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ABSTRACT: In the first part of the article, a semiotic reading of the embodied approach to mathematics will be pre-

Keywords:

sented. From this perspective, the role of the sensorimotor in mathematics will be considered, by looking at
some work in experimental psychology on the segmentation of formulas and at an analysis of the practice of to-
pology as involving manipulative imagination. According to the proposed view, representations in mathematics
are cognitive tools whose functioning depends on pre-existing cognitive abilities and specific training. In the sec-
ond part of the paper, the view of cognitive tools as props in games of “make-believe” will be discussed; to bet-
ter specify this claim, the notion of affordance will be explored in its possible extension from concrete objects to
representations.

embodied cognition, embodied mathematics, cognitive tools, manipulative imagination, games of “make-be-
lieve”, affordances.

RESUMEN: En la primera parte del articulo, se presenta una lectura semiética del enfoque corporeizado de las matemad-

ticas. Desde esta perspectiva, se considera el papel de lo sensoriomotor en matematica, considerando algunos
trabajos en psicologia experimental sobre la segmentacién de férmulas y el andlisis de la practica de la topologia
en términos de imaginacién manipulativa. De acuerdo con la perspectiva propuesta, las representaciones en ma-
temdticas son herramientas cognitivas cuyo funcionamiento depende de capacidades cognitivas pre-existentes
y entrenamiento especifico. En la segunda parte del articulo, se discute la visién de las herramientas cognitivas
como ‘apoyos’ o ‘puntales’ (props) en juegos de como-si; para especificar mejor esta afirmacién se explora la no-
cién de ‘affordance’ en su posible extensién de objetos concretos a representaciones.

Palabras clave: cognicién corporcizada, matematica corporcizada, herramientas cognitivas, imaginacién manipulativa, juc-

gos de como-si, ‘affordances’

1. Introduction: how cognition (and mathematics) gets embodied

Core knowledge representations in cognition are amodal data structures that get processed
independently of the brain’s modal systems devoted to perception, action and introspec-
tion.! This claim has been standard in cognitive science; only recently, some views have
tried to challenge it. Several labels besides embodied cognition (or embodiment) have been
introduced in the literature to define approaches seeking to embody cognition: embedded

I would like to thank the participants to the Workshop “From Basic Cognition to Mathematical Prac-
tices” at the University of Seville in 2016, where I delivered a first version of this article, for their ques-
tions and comments. I also thank José Ferreirdés and Maria de Paz for their editorial work, and two

anonymous referees for their useful suggestions.

1

This sentence is a paraphrase of Barsalou (1999)’s characterization of the matter.
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346 Valeria GIARDINO

cognition, extended mind, enactivism, situated cognition, grounded cognition, and so on
and so forth. Indeed, these views are not equivalent; however, what they have in common
is that they all maintain that the standard claim is to some extent wrong; perception, action
and even introspection may play a part in our cognitive processes.

Looking back to the history of cognitive science, there are reasons to believe that the
standard claim is mistaken. Already in 1990, the great psychologist Jerome Bruner warned
his readers against the wrong route that the so-called cognitive revolution of the 50s had
taken. According to him, the cognitive revolution began by focusing on the symbolic ac-
tivities involved in humans’ making sense of the world and of themselves; in his words, “its
aim was to prompt psychology to join forces with its sister interpretative disciplines in the
humanities and in the social science” (Bruner 1990, 2). However, the emphasis gradually
shifted from questions about the construction of meaning to attention towards informa-
tion processing, which are “profoundly different matters” (Bruner 1990, 4). In Bruner’s
reconstruction, “computing became the model of the mind, and in place of the concept of
meaning there emerged the concept of computability [...]. So long as there was a comput-
able program, there was ‘mind” (Bruner 1990, 6-7). Along the same line of thought, an-
other psychologist, Lawrence Bersalou, stressed a very similar point, by claiming that af-
ter the cognitive revolution, radically new approaches to representation were developed in
contrast to pre-twentieth century thinking: “modern cognitive scientists began working
with representational schemes that were inherently nonperceptual. To a large extent, this
shift reflected major developments outside cognitive science in logic, statistics, and compu-
ter science” (Barsalou 1999, 578). Interestingly, in Barsalou’s view, the very same practices
that were brought about by the cognitive revolution were so successful that they ended up
becoming the focus of research, with the initial questions that set off the revolution being
forgotten.

Nonetheless, the positive claims of embodied cognition views are not always that
sharply defined. Let us assume that it is in fact wrong to consider cognition as disembod-
ied. What is then the role of perception, or action, or introspection for cognition? What
does the new big picture about the mind as finally —or maybe once again— embodied
amount to?

