

Ecología Aplicada

ISSN: 1726-2216 ISSN: 1993-9507

ecolapl@lamolina.edu.pe

Universidad Nacional Agraria La Molina

Perú

Tello, Lily; Jave, Jorge; Guerrero, Juan
ANALYSIS OF LEAD QUANTIFICATION IN RECREATIONAL
PARK SOILS OF THE CITY OF LIMA - PERU
Ecología Aplicada, vol. 17, no. 1, 2018, January-July, pp. 1-12
Universidad Nacional Agraria La Molina
Perú

DOI: https://doi.org/10.21704/rea.v17i1.1168

Available in: https://www.redalyc.org/articulo.oa?id=34157105001

Complete issue

More information about this article

Journal's webpage in redalyc.org

Scientific Information System Redalyc

Network of Scientific Journals from Latin America and the Caribbean, Spain and Portugal

Project academic non-profit, developed under the open access initiative

ANÁLISIS DE CUANTIFICACIÓN DE PLOMO EN SUELOS DE PARQUES RECREACIONALES DE LA CIUDAD DE LIMA - PERÚ

ANALYSIS OF LEAD QUANTIFICATION IN RECREATIONAL PARK SOILS OF THE CITY OF LIMA - PERU

Lily Tello¹, Jorge Jave² y Juan Guerrero³

Resumen

Los Grandes Parques de Lima Metropolitana (GPLM) son áreas verdes donde habitan diversidad de especies de origen vegetal y animal. Los GPLM, áreas recreacionales localizadas en la cuenca del río Rímac considerados en este estudio fueron los siguientes: Bosque El Olivar (12°06′04′′S, 77°02′05′′O), Campo de Marte (12°04′06′′S, 77°02′29′′O), Pentagonito (12°06′01′′S, 76°59′35′′O), Zoológico de Huachipa (12°00′52′′S, 76°53′52′′O), Las Leyendas (12°07′14′′S, 77°05′12′′O) y Kennedy (12°07′18′′S, 77°01′49′′O). La presencia del plomo en los suelos representa un peligro potencial para la salud de los habitantes y usuarios, por lo que el objetivo de esta investigación fue cuantificar el contenido total de plomo en los suelos de los GPLM. Para ello, se realizaron muestreos de identificación, análisis físicos (textura) y químicos (pH, conductividad eléctrica, materia orgánica, capacidad de intercambio) en muestras de suelos de cada parque. En aquellos parques que presentaron contaminación por plomo se realizó un muestreo de detalle con análisis adicionales de plomo total. Los valores promedio de plomo total en los suelos de los GPLM Bosque El Olivar (170 ppm Pb), Campo de Marte (226 ppm Pb) y Pentagonito (159 ppm Pb) se encontraron por encima de lo permitido por los Estándares de Calidad Ambiental (ECA-Perú:140 ppm). En el parque Las Leyendas se determinó que ocho de las 98 hectáreas estaban contaminadas (234.5 ppm Pb) y en el Zoológico de Huachipa 0.7 de las 11 hectáreas (266 ppm Pb) sobrepasaron el limite ECA; mientras que el parque Kennedy no sobrepasó los valores de ECA (56-

Palabras clave: metales pesados, suelos contaminados, áreas verdes urbanas.

Abstract

The recreational parks of Lima city (GPLM) are green areas where diverse species of animals and plants live. These are also recreational areas located in the Rímac river basin. The GPLM considered were Bosque El Olivar (12°06′04′′S, 77°02′05′′O), Campo de Marte (12°04′06′′S, 77°02′29′′O), Pentagonito (12°06′01′′S, 76°59′35′′O), Huachipa Zoo (12°00′52′′S, 76°53′52′′O), Las Leyendas (12°07′14′′S, 77°05′12′′O) and Kennedy (12°07′18′′S, 77°01′49′′O). Lead presence in the soils constitutes a potential danger to the health of the inhabitants and users. The objective of this study was to quantify the total lead content in the GPLM soils. Samplings were performed for identifications, physical (texture) and chemical (pH, electric conductivity, organic matter, CIC) analysis in each park. Those parks that showed lead contamination were subjected to detailed samplings with additional total lead analysis. The mean values of total lead content in soils of the GPLM Bosque Olivar (170 ppm Pb), Campo de Marte (226 ppm Pb) and Pentagonito (159 ppm Pb) were found to be above those allowed by the Environmental Quality Standards (ECA-Peru: 140 ppm). At Las Leyendas park eight of the 98 hectares were contaminated (234.5 ppm Pb) and at Huachipa Zoo 0.7 0f 11 hectares were contaminated too (266 ppm Pb), while Kennedy Park did not exceed the ECA (56 ppm Pb).

