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Resumen:

Este trabajo utilizó análisis factorial confirmatorio para investigar los factores y la estructura de la habilidad para los conceptos
de geometría transformacional. Los resultados sugieren que las tres transformaciones geométricas (traslación, reflexión, rotación)
consisten de cuatro factores y tienen estructuras similares. Se utilizó el análisis de RASCH para crear una escala de los ítems
de factores, la cual se interpretó a la luz del marco teórico del espacio de trabajo geométrico. Se identificaron cinco niveles de
habilidades de visualización en la geometría transformacional. Este trabajo sugiere que el desarrollo de la comprensión en la
geometría transformacional puede explicarse con base en el proceso de visualización del espacio de trabajo geométrico personal
de los estudiantes.
Palabras clave: Geometría transformacional, Espacio de Trabajo Geométrico, Visualización, Deconstrucción dimensional.

Abstract:

is paper used CFA analyses to investigate the factors and structure of transformational geometry concepts ability. e results
suggest that the three geometric transformations (translation, reflection and rotation) consist of four factors and have similar
structures. RASCH analysis was used to create a scale of the factor items, which was interpreted in light of the theoretical
framework of geometrical working space. Five levels of visualization abilities in transformational geometry were identified. is
paper suggests that the development of understanding in transformational geometry can be explained based on the visualization
process of the students’ personal geometrical working space.
Keywords: Transformational geometry, Geometrical working space, Visualization, Dimensional deconstruction.

Resumo:

Este trabalho utilizou análise fatorial confirmatória para pesquisar os fatores e a estrutura da habilidade para os conceitos
de geometria transformacional. Os resultados sugerem que as três transformações geométricas (translação, reflexão e rotação)
consistem em quatro fatores e têm estruturas similares. Foi utilizada a análise de RASCH para criar uma escala dos itens de
fatores, à qual foi interpretada à luz do modelo teórico do espaço de trabalho geométrico. Foram identificados cinco níveis
de habilidades de visualização na geometria transformacional. Este trabalho sugere que o desenvolvimento da compreensão na
geometria transformacional pode ser explicado com base no processo de visualização do espaço de trabalho geométrico pessoal
dos estudantes.
Palavras-chave: Geometria transformacional, Espaço de Trabalho Geométrico, Visualização, Desconstrução dimensional.

Résumé:

Cet article utilise l’analyse factorielle confirmatoire pour étudier les facteurs et la structure de l’habilité des concepts de géométrie
des transformations. Les résultats suggèrent que les trois transformations géométriques (translation, réflexion, rotation) sont
constituées de quatre facteurs et ont des structures similaires. L’analyse de RASCH a été utilisée pour créer une échelle des
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composants de facteur, qui a été interprétée à la lumière du cadre théorique de l’Espace de Travail Géométrique. Cinq niveaux
d’habilités de visualisation de la géométrie des transformations ont été identifiés. Cet article suggère que le développement de la
compréhension de la géométrie des transformations peut être expliqué sur la base du processus de visualisation de l’espace de travail
géométrique personnel des élèves.
Mots clés: Géométrie des transformations, Espace de Travail Géométrique, Visualisation, Déconstruction dimensionnelle.

1. Introduction

Transformational geometry (TG) refers to a mental or physical transformation of shapes. According
to NCTM’s Principals and Standards for School Mathematics (2002), “Instructional programs from
kindergarten through grade 12 should enable all students to apply transformations and use symmetry to
analyze mathematical situations” (p.41).

Research in TG during the last few years has focused on the development of knowledge and understanding
of transformations (Yanik & Flores, 2009) and various theoretical frameworks have been used (Hollebrands,
2003; Molina, 1990; Soon, 1989). Kidder (1976) suggests that performing geometric transformations is
a multi - faceted mental operation. However, the components that synthesize this ability appear not to
have been clearly defined. is seems to be critical in order to study the development of knowledge and
understanding of TG.