An interesting suggestion is to assume a 7zoderate approach to embodied cognitive sci-
ence as proposed by Goldman (2012). In the author’s view, human cognition is for the
most part embodied because information obtained from proprioception —the awareness of
the relative position of one's own parts of the body— and kinesthesis —the ability to feel
movements of the limbs and body— happens to be often reused for other more abstract
tasks. The idea is that the brain redeploys cognitive processes having different use at their
origin to solve new tasks in new contexts, which might also happen to be abstract; when it
comes to bodily representational codes, they appear to be very pervasive.> This view is partic-
ularly interesting for the present purpose precisely because it aims to explain how informa-
tion obtained from proprioception and kinesthesis and thus deploying previous bodily ex-

2 For a survey of such views, see Wilson (2002) or Barsalou (2008).

3 According to Goldman and de Vignemont (2009), bodily representational codes are a subset of mental
codes that are primarily or fundamentally applied in forming interoceptive or directive representations
of one’s own bodily states and activities; their existence is a matter of empirical investigation.
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perience can be a genuine part of cognitive processes. We will go back to this issue later in
the paper in dealing in particular with cognitive tools in mathematics.

So far for cognition, but what about mathematics? Can mathematics as well be con-
sidered as embodied? There is here a nice parallel to make, which is not surprising since
mathematics is a very important and ancient human activity that has been more or less
stable across centuries. Recently, a plethora of studies are inscribed under the label of ezz-
bodied mathematics (EM from now on). As for cognition, the standard assumption is very
clear. According to a common claim, mathematics is an abstract science dealing with ab-
stract objects that are occasionally described by signs but do not share any properties with
the ordinary objects that an agent interacts with every day. EM views question the exist-
ence of such a sharp distinction between the concrete world on the one hand and abstract
knowledge on the other; in fact, even when working with supposedly abstract objects, hu-
mans seem to recruit some competences and abilities that are typical of their relation with
the world (the parallel with a possibly moderate approach to embodied cognition is evident
here). However, also in the case of embodied mathematics, the implications of the positive
claims are not that straightforward. Let us accept that the standard approach to mathemat-
ics is wrong, and previous and more spontaneous competences as developed in our interac-
tion with the concrete world matter for doing mathematics. How does it happen? How can
mathematics show itself to be in fact an embodied cognitive activity?

I propose to distinguish here between two different readings of EM: the conceptual
reading and the semiotic reading. In saying that these readings are not the same, I am not
claiming that they are incompatible, since there are some commonalities; still, they repre-
sent two distinct points of view regarding how to consider mathematics as embodied. In
the conceptual reading, mathematical notions are conceptualized by means of grounding
metaphors that are based on bodily experience; in the semiotic reading, mathematics makes
use of signs that are to be perceived and acted upon (and thus sensorimotor considerations
may matter). In my view, the second reading is more promising, and I will devote the rest
of the paper to it. However, I will first discuss the conceptual reading so as to clarify its
limits.

For what concerns the conceptual reading of EM, I refer to the by now classic work by
Lakoff and Nusez (2000). Building on previous research about language (Lakoff and John-
son, 1980), the authors claim that abstract scientific concepts as well as ordinary ones are
understood in terms of metaphors. To clarify, everyone —no matter if being an expert or
not— would normally say that natural numbers “grow” indefinitely, or that points “lay”
on aline, or that functions “move” to 0 and so on and so forth, even if it is certainly not the
case that numbers literally grow bigger, or points lay on anything, or functions move any-
where. According to the authors, this is explained by the main cognitive mechanisms that
are at stake when it comes to conceptualizing mathematical objects: conceptual metaphors
and conceprual blending;* in both cases, the source is bodily experience. A discussed case of
conceptual metaphor is the image-schema of sets as containers. In order to understand what
sets are, an agent builds the image-schema based on the metaphor according to which sets
are containers: like containers, they have an interior, a boundary, and an exterior; moreo-

4 A conceptual blending allows connecting different domains through a metaphor so as to obtain a third
one that is a projection of both.

Theoria 33/2 (2018): 345-360
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ver, the elements of the set are analogous to what is inside the container. Lakoff and Nunez
claim that metaphors such as this are grounding metaphors, frequently only implicit, used
to conceptualize the mathematical notion of set as determined by ZFC (the Zermelo-
Fraenkel axioms together with the axiom of choice).

However, this reading of EM has some limits, as Schlimm (2013) has recently
pointed out. According to him, Lakoff and Nunez’s work surely deserves philosophical
attention, because it has been the first comprehensive account of mathematical cognition
that also addresses advanced mathematics and its history: mathematical ideas should be
analyzed so as to provide a cognitive science theory that is about mathematics as a whole
and not only about elementary mathematics. Nonetheless, a discussion from a perspec-
tive taking mathematical practice and the history of mathematics seriously into account
is needed. To go back to the metaphor of sets as containers, Lakoff and Nufiez suggest
that there exists an “intuitive pre-mathematical notion of classes,” which are “usually”
and “normally” conceptualized as container schemas, and that this would be “our natu-
ral, everyday unconscious conceptual metaphor for what a class is” (Lakoff and Nudez
2000, 122-123, quoted in Schlimm 2013). However, according to Schlimm, even if it is
true that the metaphor of sets as containers is found on the first pages of some introduc-
tory textbooks, later it gets quickly discarded. Moreover, mathematical practice is charac-
terized by a back and forth of various intellectual activities: a vague metaphor can surely
suggest one idea, but then a hunch or an accidental feature of the chosen notation would
suggest another (we will go back to the issue of accidental features of the notation when
discussing the semiotic reading of EM). In the history of a notion such as that of set, fur-
ther elaborations are given by trials and errors and possibly also as a result of the interac-
tions with other mathematicians, thus leading in turn to more sophisticated metaphors,
new notations, and so on and so forth. If one wants to look at these things from the per-
spective of a philosophy of mathematical practice, a more fine-grained and nuanced anal-
ysis of the cognitive processes involved is needed. For example, textbook mathematics
and research mathematics should be carefully distinguished (and such distinction dis-
cussed and motivated). As Schlimm sums up, such an approach should lead to a histori-
cally informed cognitive science of mathematics and a cognitive history of mathematics as
it is actually practiced.