Key words: lead, contaminated soils, urban green areas.

Introducción.

En Lima Metropolitana no se tienen registros de niveles de plomo en los suelos de los grandes parques. Se sabe que el Estándar de Calidad Ambiental ([ECA] para suelos de Perú (DS 011 – 2017-Ministerio del Ambiente [MINAM]) recomienda que el nivel de

plomo en los suelos urbanos se encuentre por debajo de 140 ppm en parques.

Los grandes parques de Lima Metropolitana (GPLM) son frecuentados por personas de diversas edades y para múltiples fines. El Campo de Marte, ubicado en el distrito de Jesús María, con 375.2 km² de área, es muy conocido por realizarse desfiles militares

y escolares, ferias artesanales y/o de alimentos típicos y posee ocho monumentos históricos. El Bosque El Olivar, ubicado en el distrito de San Isidro, con 230 km² de área, fue declarado monumento nacional el 16 de diciembre del 1959, con 1 600 olivos dentro de un total de 1 946 árboles y con ejemplares de 350 años de antigüedad y 35 especies de aves estacionales más 22 nativas; por lo cual, en el año 2017 fue declarado Área de Conservación Ambiental. El parque El Pentagonito, ubicado en el distrito de San Borja, con un área aproximada de 5 km², básicamente es un área verde que rodea el Cuartel General del Ejército del Perú y donde los vecinos trotan y realizan ejercicios. El parque Kennedy, ubicado en el distrito de Miraflores, con un área de 25 km², es un parque donde constantemente se realizan cambios estructurales con movimientos y cambios de tierras debido a que su característica es ser lugar de actividades culturales y comerciales. Los suelos de Campo de Marte y Bosque El Olivar tienen cientos de años y el Pentagonito alrededor de 45 años. Estos parques colindan con vías de comunicación de acceso público y/o privado, incluso en el caso de Bosque El Olivar es atravesado por pistas automotrices con tráfico vehicular la mayor parte del tiempo (7.00 am a 9.00 pm) y hay casas de la época colonial. Se tiene como referencia que el uso de gasolina y pintura con plomo en su composición fue una fuente importante de este metal pesado en los suelos urbanos (Witzling et al., 2011), por lo que se prohibió su uso como aditivo. Esto se cumplió en el país a partir del 2005 (Arosquipa & Villegas, 2013; OSINERGMIN, 1998; OSINERGMIN, 2012).

Castillo (2010) encontró en las bermas de suelos urbanos de Lima Metropolitana, ubicados en lugares con mayor afluencia vehicular, una mayor concentración de plomo en los primeros centímetros de suelos con niveles promedio de 189 ppm Pb y con valores picos de 412 ppm de Pb en los cruces de avenida Aviación con avenida San Borja. Por ser el plomo un elemento pesado de lenta movilidad, se queda en la superficie del suelo por muchos años.

El parque Zoológico de Huachipa, ubicado en la margen izquierda del río Rímac en el distrito de Ate Vitarte, con un área de 110 km², posee más de 300 especies, entre autóctonas y foráneas, dando un total de alrededor 1 000 especímenes, la mayoría nativos como pingüinos de Humbolt, pavas aliblancas, lobos de mar, entre otros. Por este motivo, la Cadena Internacional Telemundo lo ha considerado dentro de los 11 mejores parques de América Latina (El Comercio, 2015). En los meses de diciembre a marzo, por tratarse de época de lluvias en la sierra, el río normalmente se desborda inundando la zona del Bosque de Aves y la entrada principal del parque. Esta zona se caracteriza por actividades de desarrollo industrial con fábricas de ropa y pinturas lo cual podría liberar metales pesados, que ocasiona contaminación en los suelos (Ji et al., 2011; Pottier et al., 2015). La Autoridad Nacional del Agua (2012) realizó un monitoreo del agua de la cuenca del río Rímac encontrando en su parte baja (Ate Vitarte) los mayores problemas de contaminación por plomo, probablemente por los sedimentos transportados, debido a que el plomo no es soluble en el agua sino que se encuentra adsorbido a las partículas (Xu *et al.*, 2017).