Based on the pilot results of a large scale project investigating the ability in TG, this paper aims to
investigate the structure and development of the primary school students’ ability in TG concepts. Hence,
its aim is twofold: 1) to investigate the components that synthesize primary school students’ TG ability,
drawing on the findings of previous studies, and 2) to describe primary school students’ levels of abilities in
TG, drawing on theoretical frameworks for understanding geometry and interpreting figures. Specifically,
we draw on the notions of geometric work space (GWS) (Kuzniak, 2006), and visualization process (Duval,
2005).

2. Literature Review

2.1. e development of knowledge and understanding of transformational geometry

One of the first debates in TG research was the development of learning TG concepts. e first studies
focused on the order of learning translation, reflection and rotation (Moyer, 1978). Schultz and Austin
(1983) suggest that there cannot be a specific order for understanding the three geometric transformations,
since some configurations can influence the relative difficulty of rotations and reflections, such as the
direction of the transformation. However, these studies used only one type of task, that of performing a
transformation.

e first attempts that used a variety of tasks to study the development of TG ability were based on
the van Hiele levels of geometric understanding (Molina, 1990; Soon, 1989). ese studies used different
tasks matched to each level, such as: performing, recognizing, understanding and relating the properties of
transformations. However, the components that synthesize this ability have not been confirmed in literature.
Moreover, these studies focused on the type of task, ignoring previous findings regarding the order of
difficulty in learning transformations and the configurations that influence difficulty.

Edwards (2003) proposed another model which discriminates between two qualitatively different
conceptions of geometric transformations: 1) motion, where the plane is conceived as a background and
geometric figures are manipulated on top of it, and 2) mapping, where a transformation can be considered
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as a special function that maps all points in the plane to other points while preserving some properties and
changing others.

Taking into consideration the various types of tasks and configurations found in previous studies, this
paper emphasizes on visualization process and figure apprehension (Duval, 2011) to describe the levels of
development that may qualitatively differentiate students’ levels of knowledge and understanding of TG
concepts. It is hypothesized that visualization process can explain the development of TG ability better than
the type of geometric transformation or task.

2.2. e geometric work space

e GWS (Kuzniak, 2006, 2011) is the place that is organized to ensure the geometric work. From an
epistemological view, it puts the following components in a network: a) the real and concrete objects,
b) the artefacts, and c) a theoretical system of reference. Adapting Duval (1995), the cognitive processes
for using these components in geometrical problem solving are: a) a visualization process with regard to
space representation and material support, b) a construction process determined by the instruments and
geometrical configurations, and c) a discursive reasoning process that conveys argumentation and proof. is
paper will emphasize on the first process.

ree different levels can describe the diversity of GWS existing in the school context: a) the reference, b)
the appropriate, and c) the personal GWS (Kuzniak, 2011). Geometry intended by the teacher/curriculum
is described in the reference GWS, which must be fitted out in an appropriate GWS, to enable an actual
implementation in a classroom where each student works within his / her personal GWS. is paper focuses
on the personal GWS. When a problem is posed to an individual, it is handled within his/her personal GWS,
which generally depends on the person’s cognitive abilities (i.e. visualization). Houdement and Kuzniak
(1999) describe the way in which three different paradigms could explain the different forms of geometry. A
paradigm is composed of a theory that guides observation, activity and judgment, and permits new knowledge
production. In primary school, all GWS levels can be described within Geometry I (GI). GI finds its validation
in the material and tangible world. When students pass to secondary education, they are expected to start
working within Geometry II (GII). GII is built on a model that approaches reality without being fused with
it (Kuzniak & Rauscher, 2011). Both Geometries have a close link to the real world, but in different ways
(Kuzniak, 2012).

2.3. Visualization in geometry

ere are two ways of looking at figures and recognizing what they stand for: the natural perceptive and the
mathematical (Duval, 2011). One important issue in the learning of geometry is to identify the figural units
which can be discriminated in any constructed figure. According to Duval (2011), visualization ability in
geometry is closely related to the ability of recognizing all figural units that can be mathematically relevant.
He argues that becoming aware of the different ways of looking at figures is prior to the knowledge of the
classical, basic figures.