The conceptual reading of EM seems thus to be too exclusive —when it comes to
mathematical conceptualization, more than one intellectual activity needs to be consid-
ered— and too strong —there is no guarantee that #// mathematical concepts might be em-
bodied this way. In the next section, I will define the semiotic reading of EM and give argu-
ments in favor of its greater plausibility.

2. The semiotic reading of EM: a role for the sensorimotor in mathematics

In the semiotic reading of EM, the attention is devoted to the use of signs in mathematics,
by considering whether perception or action might play a role in reasoning with them. In
the following, I will present two cases in which perception and action appear to be relevant
for mathematical reasoning: parsing a notational form and the practice of relying on knot
diagrams in topology.

Theoria 33/2 (2018): 345-360
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2.1. PARSING A NOTATIONAL FORM

In an interesting experimental study, Landy and Goldstone (2007) considered how physi-
cal layout might affect the segmentation of simple equations. As everyone with little com-
petence in algebra knows, when reading a notational form, one has to segment it into its
formal components; for example, a formula displaying additions and multiplication has to
be parsed in such a way that multiplication is performed before addition. This is a difficult
albeit routine part of mathematical reasoning. From the point of view of the standard ac-
count of mathematics, this segmentation is cognitively executed through the mere applica-
tion of formal rules to individual notational symbols. According to the authors, this brings
to the “appealing and tempting assumption” (Landy and Goldstone 2007, 721) that the
cognitive agent —the parser— trivially extracts abstract symbol sequences from physical
notations. However, to challenge this claim, they ask participants to evaluate the validity
of equations containing multiplications and additions, to which visual cues such as spacing,
lines, or circles have been added. The hypothesis is that such signals would influence the
application of perceptual grouping mechanisms and consequently the participants’ capacity
for symbolic reasoning (see Figure 1).

a+b *c+d=c+d *a+b
a+b *c+d=c+d * a+b

Figure 1

An example of a manipulation where spaces are added between the two factors to multiply;
in this case, the visual grouping is not in line with the correct order of the operators

The results show that validity-judgments are more likely to be correct if visual groupings
are in line with valid operator precedence (multiplication coming before addition); the
physical layout of the equation seems thus to have an influence on performance. Of course,
there is a trivial sense in which the physical layout would matter. For example, the charac-
ters of a formula can be written so small that it would not be possible for the human eye to
decipher them and as a consequence to access the meaning of the formula. However, what
is at stake here is less trivial: the results of the experiment show that signs happen to be tar-
gets for spontaneous sensorimotor mechanisms, analogously to other kinds of percepts.
However, since signs are not simply objects but objects that are used to refer to something
else, in this case to some algebraic relations, the fact that they become such targets may have
an influence on our capacity to access their meaning: the manipulations applied by the au-
thors happen to facilitate or vice versa to hinder the application of formal rules, thus show-
ing that the layout of the formula may have an impact on its parsing. The control of such
grouping mechanisms matters for the effective design of the formula and for its success in
making mathematical content and operations available.

Based on these and similar results, in a more recent paper, Landy, Allen and Zednik
(2014) put forward a Perceptual Manipulations Theory, according to which most of sym-
bolic reasoning emerges from the ways in which notational formalisms are perceived and
manipulated; in their view, notations serve as targets for powerful perceptual and sensorim-
otor systems. Other scholars as well have underlined the importance of perception and ac-
tion for reading a mathematical notation. For example, Kellman, Massey and Sona (2010)

Theoria 33/2 (2018): 345-360
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explicitly talk of perceptual learning in mathematics, referring to the improvements that are
produced by experience in the extraction of information. This would open the way to new
strategies for teaching mathematics: in line with these findings, students should be trained
in recognizing algebraic expressions by using standard perceptual learning techniques and
this might lead to lasting gains in equation reading and comprehension, as well as in alge-
braic problem-solving. This is not to say that mathematical reasoning only involves percep-
tion, or that the possible actions on the notation are driven only by perceptual groupings,
but to point at a crucial aspect of mathematical reasoning that has been neglected by stand-
ard accounts and that adds up to more complex cognitive and symbolic processes.