El parque de Las Leyendas ubicado en el distrito de San Miguel, con un área de 980 km² fue inaugurado en 1964 y posee 118 especies de mamíferos, 33 de aves y 4 reptiles en costa, 118 especies de mamíferos y 93 de aves en Sierra, 18 especies de Selva y 19 especies en zona internacional. La zona denominada "Pampa Galeras" tiene una extensión de ocho hectáreas, es una depresión que por los años de 1730 era un estanque de agua de la Hacienda Maranga (Narváez, 2013). En ambos se promueven acciones para la conservación de la naturaleza y biodiversidad, son hábitat de una gran diversidad de especies y reciben miles de visitantes por mes.

Temperaturas mayores a 20°C, humedad por debajo de la capacidad de campo del suelo, incrementan la suspensión y movimiento de pequeñas partículas de suelo por acción del viento y que pueden demorar de 7 a 14 días en depositarse, y coinciden con los mayores niveles de plomo en la sangre humana, 3 a 7 μg/dl por cada 1 000 ppm de incremento en la concentración de plomo en el suelo (Doyle, 1998; Witzling *et al.*, 2011).

El plomo es un elemento perjudicial para la salud humana, especialmente para mujeres gestantes y niños pequeños (Yang-Guang & Yan-Peng, 2016), quienes son la población urbana más sensible y vulnerable a ambientes contaminados (Tepanosyan et al., 2017). En el caso de animales, este elemento ocupa el lugar del calcio y zinc, dañando células y afectando el sistema cardiovascular, generando complicaciones gastrointestinales, anemia y afectando funciones del sistema nervioso central (Sanín et al., 1998). Bovinos de año y medio de edad que fallecieron con síntomas de problemas neurológicos presentaron 17.6 ppm de plomo en sus vísceras y 0.51 ppm de plomo en su sangre (Martínez & Villafañe, 1999). En las plantas puede ocasionar fitotoxicidad porque no se realizan funciones fisiológicas y bioquímicas (Amari, 2017).

Por lo expuesto, el objetivo del presente estudio fue cuantificar el contenido total de plomo en los suelos de los GPLM.

Materiales y métodos.

Muestreos de Identificación y de Detalle.

La elección de técnicas y lugares de muestreo, manejo de muestras y medidas de seguridad ocupacional, siguieron las pautas dadas en la Guía para Muestreo de Suelos (MINAM, 2014), en el marco de los Estándares de Calidad Ambiental (ECA) para suelo.

La investigación se realizó durante el 2016 en seis de los GPLM (Figura 1). Al no tener conocimiento previo de la distribución del contaminante plomo en el suelo, el número mínimo de puntos de muestreo estuvo

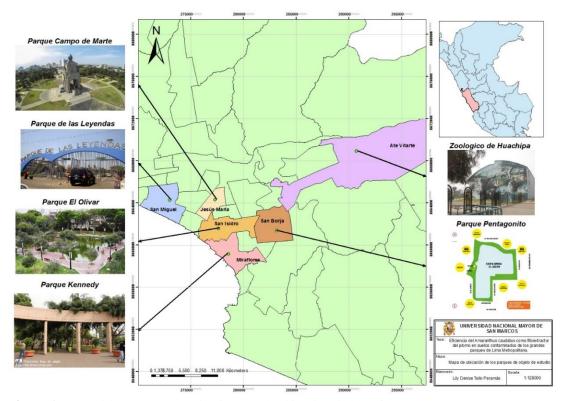


Figura 1. Mapa del Departamento de Lima con la ubicación de los seis parques.

en función del área de cada parque siendo éste el Muestreo de Identificación (MI) (Tabla 1). El objetivo fue obtener muestras representativas con el fin de determinar si el suelo supera o no los ECA para suelos de parques (MINAM, 2017). Se realizó georreferenciación en gabinete en el programa Google Earth, utilizando el sistema de coordenadas Universal Transversal Mercator (UTM) zona 18 Sur, datum World Geodetic system 1984 (WGS 84), pasando las coordenadas al GPS y siguiendo el patrón de muestreo de rejillas regulares. En campo, se realizaron correcciones, dependiendo de la accesibilidad y homogeneidad del lugar elegido. Se colectaron muestras de suelo de 150 g a 10 cm de profundidad por ser la capa de contacto oral o dermal del contaminante y se muestrearon lo más equidistantes entre ellos de acuerdo a lo georreferenciado.