According to Duval (1995), there are four apprehensions for a geometrical figure: perceptual, operative,
discursive, and sequential. Visualization process is related to the first two types. Specifically, the perceptive
way of visual recognition focuses exclusively on the most global shape or closed outline, and so the recognition
of other possible reconfigurations is excluded. e perceptive way is activated and reinforced when figures
are used as objects that can be empirically observed and it can either help or inhibit the heuristic recognition
(Duval, 2011). Operative apprehension is a form of visual processing that concerns geometrical figures
and relies on the different ways of modifying a certain figure. One way is dimensional deconstruction.
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Dimensional deconstruction describes the transition of a drawing seen as a tangible object to the figure
conceived as a generic and abstract object (Duval, 2005). For example, a figure can be seen as a 2D-
object (a triangle as an area), a set of 1D-objects (sides) or 0D-objects (vertices). Another example is when
one recognizes embedded 2D figures within a 2Dobject (e.g., a triangle inscribed in a circle). While the
natural way perception focuses exclusively on 1D, 2D or 3D/3D figural units, just like material object, the
mathematical way requires the dimensional deconstruction of any shape into figural units of 2D, 1D or
0D/2D. According to Bulf (2009), dimensional deconstruction is a possible strategy for 12-13 year old
French students to solve symmetry tasks.

is paper demonstrates how Duval’s theory (2005) about the role of figures in geometric reasoning can
be used to describe the personal GWS of students at different levels of abilities in TG. Specifically, it focuses
on the real and local space of the GWS which is related to visualization process and figure perception of
primary school students.

3. Methodology

3.1. Participants

e participants were 166 primary school students. In order to study a wider spectrum of primary
school students’ development of TG abilities, the participants were selected from three successive grades.
Specifically, there were 52 fourth - graders, 53 fih - graders and 61 sixth - graders.

3.2. Instrument and procedure

e instrument of the study was a TG test, developed especially for the purpose of the project. e test had
three sections: one on translation, one on reflection and one on rotation. Each section had four different
types of tasks (see Appendix): 1) recognising the image of a translation / reflection / rotation among other
choices, 2) recognising a translation / reflection / rotation among other choices, 3) defining the parameters of
a given translation / reflection / rotation, and 4) constructing the image for a given translation / reflection /
rotation. For each type, at least three tasks were given: one in a horizontal direction, one in a vertical direction
and one in a diagonal direction. In types 3 and 4, there was an additional task with an overlapping image
and in type 4 an additional task with an unfamiliar shape in horizontal direction. e tasks were split and
administered to all students in two equally difficult parts. Each item’s difficulty within each section was
estimated based on previous research findings of Schultz and Austin (1983). Students were given 40 minutes
to complete each part. To avoid practice effects, half of the students received one part of the test first, while
the rest of the students received the other. Since instruction in geometric transformations in Cyprus was
not emphasized in the curriculum and they mainly focused on the concept of reflection through symmetry,
operational definitions and examples were given to the students before completing the tests, using visual aids
of paper cards and drawings on the whiteboard for illustration. Moreover, written mathematical definitions
and illustrations of each transformation were included in the students’ printed tests.

Based on the theoretical frameworks described above, an a priori analysis of the tasks suggests that
tasks of recognition (Types 1 and 2) can be solved efficiently with the use of a motion approach, as
defined by Edward’s (2003). erefore, a student can solve a recognition task by visualising the figures
changing positions as tangible 3D or 2D objects of the real world (GI) and without requiring dimensional
deconstruction to 1D or to 0D. For example, in the recognising translation task (see Appendix), one is
expected to imagine one or every shape sliding over the grid and onto the other shapes, in order to decide
which one is matching. Tasks of Type 3 and 4, even though they can be approached using a motion strategy
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of visualising figures as tangible objects, it is expected that such an approach will oen result to partially
correct responses with errors in measures or image orientation. It is expected that the most efficient way to
approach such tasks is mapping, as described by Edwards (2003). us, a student who is able to visualize the
dimensional deconstruction of the figure to 1D or even 0D elements is more likely to succeed in such tasks.
For example, in the case of constructing the reflection of a triangle over a vertical line accurately, one would
have to focus on the points of the triangle’s vertices, find their position on the other side of the line, and
then reconstruct the triangle. However, it is expected that students at this level would still operate within GI,
since they treat segments and points as material objects. Students who are able to understand the symbolic
nature of points and their relations in space may be considered to be at a transitional stage to GII.