2.2. EPISTEMIC ACTIONS AND MANIPULATIVE IMAGINATION (IN TOPOLOGY)

The second example for a possible role for perception and action in mathematics concerns
some previous work with De Toffoli on the practice of zopology, a part of geometry dealing
with those properties of space that remain unchanged under continuous deformations (one
can think of topology as “rubber sheet geometry”). In particular, we took into account kzot
theory, a branch of topology that studies the properties of topological knots, and the prac-
tice of reasoning by means of 7oz diagrams (De Toffoli and Giardino 2014).

A topological knot is an embedding of a circle in 3-dimensional Euclidean space. A
novice can think of topological knots as an abstraction of physical knots, where their ends
are glued and their metric proprieties are not relevant: what matters is only their “knot-
tedness”, that is, the way in which they are knotted (or not). In order to study topological
knots, mathematicians rely on knot diagrams, which are projections of topological knots
following some specific constraints (for example, the information at crossings must be pre-
served) (see Figure 2).

Figure 2
A knot diagram of the #refoil knot

In our study, we argued that knot diagrams are not only visual illustrations but dynamic
tools: when looking at them, experts learn to perceive their possible moves, and thanks

Theoria 33/2 (2018): 345-360
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to that they are able to infer something about the properties of the knot. To clarify, we
claimed that such diagrams trigger in the agents a specific form of imagination that we de-
fined manipulative: experts have learnt how to perform or how to imagine performing
some actions on the diagrams. For example, by looking at the diagram in Figure 2, one can
imagine picking one of the threads and pull it down, so as to see that this move would not
change the knottedness of the knot (it corresponds to a continuous transformation). This
case shows the plausibility of the idea of a moderate embodied approach to cognition, since
some kind of bodily experience seems to be redeployed when relating to more abstract tasks
such as working with a topological knot. However, such competences, originating in our
relation with concrete objects, are modulated by expertise. In fact, not all the possible con-
ceivable changes of the diagram would be permitted: only some of these actions are allowed
by the practice, that is, they are recognized as meaningful in relation to the specific mathe-
matical context. Moreover, these actions can become epistemic, that means that they might
lead to new inferences about some mathematical properties of the topological knot.

The term “epistemic actions” is taken from the study presented by Kirsh and Maglio
(1994) on the performance of Tetris players.> In their observations, the authors noticed
that players act on the pieces of the game not only to directly achieve the final goal but also
to understand what the best move will be. As a consequence, they distinguished between
pragmatic actions, which aim to bring the agent closer to their physical goal, and epistemic
actions, which use world to improve cognition: they are “physical actions that make mental
computation casier” (Kirsh and Maglio 1994, 514) and are performed outside on the avail-
able physical objects, with the result of enhancing inference and reasoning. Despite the very
elementary context of a computer game, the idea can be extended to mathematical tools,
such as knot diagrams. Some transformations that are allowed by the practice can be imag-
ined on the diagram or actually performed by rewriting it, and this would bring to experi-
mentation and to the definition of new inferences and new results.

In the last section of the article, I will go back to a more precise definition of these ac-
tions.

2.3. ONE CLAIM AND TWO RESEARCH DIRECTIONS

In view of what has been said so far, the semiotic reading of EM seems to put forward one
claim and two research directions. The claim is that the functioning of cognitive tools in
mathematics —diagrams, notation or writing, if intended in a broad sense— and their in-
fluence on the inferences and possibly on the obtained results is crucial in mathematics.®

5> Tetris is a popular videogame from the 1980s, where some pieces that are shaped as geometric figures

and composed of four squared blocks fall one after the other down the playing field. The objective of
the game is to create a horizontal line below, composed of ten blocks presenting no gaps. Once a whole
line is created, it disappears, and any block that is above the deleted line will fall down. The game is
over if the stack of pieces reaches the top of the playing field; however, if a certain number of lines is
cleared, then the game enters a new level (in which the pieces will go down faster). In order to create
the line below to the aim of having it cleared, the player can move the pieces sideways and rotate them
by 90-degree units.

Notice that I use here signs and cognitive tools alternatively; however, signs are a subset of cognitive
tools.

Theoria 33/2 (2018): 345-360
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These tools are perceived and acted upon, and in this sense mathematics can be thought of as
embodied: proprioception and kinesthesis are here recruited for more abstract uses for the
very reason that these tools serve as zargets for them.

Such a functioning of cognitive tools might lead to:

1. unintended effects of sensorimotor considerations on mathematical reasoning,
which might become a source of notational artifacts;’

2. intended effects of sensorimotor considerations on mathematical reasoning, be-
cause these tools may serve as imagination-triggers.

If we consider the example above of the formula with spaces added between the elements
to add or multiply, the grouping effects hinder the parsing when they are not in line with
the correct groupings; therefore, the signs happen to be targets of sensorimotor consid-
erations, but they are not intended to be as such. On the contrary, the physical features of
knot diagrams are useful and effective precisely because they trigger manipulative imagina-
tion in such a way that it enhances reasoning and inference. Such a distinction defines two
complementary research directions in looking at case studies and possibly in defining ex-
perimental settings where such effects can be evaluated. This of course runs counter to the
standard claim about mathematics, since the physical features of the signs 724y indeed have
an influence on mathematical reasoning.