El número de muestras contaminadas del muestreo de identificación (Anexo 1) determinó el número de muestreos adicionales a realizar para el muestreo de detalle (MD) (Tabla 1); teniendo en cuenta que el número mínimo de puntos de muestreo representan el "mínimo de calidad" y por ello deberán tomarse muestras de un número igual o mayor de puntos de muestreo (MINAM, 2014).

En el laboratorio se empleó el método de digestión ácida, para cada muestra de suelo. Se pesaron 5 g en un matraz Erlenmeyer, se adicionaron 20 ml de la mezcla ácida (solución de ácido nítrico y ácido perclórico en proporción 5:1). El matraz se colocó en la plancha de digestión por aproximadamente 2 h a una temperatura

de 180 – 200 °C. Se dejó enfriar para luego transferir la muestra a una fiola y enrasar con agua desionizada a 25 ml. Se trasvasó a un tubo de ensayo y se agitó. Se tomó una alícuota de 1 ml y se adicionaron 9 ml de agua desionizada. Se leyó la concentración de plomo en un espectrofotómetro de absorción atómica marca Perkin Elmer, modelo AAnalyst 200, Estados Unidos, 2005. Para el control de calidad se realizaron réplicas de muestras al azar, el estándar de referencia que se utilizó fue agua pura y el límite de detección 0.1 mg kg⁻¹. Determinación de las Características de los Suelos.

En cada parque se realizaron muestreos simples en profundidad de 0-10 cm de 20 g cada una formando una

Tabla 1. Número de muestras para el MI y MD en función al área.

ur ureu.				
Parque	Área (ha)	Número de muestras en MI (depende del área)	Muestras mayor a 140 ppm de Pb	Número de muestras en MD
Campo de	37.52	42	34	65
Marte Bosque El	23.00	38	17	34
Olivar	0.50		1	
Pentagonito	0.50	6	1	6
Kennedy	2.50	19	1	13
Las	98.00	50	2	6
Leyendas				
Huachipa	11.00	33	10	44

Fuente: Elaboración propia siguiendo las pautas del MINAM (2014).

muestra compuesta. El patrón de muestreo fue rejillas regulares. Las seis muestras compuestas se secaron al aire y se pasaron por un tamiz de malla de 2 mm. Se determinaron: Textura con el método del hidrómetro y las lecturas de las partículas en suspensión se realizaron con el hidrómetro de Bouyoucos. Conductividad eléctrica (CE) en extracto de saturación, a 100 g de suelo se le añadieron 20 ml de agua desionizada, se removió y se agregó más agua a cada muestra hasta llegar a saturación. Finalmente con un sistema de vacío se realizó la extracción del líquido y la CE se midió con un conductímetro. También se midió directamente en el suelo luego de 30 minutos del riego. Ambas medidas se realizaron con el equipo Electrical Equipment for Measurement, Control, and Laboratory Use de Fieldscout Item 2265FS y solución estándar 2764 uS/cm. Capacidad de intercambio catiónico (CIC), mediante el extracto con acetato de amonio 1N pH 7 (Jackson, 1964). Para el pH se hizo una mezcla sueloagua (relación 1:1) que se agitó y dejó en reposo por 10 minutos, la medición se realizó con el pH-metro Soil Stik de Fieldscout 2105. La materia orgánica fue determinada por el método de Walkley and Black (1934).

Análisis estadístico.

Se utilizaron dos pruebas estadísticas; la Prueba T para una muestra, para los parques con un número de muestreos menor a 40, donde si $T_{práctico} < T_{crítico}$ no existen diferencias significativas y la Prueba Z para los parques cuyo número de muestreos fue mayor a 40 donde los valores de $Z_{0.025}$ fueron -1.96 y 1.96 y se comparó p con α (0.05), donde si p < α existen diferencias significativas. El valor de prueba fue 140 ppm de plomo total que corresponde al límite máximo permisible por los ECA de suelos 2017.

En el caso de los parques Zoológico de Huachipa (PZH) y Las Leyendas (PLL) los valores de plomo total en suelos se dividieron de dos grupos focalizados por espacios continuos, con eventos peculiares como ex laguna en el PLL y zona inundable en el PZH y por las marcadas diferencias respecto al límite máximo permisible de 140 ppm.

Resultados y discusión.