Aer completing the test, the students’ responses were graded. Types of tasks 1 and 2 were multiple choice,
and were graded with 1mark for correct and 0 for incorrect responses. In tasks of type 3 and 4, 0 marks were
given for incorrect responses and 1 for correct responses. Partial credit was given for responses with some
correct elements. Items with no response received 0 marks.

3.3. Statistical procedures

For testing the fit of the theoretical model regarding the structure of TG ability, MPLUS was used with
Maximum Likelihood (ML) estimator. More than one fit indices were used to evaluate the extent to which
the data fit the theoretical model. e fit indices and their optimal values were: a) the ratio of chi-square to its
degrees of freedom, which should be less than 1.96 since a significant chi-square indicates lack of satisfactory
model fit, b) the Comparative Fit Index (CFI), the values of which should be equal to or larger than 0.90,
and c) the Root Mean Square Error of Approximation (RMSEA), with acceptable values less than or equal
to 0.06 (Muthén & Muthén, 2004).

RASCH analysis was used for investigating the development of knowledge and understanding of TG
ability. is method is based on the assumption that the difference between item difficulty and person ability
should govern the probability of any person being successful on any particular item, and ranks both the
persons and the items on the same scale, based on these probabilities. e fit indices are: a) the infit (weighted)
mean square statistic, and b) the outfit (unweighted) mean square statistic. e normalized statistics (using
the Wilson – Hilferty transformation), infit t and outfit t, have a mean near zero and a standard deviation
near one when the data conform to the measurement model. No items or persons should have a zero as a
score neither should they have a perfect score. is study used the dichotomous model of RASCH, which
predicts the conditional probability of a binary outcome (correct / incorrect). erefore, for this analysis,
the data were recoded as 1 mark for correct and 0 for incorrect or partially correct responses.

4. Results

e first aim of this study was to investigate the components that synthesize primary school students’ TG
ability and its structure. For this aim, confirmatory factor analyses (CFA), with subsequent model tests, were
performed. e model presented in Figure 1 seems to have the best fit for all three TG concepts. As expected,
there are four first-order factors for each geometric transformation: 1) “recognize the image”, 2) “recognize
the transformation” (translation, reflection, or rotation), 3) “define the parameters”, and 4) “construct the
image”. Two of the expected factors, “recognise the image” and “recognise the transformation”, seem to
constitute a second order factor, which contributes significantly to the ability at primary school. is factor
was named “recognise properties”, since the common characteristic shared by these tasks is the recognition
of each transformations’ properties regarding the preservation or change of the orientation, position, and/
or size of the figure. Further CFA with students’ mean scores for each of the twelve factors (4 for each
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transformation) confirm that “translation ability”, “reflection ability”, and “rotation ability” all load in a
higher order factor, which is considered to be “TG ability” (CFI = .96, x2  = 71.90, df = 52, x2 /df =
1.39, RMSEA = .05). e factor loadings and their interpreted dispersion (r2) are .95 (.91) for “translation
ability”, .98 (.97) for “reflection ability”, and .90 (.81) for “rotation ability”.

e second aim was to describe primary school students’ levels of abilities in TG. A RASCH dichotomous
analysis was performed. e analysis suggests that the data fit the model well (X = .00, SD = 1.81, Infit Mean
Square = .99, Outfit Mean Square = 1.01, Infit t= −.06, Outfit t= .12, Reliability of Estimates = .98). Figure
2 presents the scale that resulted from this analysis.