3. How to characterize manipulative imagination and epistemic actions

In this section, I will try to specify more my claim about manipulative imagination as trig-
gered by some particular representations. Firstly, I will look at a possible general framework
about imagination; secondly, I will focus on the epistemic actions that are the results of this
form of imagination.

3.1. COGNITIVE TOOLS AS PROPS IN GAMES OF MAKE-BELIEVE

What possible general framework about the workings of imagination will be appropriate
for mathematics? In this section, I will consider an application of Kendall Walton (1990)’s
theory about the nature of representations to cognitive tools in mathematics.

According to Walton’s “make-believe” theory, representations are props in games of
make-believe, that is, they are supports for imagination analogously to objects such as dolls
or toy tracks in the games played by children. To clarify, if a child imagines that a doll is a
baby, depending on what happens to the doll, she will imagine various things happening
to the baby as well: cradling the doll would be cradling the baby, or singing a lullaby to the
doll would be singing it to the baby. However, there are rules by which props prescribe im-
aginings, which are called principles of generation. Such principles are normative: they say
what participants should imagine, given the state of the props, if they are playing the game
correctly. However, these principles are often implicit and not explicitly stated. Imaginings

7 As in experimental science, “artifact” is intended here as error resulting from flaws in the deployed
technique or equipment —or, in this case, in a particular tool.
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that are prescribed within the game are fictional and such a normative approach preserves
an account of truth iz the fiction.

Adam Toon (2010a, 2010b, 2011) has recently proposed to rely on Walton’s view in
philosophy of science, in particular to give an account of the use of physical as well as theo-
retical models (these latter being aimed at constructing a simplified or idealized version of
some system). In most cases, models are false of the system they want to represent: even if
they look like a description of some actual, concrete object, no such system would satisfy
this description. However, in Toon’s reconstruction, they are still representations because,
analogously to dolls or toy trucks for children, they serve as props in games of make-be-
lieve. In the case of a physical model, for example in chemistry, scientists do imagine plas-
tic balls and connecting rods to be molecules in much the same way that children imagine
a doll to be a baby; in a theoretical model, for example the model of a bouncing spring as a
simple harmonic oscillator used to predict the motion of a bob bouncing on the end of a
spring, scientists would of course realize that such a description is false of the world (there
is no reference to air resistance or to the mass of the bob), but they would still be required
to imagine things as the model prescribes, for example, that the bob is a point mass or that
the spring exerts a linear restoring force, and so on and so forth. Also in the case of models,
the principles of generations, in most cases implicit, are zormative: the scientist knows that
she cannot misinterpret the model. Moreover, there must be an understanding among us-
ers that various imaginings are prescribed depending on the features of the model: the im-
aginings about its object as prescribed by the model are conditional on those properties.
Such an approach may also address the ontological difficulties that are posed by theoreti-
cal modeling. In fact, in Toon’s interpretation, to claim that a model is a representation in
Walton’s sense does not amount to assume anything about the existence of the entities it
invokes. Models function as props in games of make-believe and need not prescribe imagin-
ings about any actual system; however, they are still representational because they prescribe
imaginings about the modeled system and make propositions about it fictional. Such a view
does not incur any ‘ontological commitments’: Walton’s theory is antirealist with regard to
fictional entities.?

It scems then that Walton’s “make-believe” theory can be useful for an account of
models in science. What about cognitive tools in mathematics? Can they be consid-
ered as well as props in games of make-believe? To some extent, this view seems very
plausible.

Take again the case of knot diagrams, and assume that they are props in make-believe
games. Indeed, mathematicians do imagine knot diagrams 7o be the knots—as it is evident
in the ambiguous way they speak alternatively of “knots” or “knot diagrams” —in much
the same way that children imagine a doll to be a baby or toy tracks to be real tracks; fur-
thermore, they imagine themselves as viewing and manipulating knots and sometimes even
‘living in the depicted topological object—therefore, not only they are required to imag-
ine things about the knots but also they learn what further propositions these imaginings

8 Frigg (2010) also suggests that the descriptions presented in theoretical modeling should be under-
stood as props in Walton’s sense; however, in his view these descriptions prescribe the user to imagine
‘model systems” understood as imagined physical systems, that is, as hypothetical entities. Toon criti-
cizes Frigg’s view by claiming that it is not clear how this would not incur any ontological commit-
ment.
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entail. For knot diagrams as for models, principles of generations are normative: the math-
ematician knows that she cannot misinterpret the diagram and that only some of all the
possible actions that can be performed on them are meaningful in relation to the practice.
However, these principles are in most cases implicit and not explicitly defined. This ap-
proach may also be of help to deal with ontological issues regarding the object of mathe-
matics. In fact, a Walton-inspired view of cognitive tools as props in games of make-believe
is antirealist: the propositions that can be inferred by the representation are considered as
fictional, but this does not imply taking any stance about the existence of the represented
objects.