Los resultados de plomo total en cada punto de muestreo de los diferentes parques se registran en el Anexo 1. En el caso particular de los PLL y PZH se encontró que los valores que sobrepasan el máximo permitido (140 ppm) se encontraban focalizados. En Las Leyendas, el área contaminada fue la zona de "Pampa Galeras" (media de 234.47 ppm de Pb total) en un espacio de ocho hectáreas, corresponde a una depresión que por los años de 1730 era un estanque de agua de la Hacienda Maranga y que fue el último lugar donde desembocaba el agua del canal Huatica (Narváez, 2014), siendo hasta el año 2009 un lecho de laguna antigua y luego al desaparecer el agua quedaron los sedimentos depositados desde la época colonial y

Tabla 2. Prueba "T" para una muestra con valor de prueba = 140 ppm Pb de las concentraciones totales de plomo en los suelos de los GPLM.

	Media ppm Pb	Tpráctico	Terítico	n	Sig (bilateral)
Pentagonito	159.15	4.68	2.2	12	0.0001
Kennedy	55.52	-25.89	2.04	32	0.000
Pampa Galera-PLL	234.47	3.433	2.45	7	0.014
Bosque de Aves-PZH	266.41	5.436	2.14	15	0.000

n: Tamaño muestral; $T_{\text{práctico}}$: encontrado con los datos experimentales; $T_{\text{crítico}}$: obtenido en tabla.

que podría explicar el alto valor de plomo total presente en los suelos. La prueba T indica diferencias significativas donde T_{práctica} > T_{crítica} (Tabla 2). En el Zoológico de Huachipa, la zona de bosque de aves tiene una extensión aproximada de 0.7 ha, y la prueba T indica diferencias significativas donde $T_{práctica} > T_{crítica}$ (media de 266.41 ppm de Pb total), es decir, se tiene contaminación con plomo lo cual podría ser por los sedimentos dejados por el agua del río Rímac en época de avenida cuando se desborda e inunda la zona de bosque de aves depositando sedimentos; además, se encontró que los suelos que colindan con el surco por donde pasa el agua del río Rímac bajo la jurisdicción de la junta de regantes, presentan contaminación, mientras que el resto del parque que se riega con sistema de goteo/aspersión no tiene contaminación probablemente porque los sedimentos no pasan por los sistemas de riego. En ambos parques la contaminación se explica porque el plomo no es soluble en agua; por tanto, son los sedimentos transportados por el agua, y que se quedan en los suelos de los parques, los que podrían estar causando la contaminación, concordando con los resultados obtenidos por Moronta-Riera & Riverón-Zaldivar (2016). En el resto de área de los parques Huachipa y Leyendas donde $p < \alpha$ y $Z_{crítico}$ es negativo, lo que indica que no hay contaminación de plomo en los suelos (Tabla 3). Los suelos son irrigados con agua de pozo. En el parque Kennedy ($T_{práctica} < T_{crítico}$), el nivel de plomo en los suelos también está por debajo de los límites permisibles de 140 ppm (MINAM, 2017).

La prueba Z en las muestras de suelos para los parques Campo de Marte y Bosque El Olivar así como prueba T para el parque Pentagonito, resultaron con diferencias significativas, es decir, se encuentran

Tabla 3. Prueba "Z" para un valor crítico entre -1.96 y 1.96, con valor de prueba = 140 ppm Pb de las concentraciones totales de plomo en los suelos de los GPLM.

p (bilateral)
0.000
0.000
0.000
0.000
0.000 0.000 0.000

n: Tamaño muestral; $Z_{\text{práctico}}$: encontrado con los datos experimentales; p es el estadístico de la muestra que se compara con α .

Tabla 4.	Caracterización	de los	suelos	de lo	os GPLM.
----------	-----------------	--------	--------	-------	----------

Parque				C.E.	
	%	pН	MO	(extracto	CIC
	arcilla	(1:1)	%	saturación)	cmol _c kg ⁻¹
				dS/m	
Campo de Marte	13	7.47	11.31	1.25	30.68
Bosque El Olivar	9	7.06	3.67	3.45	16.8
Pentagonito	10	8.19	2.76	2.37	11.2
Kennedy	11	7.49	2.67	1.01	15.52
Las Leyendas	7	7.5	3.68	5.13	16.32
Zoológico de Huachipa	9	7.96	3.56	4.62	10.88

contaminados con plomo; esto puede haber ocurrido por su exposición durante décadas al combustible como ha sido reportado por Laidlaw *et al.*(2017). Arosquipa *et. al.* (2013) observaron que el contacto de los seres vivos con estos suelos constituye un riesgo a la salud ya que este elemento pesado no cumple una función biológica y no se metaboliza.