FIGURE 1
e proposed model of ability for the three geometric transformations

On the le side of the figure, the students are ranked according to their ability. Each X represents one
student. On the right side of the figure, the items of the test are ranked according to their level of difficulty.
More able students, i.e. those that correctly answered more items, are at the top of the scale while less able
students are at the bottom. Similarly, items that were harder for the students are at the top of the scale while
easier items are at the bottom. Each item is coded as a string of three symbols. e first symbol is a letter, which
indicates the type of transformation: T for translation, F for Reflection and R for rotation; the second symbol
is a number, which indicates the type of task, according to the factors described in the previous section: 1 for
“recognize image”, 2 for “recognize transformation”, 3 for “define parameters”, and 4 for “construct image”.
e last symbol is a number from 1 to 5, indicating the serial number of the item in the corresponding factor.
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e dotted lines mark the different levels. ere seem to be five levels of abilities: L1 (-5.0 to -2.5 logits),
L2 (-2.49 to -0.9 logits), L3 (-0.89 to 0.89 logits), L4 (0.9 to 2.49 logits) and L5 (2.5 to 5.0 logits). Aer
examining the assumptions suggested in literature that what forms the levels of abilities can be either the type
of transformation or the type of task, (which did not give a clear picture of the qualitative differences between
the levels), we decided to compare the levels in light of the personal GWS framework (Kuzniak, 2006) and
specifically the visualization processes that we suppose are common requirements for solving the tasks that
were grouped at the same level. Hence, we studied the similarities of the tasks that were grouped and we
drew on the ideas of figure apprehension and dimensional deconstruction (Duval, 2005) to understand how
students could have approached the task and how they visualised the figures. e naming of the levels was
influenced by Edwards’ (2003) terminology in the field of TG. us, they were named: 1) wholistic image,
2) motion of an object, 3) mapping of an object, 4) mapping of the plane, and 5) self-regulated mapping of
the plane, for reasons that are explained further on.

In L1, “wholistic image”, students seem to perceptually conceive simple relations of up - down and le -
right within the figure, that exist in the real world, but without understanding neither the properties of the
transformation nor of the geometrical figures represented. e focus is not on what the shapes represent, but
on their positioning as part of a global figure. Students at this level have a personal GWS that allows them to
visually process the figures only in a perceptual way. ey seem to visualize figure of the plane and the objects
as a whole image, as a realistic photograph in the physical world. ey possibly cannot deconstruct this figure
into units, and they see the grid which represents the plane and the images as a concrete part of it, without
motion. In L2, “motion of an object”, students begin to detach the shape from the figure of the plane and are
able to visualize it moving on top of it. e emphasis is still on the shape as a tangible object, but the students
can visualize the dimensional deconstruction of the representation to two separate 2D figures: the plane and
the geometrical shape. Hence, they may be able to visualize a 2D/2D deconstruction. However, geometric
reasoning in the personal GWS of students at this level still relies strongly on perceptual apprehension.

e tasks that were grouped in L3, “mapping of an object”, suggest that students probably begin to
dimensionally deconstruct the 2D shape into 1D sides, and focus on the sides and their mapping. Hence,
the personal GWS of students at L3 begins to employ operative apprehension. Students seem to be able to
visualize the mapping of a single side and use reconfigurations to reconstruct the image of the geometrical
shape based on its definition and attributes (right angles, size etc). From a cognitive perspective, they begin to
intuitively realize the transformation properties related to direction, orientation and distance, and they can
apply them in simple situations such as constructing images in straight-line displacement and in recognizing
circular displacement.



Revista Latinoamericana de Investigación en Matemática Educativa, 2014, vol. 17, 4-1, ISSN: 1665-243...

PDF generado a partir de XML-JATS4R por Redalyc
Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto 156