However, some difficulties emerge. First, this approach seems to apply very easily to
representations such as knot diagrams but less conveniently to other kinds of cognitive
tools such as the equations that were presented in Landy and Goldstone’s study. Can a for-
mula be intended as a prop for some game of make-believe? Concerning this question, it
seems to me that there are two possible ways out. First, one could think that it is simply
not possible to give a unified account for cognitive tools in mathematics as a whole; for ex-
ample, further distinctions such as between iconic and symbolic representations should
be introduced. However, there is an alternative, which is to reply positively to the ques-
tion whether an equation can serve as well as a prop, and to claim that also when work-
ing with formulas mathematicians are required to have some imaginings, for example they
form propositions about algebraic relations or imagine applying transformations on them.
The distinction between knot diagrams and formulas can be thought of as not being so dis-
tant from that between physical models and theoretical models in science: in all cases, these
tools serve as props to prescribe imaginings; for knot diagrams and physical models, their
physical features take part in the imaginings; for formulas and theoretical models, the re-
quired imaginings involve relations that are expressed by the signs displayed in the equa-
tions. In any case, the fact that they are props prescribing imaginings does not imply the ex-
istence of the objects they represent.

However, another difficulty in assuming a Waltonian approach to cognitive tools in
mathematics concerns the definition of principles of generations in this specific context. In
the case of representational art, principles of generations, which are often implicit, depend
on conventions and cultural constraints. For models in science, they may even more impor-
tantly vary from case to case. What about cognitive tools in mathematics?

Before trying to reply to this question, let me sum up what I have got so far. I proposed
that cognitive tools in mathematics can be considered as representations in Walton’s terms,
analogously to what Toon suggests for models in science: they serve as props for games of
make-believe. However, in order for them to be as such, the users must agree on the various
prescribed imaginings depending on the physical features of the props, despite the fact that
principles of generation are in most cases implicit and most likely vary from case to case. In
order to clarify how these principles are characterized, in the next section I will focus on the
epistemic actions that these tools make accessible for the competent user.

3.2. FROM EXTERNAL RULES TO REPRESENTATIONAL AFFORDANCES

Cognitive tools are external and material tools that are used in cognitive tasks. In the previ-
ous section, I claimed that they are props for imagining, but their use has to be constrained
in order to be effective. How are these constraints defined?
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In a relatively old paper, Zhang and Norman (1994) proposed that many cognitive
tasks require the processing of information to be distributed across the internal mind and
the external environment; in other words, such tasks are distributed between internal and
external representations, which, taken together, define the abstract structure of the prob-
lem. Internal representations are iz the mind: they may take the form of propositions,
schemas, mental images, connectionist networks, and so on and so forth. External repre-
sentations are instead iz the world: they might be physical symbols —no matter if written
symbols or beads of abacuses— external rules, constraints, or relations embedded in physi-
cal configurations. Think for example of the spatial relations between written digits, or of
the visual and spatial layouts of diagrams, or of physical constraints in abacuses, and so on
and so forth. In any distributed cognitive task, there are in general one or more internal and
external representations involved.

As a case study, the authors consider the task of the Tower of Hanoi.® This cognitive
task involves a problem space that is composed by all the possible states and moves con-
strained by the rules. Two factors contribute to difficulty: working memory and problem
structure. In the experiment, participants are presented with several versions of the task, in-
volving each time a variation of internal and external rules. As the authors explain, internal
rules are “memorized rules that are explicitly stated as written propositions in the instruc-
tions of the experiment”, while external rules “are not stated in any form in the instructions
but are the constraints that are embedded in or implied by physical configurations and can
be perceived and followed without being explicitly formulated” (93). The results show that
the more the rules are distributed in the external representation, the easier the problem gets
and the fewer errors are made. The authors’ hypothesis is that an excessive load of working
memory causes internal errors, while external rules are Duilt-in’ in the external representa-
tions, that is, they are cither perceptually available or physically constrained. To clarify, the
disks are perceived as bigger or smaller and this reduces memory loads, for example when
applying the rule that only the bigger disk on a pole can be transferred to another pole.

If this is the case, do cognitive tools in mathematics embody external rules analogously
to the disks in the Tower of Hanoi task? Some external rules might be built-in in them,
so that they become perceptually available or physically constrained. It is true indeed that
mathematicians do act upon the cognitive tools at their disposal, of which they have to
consider the physical features in order to apply transformations to them; it seems therefore
that some external rules might really be built-in in them, because they are determined by
their material constraints.!

° In this task, the participant is presented with three rods; on the first rod, three disks of different size
are arranged in a stack, with the bigger disk being at the bottom and the smaller disk at the top. The
objective of the puzzle is to move the entire stack to another rod. In the standard version of the task,
this must be done by obeying the following simple rules: (i) only one disk can be moved at a time;
(ii) each move consists of taking the upper disk from one of the stacks and placing it on top of another
stack, i.e. a disk can only be moved if it is the uppermost disk on a stack; (iii) no disk may be placed on
top of a smaller disk. Note that, in this standard case, rule (i) and rule (ii) are internal rules, while rule
(iii) is external.