La textura de los seis parques fue franco arenoso con ligeras variaciones en el porcentaje de arcilla mientras que el contenido de materia orgánica estuvo entre 2 y 4% a excepción del suelo de Campo de Marte con 11.31% de materia orgánica; suelos con mayor contenido de arcilla generalmente tienen mayor capacidad de intercambio catiónico (CIC) y mayor adsorción de plomo, la fracción materia orgánica puede incrementar la capacidad de cambio (He et al., 2017). Los suelos del Campo de Marte tienen el mayor contenido de arcillas, materia orgánica y CIC por lo que su adsorción de plomo debe ser mayor a pesar de que su clase textural sea semejante a los suelos de los otros parques. La actividad del plomo tiene relación directa con el pH de los suelos ya que al disminuir el pH disminuye la interacción del plomo con el suelo y aumenta la solubilidad influyendo en los procesos de adsorción y desorción (Amari et. al., 2017); los suelos de los parques Pentagonito y Zoológico de Huachipa tuvieron los mayores valores de pH por lo que se podría asumir existe una menor solubilidad del plomo a diferencia de los suelos del parque Bosque el Olivar que tuvo el menor valor de pH (Tabla 4).

La conductividad eléctrica se realizó en extracto de saturación y directo al suelo luego de 30 minutos de riego. Los valores de CE medidos directo al suelo mostraron incremento entre 0.3 y 0.6 unidades. Los resultados indican que los suelos de los parques Las Leyendas y Zoológico de Huachipa son ligeramente salinos mientras que Bosque El Olivar y Pentagonito son muy ligeramente salinos. Los valores de CE normalmente tienen una correlación directa con el contenido de plomo en los suelos (Solano, 2005).

Conclusiones.

Los suelos de los parques Campo de Marte, Bosque El Olivar y Pentagonito se encuentran contaminados con plomo siendo la media de plomo total de 225.59, 169.96 y 159.15 ppm respectivamente.

Los suelos del parque Zoológico de Huachipa, en la zona de "Bosque de Aves" (0.7 ha), tienen contaminación promedio por plomo de 266.41 ppm; el resto del parque (10.3 ha) no está contaminado (78.43 ppm).

Los suelos del parque Las Leyendas, en la zona "Pampa Galera" (8 ha), están contaminados por plomo en un nivel medio de 234.47 ppm; el resto del parque (90 ha) no está contaminado (56.35 ppm).

El parque Kennedy no tiene problema de contaminación de plomo en sus suelos siendo su media de 55.52 ppm.

Agradecimientos.

A los docentes del departamento académico de suelos de la Universidad Nacional Agraria La Molina (UNALM) por apoyar a que el laboratorio de análisis de suelos, plantas y fertilizantes (LASPAF-UNALM) financie los trabajos de investigación; a los trabajadores de los parques por su apoyo en la toma de datos en campo y a los representantes de las municipalidades y parques de los distritos de San Isidro, San Borja, Jesús María, Ate-Vitarte, San Miguel y Miraflores por el permiso concedido para el ingreso a los parques estudiados.

Literatura citada.

Amari T., Ghnaya T. & Abdelly C. 2017. Nickel, cadmium and lead phytotoxicity and potential of halophytic plants in heavy metal extraction. South African Journal of Botany. July 2017, vol. 111, 99-110. Doi 10.1016/sajb.2017.03.011.

Arosquipa G. & Villegas E. 2013. Determinación del contenido de plomo en sangre proveniente de la policía de tránsito femenina de las unidades Centro y Sur de Lima Metropolitana. Revista de la Sociedad Química del Perú. Volumen 79n°3: 229-235.

Autoridad Nacional del Agua. 2012. Estrategias para la protección de la calidad de los recursos hídricos de la Cuenca del Río Rímac.

Castillo Y. 2010. Evaluación toxicológica de plomo en suelos de Lima Metropolitana. UNMSM. Facultad de Farmacia y Bioquímica. Departamento Académico de Farmacología, Bromatología y Toxicología. Tesis para optar el título profesional de Químico Farmaceútico. 78h.

Doyle R. 1998. Effectiveness of soil amendments in reducing the bioaccessibility of lead, Pb, on vacant lots in South Providence. Brown University.

