.
Los módulos solares bifaciales pueden producir energía eléctrica, utilizando no sólo el lado frontal, sino también el reverso (figura1).

Las células solares bifaciales se remontan a la década de 1970, desarrolladas en la Unión Soviética en su programa espacial [3]. Aunque hasta 2017 la presencia de módulos bifaciales era insignificante, ya en 2018 constituían el 10% del mercado mundial de paneles y se prevé un acelerado aumento de esa proporción en el futuro cercano [4-5]. (figura 2).
El albedo es una medida de la reflectividad de una superficie. Depende en lo fundamental de las propiedades de la superficie [6]. El albedo es el factor más importante que influye en la producción de energía del reverso del módulo. A mayor albedo recibido en el reverso, mayor producción [7], la ecuación (1), define el cálculo de factor de albedo:
Existen varios métodos para la determinación del albedo [5-8]. Entre ellos:
Mediante tablas de referencia [9-12]. Aunque su determinación con mayor exactitud debe realizarse a partir de mediciones, existen valores de referencia ampliamente utilizados (tabla 1).

Mediante cámara digital [13-14]. Se requiere una cámara digital y el software ImageJ [15] (de descarga libre). Se coloca un papel blanco horizontal sobre la superficie de la cual se quiere obtener el albedo. Se toman varias fotos en que aparezcan el papel y la superficie. Se descargan en la computadora y se procesan los “recortes” de cuadrados del papel blanco y de la otra superficie. Se dividen los valores medios de la intensidad luminosa de la superficie y del papel, y se multiplica el resultado por 0,65, que es albedo estimado del papel blanco. (figura 3). Se obtienen resultados aproximados.
Medición con un módulo monofacial. Se requieren, además, un multímetro (amperímetro) y un marco para fijar el módulo solar. Se instala el marco en el centro del sitio en que se proyecta construir el parque Se recomienda realizar las mediciones en un día despejado y al mediodía para resultados más precisos. El panel solar se fija en un marco de tal manera que las celdas fotovoltaicas queden hacia arriba con un ángulo de 180° respecto al plano hipotético del suelo y a 0,5 m de altura como mínimo. Se mide la intensidad de la corriente de corto circuito (Isc sky). Se realiza la misma operación con el panel al revés. Se mide intensidad de la corriente de corto circuito (lsc ground). Se repite la operación en otros puntos diferentes y se promedian los resultados del albedo de cada punto [6].
El albedo de cada punto se calcula de acuerdo con la ecuación (2):
Mediante un albedómetro. Es el método más preciso. Se instala el equipo en el centro del sitio en que se proyecta construir el parque, a 0,5 metros del suelo como mínimo. Se debe evitar sombras alrededor. Se mide el albedo en otros 4 puntos diferentes del sitio y se determina la media de las mediciones. Es el método a utilizar para evaluar el proyecto de un sitio específico.
La elevación del módulo (figura 4), influye en la captación de la radiación en el revés del módulo [11-15].
Catálogos de LG Electronics, y del fabricante Solar World [6], concluyen la ganancia de energía crece con la elevación, pero que se satura cuando alcanza un metro. Sin embargo, Sun X. et al [12], adelantan una ecuación (3), obtenida por regresión:
Si y si
No obstante, en la medida que el aumento de la elevación incrementa los costos de estructura, la solución final debe ser económica.
A mayor distancia entre el principio de la fila anterior y la siguiente (pitch), mayor es la posibilidad de una mayor energía (figura 7). Nuevamente, la solución final debe ser económica.
Las diferentes partes de la estructura metálica y el cableado pueden bloquear parte de la luz reflejada que llega a la parte inferior del módulo. Estructuras con menos rieles y de menor espesor, así como diseños de cableado que no interfieran la luz reflejada, pueden aumentar la generación.
Han sido comentados un grupo de factores que afectan la generación con paneles bifaciales, pero en la práctica el problema es mucho más complejo, pues muchos de ellos son interdependientes. El número de filas, el ángulo de inclinación, el azimut, la altura del eje en el caso de HSAT, están relacionados con los factores ya descritos [15-16]. Y como hemos afirmado anteriormente, la solución final debe ser económica.
Como que la difusión comercial de los módulos bifaciales es muy reciente, e intervienen tantos factores, como concluyen Stein J.S. et al. [16]: “los modelos para el comportamiento bifacial no están suficientemente maduros para medir las ganancias bifaciales para todas las configuraciones de sistemas”.
En 2017, Trina Solar [17], uno de los líderes de la tecnología fotovoltaica, realizó un estudio en Changzhou, cuya latitud es de 310, y obtuvo los siguientes resultados empíricos (tabla 2):