From this point of view, according to Manders (2008)’s definition, co-exact properties in Euclid proofs
could be interpreted as defining external rules, since they identify the physical features of the diagram
that would not be changed after deforming the diagram, and are thus “built-in” in it.

Theoria 33/2 (2018): 345-360



356 Valeria GIARDINO

However, this approach has some limits. The first problem is that in the case of the
Tower of Hanoi task, external rules are considered in relation to external concrete objects
with which one directly interacts —the disks— while mathematical objects such as knot
diagrams, because of their nature of representations, require a particular reading in order to
understand to which objects they refer to. Not all the material features of the tool but only
a selection of them are relevant, depending on the correct interpretation as defined by the
practice. In fact, a representation has to be correctly interpreted, and the correct interpreta-
tion requires background knowledge and/or the understanding of the accompanying text.
This leads to a second and even more serious difficulty, which is that if interpretation mat-
ters so much, then in the case of cognitive tools it is very hard to draw a sharp line between
internal and external rules. How much of what is claimed in Zhang and Norman’s paper
about distributed cognitive tasks can be then applied to external ‘representational’ objects
such as signs in mathematics?

Despite these limitations, the very authors seem to suggest a possible way out, by men-
tioning that external rules provide affordances. To clarify, the term “affordances” refers to
the actionable properties between the environment and an agent (a person or an animal)
and was introduced by James J. Gibson (1979) when presenting his ecological approach to
visual perception. Affordances are what the environment offérs the animal, “what it pro-
vides or furnishes, either for good or ill. The verb to afford is found in the dictionary, but
the noun affordance is not. I have made it up. I mean by it something that refers to both
the environment and the animal in a way that no existing term does. It implies the comple-
mentarity of the animal and the environment” (Gibson 1979, 127).

To give an example, a surface that is horizontal, flat, extended and rigid affords support.
The interesting point here is that the world of physics is not as important for us as our en-
vironment of affordances. Of course, a surface would afford support because it possesses
these specific and appropriate physical properties, but what counts for us is the affordance
it provides. To focus on the notion of affordance means to avoid a sharp distinction be-
tween a subject on the one hand and an object on the other hand. As Gibson explains, an
affordance is “neither an objective property nor a subjective property; or it is bozh if you
like. An affordance cuts across the dichotomy of subjective-objective and helps us to under-
stand its inadequacy. It is equally a fact of the environment and a fact of bebavior. It is both
physical and psychical, yet neither. An affordance points both ways, to the environment and
to the observer” (Gibson 1979, 129, emphasis added). If this is the case, then there is no
need to distinguish sharply between internal and external rules; thanks to some physical
features, concrete objects afford some actions and not others; by their affordances, such ob-
jects might influence the behavior of the agent and, in this particular case, facilitate or not
the cognitive task. However, affordances in the context of the Tower of Hanoi task are still
pertaining to external concrete objects such as the disks that are part of a problem-solving
task. What about affordances offered by cognitive tools?

Gibson discusses the natural environment; however, artifacts may be designed as ofter-
ing particular affordances, with the intention of triggering some particular behavior. Think
for example of a door with a handle. Such a feature, the handle, affords pulling; however, if
the door only opens by pushing, then the affordance would 7oz be in accordance with what
it offers the agent’s behavior. As a consequence, one might think in terms of good design
—the door has a handle and opens if one pulls it—, and bad design —the door has a han-
dle and opens if one pushes it. If the notion of affordance can be extended from the natural

Theoria 33/2 (2018): 345-360



Manipulative imagination: how to move things around in mathematics 357

environment to artifacts, would it possible to extend it even further, from artifacts to rep-
resentational tools such as notation or diagrams in mathematics? Cognitive tools do afford
some actions on them. In their case, we can think in terms of representational affordances.
Of course, not all possible actions that are afforded by the tool are also mathematically
meaningful: only a selection of them corresponds to a legitimate and therefore an epistemic
operation, because of other constraints depending on their specific function or the specific
practice for which these tools are introduced.!! Here as well it is possible to think in terms
of good or bad design: if the tool is well-designed, epistemic actions should be easily avail-
able and allow for relevant inferences.

To give an example, the knot diagram in Figure 2 shows occlusions at crossings; thanks
to grouping laws of perception such as good continuation,'? these occlusions are directly in-
terpreted as threads passing one under the other. Therefore, these diagrams trigger imagina-
tion by affording transformations on them that are immediately available, such as imagin-
ing pulling down one or more threads in sequence so as to obtain equivalent knot diagrams.
Other representations containing the same information but presenting different physical
features, for example by using dots to indicate a crossing as in Figure 3, would not offer the
same affordances and might hinder relevant transformations.!?