El Comercio. 2015. Zoológico de Huachipa: uno de los 11 mejores de América Latina. 26 de octubre del 2015

- (https://elcomercio.pe/lima/zoologico-huachipa-11-mejores-america-latina-235757). Perú.
- He S., Lu Q., Li W., Ren Z., Zhou Z., Feng X., Zhang Y & Li Y. 2017. Factors controlling cadmiun and lead activities in different parent material-derived soils from the Pearl River Basin. Chemosphere vol. 182: 509-516
- Jackson M. 1964. Análisis químico de suelos. Barcelona (España): Ediciones Omega.
- Ji P., Song Y., Leigh M. & Liu Y. 2011. Strategies for enhancing the phytoremediation of cadmiumcontaminated agricultural soils by *Solanum nigrum L*. En Environmental Pollution 159:762-768.
- Laidlaw M.A, Filippelli G.M., Brown S., Paz-Ferreiro J.,
 Reichman S.M., Netherway P., Truskewycz A., Ball A.S.
 & Mielke H.W. 2017. Case studies and evidence-based approaches to adressing urban soil lead contamination.
- Martínez A G. & Villafañe F. 1999. Intoxicación Aguda con Plomo en Bovinos. Revista ACOVEZ, Vol. 24 n.1, marzo 1999.
- MINAM (Ministerio del Ambiente). 2014. Guía para Muestreo de Suelos. Perú. 38 p. (http://www.minam.gob.pe/wp-content/uploads/2014/04/GUIA-MUESTREO-SUELO MINAM1.pdf).
- MINAM (Ministerio del Ambiente). 2017. Estándares de Calidad Ambiental (ECA) para Suelo. DECRETO SUPREMO N° 011-2017-MINAM. El Peruano; Lima, sábado 02 de diciembre del 2017; Año XXXIV N° 14307: 12-15 (http://www.minam.gob.pe/consultaspublicas/wpcontent /uploads/sites/52/2017/07/Proyecto-de-DS_-ECA-SUELO.pdf). Perú.
- Moronta-Riera J. & Riverón-Zaldivar A.B. 2016. Evaluación de la calidad físico-química de las aguas y sedimentos de la costa oriental del lago de Maracaibo. En Minería y Geología del Instituto Superior Minero Metalúrgico de Moa. V32n2: 102-111.
- Narváez J. 2014. Sistema de Irrigación y señoríos indígenas en el valle bajo del Rímac durante el siglo XVI. Boletín del Instituto Riva-Agüero (BIRA) Nº 37: 33-74.
- OSINERGMIN (Organismo Supervisor de la Inversión en Energía y Minería). 2012. Resultados de los análisis realizados a los Gasoholes en las plantas de ventas.

- OSINERGMIN (Organismo Supervisor de la Inversión en Energía y Minería). 1998. Aprueban el Reglamento de Infracciones y Sanciones al D.S.No.019-98-MTC que dispuso eliminar del mercado la oferta de Gasolina 95RON con plomo. RESOLUCIÓN 405-98-OS/CD. El Peruano; Lima, miércoles 4 de noviembre de 1998; AÑO XVI Nº 6706: 165412-165413. Perú.
- Pottier M., De La Torre V.S., Victor C., David L.C., Chalot M. & Thomine S. 2015. Genotypic variations in the dynamics of metal concentrations in poplar leaves: A field study with a perspective on phytoremediation. En Environment Pollution 199: 73-82.
- Sanín L.H., González-Cossio T., Romieu I. & Hernández-Avila M. 1998. Acumulación de plomo en huesos y sus efectos en la salud. Salud Pública Mex 40: 359-368.
- Solano A. 2005. Movilización de metales pesados en residuos y suelos industriales afectados por la hidrometalurgia del cinc. Tesis Doctoral, Doctorado en Química, Facultad de Química, Departamento de Química Agrícola, Geología y Edafología. Universidad de Murcia, España. 370h.
- Tepanosyan G, Maghakyan G, Sahakuan L. & Saghatelvan A. 2017. Heavy metals pollution levels and children health risk assessment of Yerevan kindergartens soils. Ecotoxicology and environmental safety. Volume 142, august 2017. Pages 257-265.
- Walkley A & Black I. 1934. An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 37:29-38.
- Witzling L., Wander M. & Phillips E. 2011. Testing and educating on urban soil lead: A case of Chicago community gardens. *Journal of agricultura, food system, and community development.*
- Xu F., Liu Z, Cao Y., Qiu L., Feng J., Xu F. & Tian X. 2017. Assessment of heavy metal contamination in urban river sediments in the Jiaozhou Bay catchment, Qingdao, China. En Elsevier Catena. Volume 150: 9-16.
- Yang-Guang G. & Yan-Peng G. 2016. Contamination, bioaccessibility and human health risk of heavy metals in exposed-lawn soils from 28 urban parks in southern Chipa's largest city, Guangzhou. Geochemestry. Volume 67, april 2016. Pages 52-58.