En esta tabla se corrobora la importancia que tiene el albedo en la generación de energía de los paneles bifaciales.
Rodríguez-Gallegos C.D. et al. [18], hicieron recientemente una muy completa revisión de la literatura científica sobre la influencia de los paneles bifaciales en SAF y en sistemas de seguimiento de un eje (SAT) en la generación, tanto a partir de evidencias empíricas como simulaciones. Los sistemas SAT pueden ser HSAT y de seguimiento de un eje inclinado (TSAT). En la inmensa mayoría de los resultados -aunque muchos de ellos en pequeñas estructuras y con diferentes albedos- se muestran ganancias de generación de SAF y SAT utilizando paneles bifaciales vs. SAF con paneles monofaciales.
Rodríguez-Gallegos C.D. et al. desarrollaron un modelo global para estimar las ganancias de energía de diferentes tecnologías con módulos bifaciales versus tecnología SAF con módulos monofaciales, con varias premisas. Entre ellas:
Tanto para los módulos monofaciales como para los bifaciales con la tecnología SAF, el ángulo de inclinación es igual a la latitud.
Los sistemas de seguimiento solar de un eje tienen un ángulo de rotación de ±60°.
Los HSAT se giran en el sobre el eje Norte-Sur de Este a Oeste. Los TSAT se inclinan a 300 y su orientación fue calculada.
La elevación (E) de los paneles es de 0,6 m para los SAF y 1 m para los SAT.
La radiación global, difusa horizontal y directa normal, la temperatura y el albedo fueron tomados de NASA’s Clouds and the Earth’s Radiant Energy System del año 2015 (CERES).
La distancia entre filas se considera suficientemente grande como para evitar sombras.
Los resultados se muestran en la figura 6.

De acuerdo a estos resultados, en los sitios de medias y bajas latitudes:
Los sistemas SAF con paneles bifaciales generan como promedio 7% más de energía que los SAF con módulos monofaciales.
Los SAT con paneles bifaciales generan como promedio 35% más de energía que los SAF con módulos monofaciales.
Los SAT con paneles bifaciales generan como promedio 7% más de energía que los SAT con paneles monofaciales.
Como se revisó anteriormente, el albedo es un factor crítico para determinar la generación de energía mediante paneles bifaciales. Se determinó el albedo resultante utilizando el método b) Medición con un módulo monofacial. Para ello, se construyó una estructura metálica de 1,4 m de elevación para colocar encima un panel horizontalmente (figura 7).

La superficie seleccionada es la más común de los parques fotovoltaicos en Cuba, hierba corta. Se realizaron las mediciones cerca del mediodía mediante equipo analizador de parques, en un día soleado de agosto de este año. Los resultados fueron los siguientes (tabla 3):

También se utilizó el método b) mediante cámara digital de 40 megapíxeles (tabla 4), aproximadamente en el mismo sitio, a la misma hora y el mismo día.

Los albedos hallados son consistentes con los coeficientes que aparecen en la tabla 1, y el valor de 0,202 será utilizado en las simulaciones a realizar con paneles bifaciales.
Gutiérrez Urdaneta L. et al. [1], en el artículo citado, realizaron una evaluación de las tecnologías SAF y HSAT para un proyecto real en Amancio Rodríguez (latitud 20.80; longitud -77.60), en la provincia de Las Tunas, utilizando paneles monofaciales. Este es un proyecto de 1 242 kWp, con 3 880 módulos monofaciales inclinados (SAF) de Norte a Sur a 15° organizados en 194 cadenas. Está enclavado en un área con holgura. La limitante para aumentar el número de paneles era la potencia del inversor (1 000 kW). La distancia entre el inicio de la fila anterior y el inicio de la posterior es de 8,70 metros, suficiente para evitar el sombreado en el solsticio de invierno a las 8:00 AM. En el mencionado trabajo se había realizado una comparación de este mismo proyecto, utilizando el sistema de seguimiento automático horizontal de un eje (HSAT) y paneles monofaciales. Para el HSAT las cadenas debieron organizarse en columnas paralelas al eje Norte Sur. La distancia mínima entre los ejes de las columnas debió ser 10,5 metros para evitar sombreado a las 8:00 am en el solsticio de invierno, pero por las limitaciones de espacio se proyectó 9,79 metros como distancia promedio entre los ejes de las cadenas. Se utilizó un sistema que realiza el seguimiento entre los ángulos -450 y 450 en el eje Este-Oeste, sin inclinación en el eje Norte-Sur. Los resultados de las simulaciones ejecutadas para el SAF y HSAT anteriormente, con el PVSyst con paneles monofaciales (tabla 5), servirán de referencia para ser comparadas con las que serán realizadas con paneles bifaciales en el presente trabajo.