Figure 3

An alternative knot diagram of the trefoil knot

11 T take the term “legitimate operations” from Alexander (1923, 94).

12 Good continuation is one of the Gestalt laws of groupings, thanks to which in an intersection between
two or more lines one of which is interrupted, people tend to perceive each line as a single uninter-
rupted one.

13 Alexander (1928) uses these diagrams, and explains as follows: “At each crossing point, two of the
four corners will be dotted to indicate which of the two branches through the crossing point is to be
thought of as the one passing under, or behind the other. The convention will be to place the dots in
such a manner that an insect crawling in the positive sense along the «lower» branch through a cross-
ing point would always have the two dotted corners on its left” (Alexander 1928, 276-277).
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However, another important feature of affordances for cognitive tools is that they are
highly context-dependent. The same notation or diagram might afford different actions
and transformations when having different functions —for example of discovery or of
proof—, or across different disciplines —think of two (dotted) parallel lines in the context
of Euclidean or projective geometry. Therefore, I will distinguish between perceptual rep-
resentational affordances and context-dependent representational affordances. On the one
hand, cognitive tools spontancously afford some actions because of the functioning of our
cognitive system: for example, it is thanks to good continuation, which applies to other per-
cept as well, that one sees the threads in a knot diagram as uninterrupted lines even if they
are interrupted in the diagram. On the other hand, cognitive tools also afford actions that
are determined by expertise: this second kind of affordances defines the principles of gen-
eration that are at each time at stake and determine what is correct and what is not. How-
ever, these principles are still implicit and depend on the specific make-believe games that
the user is engaged in.

If this is the case, then two general consequences can be drawn. First, a design principle
can be defined, according to which it is commendable to prevent the perceptual representa-
tional affordances of cognitive tools from being sources of errors. This is the case of the ma-
nipulations applied to the equations in Landy and Goldstone’s experiment: adding spaces
or lines trigger features of our cognitive systems, such as perceptual groupings, and this may
lead to unintended and in some cases damaging effects of sensorimotor considerations on
mathematical reasoning. On the contrary, it would be very convenient to exploit percep-
tual representational affordances to facilitate the relevant and correct operations and make
them correspond to legitimate actions that are meaningful also in the mathematical con-
text. This is the case of displaying occlusions in a knot diagram, so as to trigger continuous
transformations. Second, the context-dependence of some representational affordances has
to be recognized and seriously taken into account: different contexts or functions can make
different context-dependent representational affordances emerge, but these affordances are
still conditional on the physical features of the tool and keep interacting with the percep-
tual representational ones. One might also envisage cases where a perceptual affordance is
so much forcing on us, that it contributes at identifying new meaningful and epistemic ac-
tions (think for example of the potential role of symmetries, to which we very spontane-
ously attend).

To sum up, my proposal is that cognitive tools in mathematics are props for manipu-
lative imagination, and they are well designed when they spontaneously afford the mean-
ingful transformations that lead experts —who are able to correctly interpret the represen-
tation and who know the implicit principles of generation for the specific game of make
believe they are playing— to epistemic and inferential actions. The introduction of such
cognitive tools presents several advantages. Firstly, they are material objects and therefore
in order to be used they recruit proprioception and kinesthesis, which are now deployed in
a new more abstract cognitive context. There is thus a —semiotic— sense in which math-
ematics can be (moderately) embodied. Cognitive tools offer representational affordances,
some of which directly depend on the perception of some of the physical features of the
tool (perceptual representational affordances), and others that more strongly require inter-
pretation (context-dependent representational affordances). Secondly, if representational af-
fordances are constrained by the practice, they facilitate common imaginings: users under-
stand that various imaginings are prescribed depending on the physical features of the tools.
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Thirdly, by referring to the notion of representational affordance, it is possible to bypass
the problematic distinction between internal —propositional—, and external —built-in
in the material object— rules. Finally, both unintended and intended effects of sensorimo-
tor considerations in the use of several mathematical signs can be reframed as having to do
with bad versus good design.

4. Conclusions

To recapitulate, in this article I have proposed a semiotic reading of EM, according to
which mathematics makes use of signs that are to be perceived and acted upon (and thus
sensorimotor considerations may matter). My attempt is to make sense and clarify the
functioning of the practice involving the use of cognitive tools such as notation or dia-
grams.

The theoretical framework that I have sketched here refers to the activity of make-be-
lieve as based on props that offer some specific affordances, in line with the practice: from
this perspective, an accommodated version of Walton’s theory of representation meets
Gibson’s view according to which affordances are provided by the environment —in this
case, a very special kind of environment in which mathematicians move, which is popu-
lated by the diverse representational cognitive tools that are at their disposal. Specific ac-
tions on cognitive tools happen to be crucial for mathematical reasoning, and cognitive
tools zrigger these actions by offering representational affordances; as a consequence, they
promote imagination as make-believe. These actions —just imagined or carried out by re-
writing— conform to some constraints: by “moving things around”, we actually perform
on the material signs legitimate and therefore meaningful operations, thus enhancing
mathematical reasoning.
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