FIGURE 2
e scale of abilities in the transformational geometry concepts

Students at L4, “mapping of the plane”, seem to have a strong operative apprehension and ability to
deconstruct the 2D geometrical shape into both 1D and 0D points and they understand the mapping of
all the points, based on the properties of TG. e shapes are not anymore perceived only as global figures,
but they still visualize the plane figure as an object. ey begin to discover and apply the transformations’
properties to all the points of the shape, even in complex circular displacements. Note that students at this
level were all sixth graders and their personal GWS at this age has probably been influenced by a more formal
instruction on geometrical concepts that can be relevant to geometric transformations (i.e. shape properties,
angles, circles). At L5, “self - regulated mapping of the plane”, there is only one sixth - grade student. It is our
belief that what differentiates this student from L4 students is the ability for a more flexible visualization of
figures and the representation of space. is student seems to be able to dimensionally deconstruct both the
geometrical shape and the plane into 0D points. He/she can visualize and perform the mapping of all the
points in various routes and direction (straight and circular displacements), and realizes that transformation
affects all points of the plane. According to Duval (2005), a deadlock in the teaching of geometry is that a
perceptive recognition of some figural units excludes the recognition of the others possibilities, and therefore
goes against any possible transformation of a given figure into another. is student seems to have some
flexibility in manipulating and controlling his / her mental images and can flexibly change between figural
units of visualization and visual strategies. is could be evidence of “representational flexibility” (Gagatsis,
Deliyianni, Elia & Panaoura, 2011) in the sense of flexibility to visualize and manipulate the mental



Xenia Xistouri, et al. Estructura y niveles de habilidad en estudiantes de escuela primaria sobre ...

PDF generado a partir de XML-JATS4R por Redalyc
Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto 157

representations of the different reconfigurations of a figure. Although we are not aware of many details
regarding this student’s cognitive profile, it is possible that his/her cognitive abilities may enable him/her to
a personal GWS that is different from other students, perhaps with characteristics closer to GII. Hence, this
student may reflect an “attempted transition to GII” (Bulf, 2009), a passage that remains blocked because
the reference GWS in primary school is strongly rooted in GI. For most students, this negotiation between
GI and GII appears and continues during secondary school.

5. Discussion

e aim of this paper was to describe primary school students’ structure and levels of abilities in TG. In this
section, we discuss the conclusions of our findings.

Regarding the first aim, our findings confirm Kidder’s (1976) position that TG ability is multifaceted.
It seems that the three geometric transformations are composed by similar factors, namely: recognition of
image, recognition of transformation, identification of parameters, and construction of image.

Moreover, they seem to have a similar structure, with recognition of image and recognition of
transformation factors forming a higher order factor – recognition of properties. is higher order factor
and the two factors of identification of parameters and construction of image comprise ability in translation,
reflection, and rotation respectively. e three factors of ability in each geometric transformation load on a
higher order factor, which is TG ability.

For the second aim, we adopted the theoretical framework of GWS (Kuzniak, 2006) to interpret students’
levels of ability. Five levels were found in relation to visualization process. Our findings suggest that the
personal GWS of students at primary school level operates within GI and is strongly influenced by the natural
world, even in their mental images. However, it seems that not all students that think within the same
paradigm are at the same level of abilities nor share the same visualization process of geometrical reasoning.
What seems to differentiate these levels may be some cognitive developmental abilities that form students’
personal GWS, since the reference GWS does not emphasize instruction in geometric transformations
and these differences cannot be attributed to teaching. Hence, even though they are not expected by the
system to be working within GII for TG concepts, some students at the higher levels may have developed
such a personal GWS regarding their visualization process of figures, which would make it possible for
them to begin their transition to GII from primary school, given the appropriate GWS. is could suggest
that some sixth grade students may be ready to be introduced to a more formal instruction on geometric
transformations within GII. is should be taken into consideration by curriculum formers in the design of
geometry curricula. However, this does not mean that students at the higher levels should not still approach
the easie tasks within GI. Further research with qualitative data of students’ arguments is required to describe
the GWS paradigms primary school students at different levels of abilities when solving TG tasks. Further
studies of students’cognitive profile may reveal reasons for the differentiation between levels. Such studies
could focus on spatial ability, which is highly related to TG ability (Kirby & Boulter, 1999).

Our findings are important for the teaching of TG in primary school. ey support the fact that the theory
of GWS can be a useful epistemological tool for understanding development of TG, and guide teachers into
adjusting their teaching methods to help students achieve higher levels of performance. Moreover, it provides
evidence for the importance of practicing students’ ability to identify figural units in educational frameworks
for the teaching of geometry in general, which according to Duval (2011) is a fundamental principle in the
learning of geometry. Hence, we should reflect about a new approach for introducing geometry in primary
and secondary levels, whose principle would be that the awareness of the different ways of looking at figures
is prior to the knowledge of the classical basic figures (Duval, 2011).
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