Utilizando los mismos parámetros de la simulación SAM con paneles monofaciales, y sólo agregando una elevación (E) de 0,50 m y un albedo de 0,202 se realizó la simulación con SAM con paneles bifaciales y ángulo fijo de 15° (figura 8).

Utilizando los mismos parámetros de la simulación HSAT con paneles bifaciales, y sólo agregando una altura del eje de 1,50 m y un albedo de 0,202 se realizó la simulación con HSAT con paneles bifaciales y ángulos límites de seguimiento de 45°,(figura 9).

Como se había previsto de manera preliminar, la utilización de paneles bifaciales aumenta la generación de electricidad tanto en las tecnologías SAF como HSAT (tablas 6 y 7).


En 2019, según Deline C. [5], la diferencia de precios por Watt pico entre los paneles bifaciales y monofaciales era de hasta sólo USD 0,05. En una muestra tomada por Internet del mercado chino a finales de julio de 2020 esta diferencia era como promedio USD 0,04 (tabla 8).
Finalmente, para mayor precisión, se solicitaron ofertas investigativas de paneles monofaciales y bifaciales a dos de los mayores productores del mundo (tabla 9).
Para evaluar la rentabilidad económico-financiera de la tecnología HSAT se asumieron premisas económico-financieras. Además,
Se obtuvieron ofertas de un proveedor de China para una estructura de montaje de un parque de 2.5 MW, tanto para SAF como HSAT.
Se tomaron los precios CFR/Watt promedios reflejados en la tabla 12 para los módulos mono y bifaciales.
Solamente se tendrán en cuenta los ingresos y egresos de efectivo incrementales de HSAT versus SAF (incrementos energía y aumentos de valores de inversión por estructuras y equipamiento). El resto de los egresos, excepto los de mantenimiento del HSAT, no varían o lo hacen de manera no significativa en las dos alternativas (SAF y HSAT). (Ver tabla 10).



Los ingresos e inversión incrementales y los resultados económico-financieros de SAF y HSAT con módulos bifaciales versus SAF y HSAT con monofaciales se muestran en la tabla 11.

Se evaluaron los beneficios potenciales de los paneles bifaciales mediante comparación. No se realizó la optimización, que es una tarea mucho más compleja, requiere ejercicios iterativos de simulación y depende de las características de sitio. Se utilizó como terreno la hierba corta, pero aún puede ser obtenida mayor ganancia de generación en superficies con mayor albedo. Ello sería otro escenario que posiblemente conlleve a gastos de inversión adicionales.
La elección final en cada proyecto dependerá de las condiciones específicas de cada sitio, especialmente las topográficos, datos meteorológicos y de áreas disponibles: “un traje a la medida”, así como de las disponibilidades de financiamiento. Se demostró para un sitio específico que la utilización de paneles bifaciales, sea con tecnología SAF o HSAT y con un albedo relativamente bajo, aumenta la generación eléctrica en una misma superficie. Los resultados en la generación y financieros son mucho mejores con relación a la tecnología hoy generalizada en Cuba de paneles monofaciales con ángulo de inclinación fijo. Ello cobra relevancia especial ante la relativa escasez de tierra.
En Cuba existe una gran variedad de suelos arenosos y de colores claros. Podría realizarse, de conjunto con el Centro de Física de la Atmósfera, una colaboración para determinar aquellas áreas disponibles con mayor albedo y, por lo tanto, con más alto potencial de generación con paneles bifaciales, así como la variabilidad estacional. Con la eventual producción nacional de las estructuras de montaje y otros componentes, y con la modernización de la producción nacional de paneles, el beneficio en la sustitución de importaciones puede ser ampliarse.
*Autor de correspondencia: urdaneta@hidroe.une.cu