Campo de Marte: Coordenadas: Zona 18 L Coordenadas: Zona 18 L							
Muestreo d	e Identificación	Pb (ppm)		Muestreo d	e Detalle	Pb (ppm)	
CM1	278021	8665367	369.68	CM43	277534	8664855	302.73
CM2	277974	8665376	302.15	CM44	277525	8664873	217.72
CM3	277985	8665360	112.49	CM45	277559	8664898	315.5
CM4	278020	8665334	485.64	CM46	277534	8664952	167.32
CM5	277972	8665309	375.18	CM47	277473	8664991	202.1
CM6	278008	8665303	124.71	CM48	277495	8665031	187.61
CM7	277962	8665319	202.86	CM49	277529	8665057	143.27
CM8	277972	8665246	225.38	CM50	277611	8665033	157.21
CM9	277627	8665081	153.62	CM51	278018	8665399	324.24
CM10	277641	8665030	134.51	CM52	277961	8665321	267.26
CM11	277985	8665281	361.97	CM53	277997	8665233	383.98

Campo de M	Marte: Coordenace e Identificación		•		as: Zona 18 L	Pb (ppm)	
CM12	277739	8664997	286.55	CM54	277995	8665214	307.53
CM13	277770	8664943	197.48	CM55	277985	8665228	210.02
CM14	277829	8665005	134.77	CM56	277965	8665223	183.34
CM15	277856	8665107	140.29	CM57	277957	8665219	200.43
CM16	277882	8665282	166.47	CM58	277968	8665203	359.16
CM17	277607	8665112	136.18	CM59	277983	8665186	92.09
CM18	277931	8665186	163.84	CM60	277983	8665169	175.42
CM19	277979	8665099	203.00	CM61	277986	8665148	109.43
CM20	277911	8665108	244.54	CM62	277951	8665142	357.48
CM21	277909	8665074	188.32	CM63	277927	8665167	251.73
CM22	277920	8665072	212.48	CM64	277933	8665183	201.01
CM23	277940	8665066	229.21	CM65	277941	8665195	178.19
CM24	277974	8665062	413.2	CM66	277889	8664859	237.52
CM25	277962	8665034	270.2	CM67	277871	8664867	361.86
CM26	277941	8665036	220.63	CM68	277871	8664874	226.01
CM27	277895	8665048	247.40	CM69	277845	8664857	313.22
CM28	277872	8665021	156.86	CM70	277856	8664846	224.62
CM29	277887	8665010	150.00	CM71	277876	8664835	312.56
CM30	277915	8665003	258.6	CM72	277870	8664819	251.1
CM31	277658	8664819	297.98	CM73	277840	8664815	271.72
CM32	277643	8664813	132.84	CM74	277840	8664809	307.86
CM33	277604	8664834	365.63	CM75	277550	8664967	362.54
CM34	277586	8664837	311.17	CM76	277531	8664965	198.8
CM35	277572	8664844	408.38	CM77	277513	8664972	247.34
CM36	277570	8664830	228.23	CM78	277513	8664987	187.78
CM37	277573	8664792	215.94	CM79	277539	8664996	297.98
CM38	277557	8664805	243.76	CM80	277557	8664999	411.86
CM39	277553	8664820	314.17	CM81	277560	8665010	224.85
CM40	277561	8664845	248.85	CM82	277573	8665001	178.4
CM41	277569	8664938	66.42	CM83			280.77
CM42	277552	8665049	91.17	CM84	277588 277576	8664993 8664978	173.3
02	27,7882	00000.7	91.17	CM85	277597	8664994	146.91
				CM86	277620	8665016	131.22
				CM87	277652	8665033	106.31
				CM88	277676	8665043	114.45
				CM89	277676	8665069	188.72
				CM90	277648	8665059	128.91
				CM91	277607	8665054	135.9
				CM92	277580	8665055	142.09
				CM93	277582	8665088	117.14
				CM94	277565	8665069	117.14
				CM95			
				CM96	277550	8665056 8665032	250.44
				CM97	277532	8665032 8665037	175.49
				C1V1)/	277557	8665037	225.72

Ziloto vallo 2010

Anexo 1. Puntos de muestreo de identificación y detalle de los GPLM.

Campo de Marte: Coordenadas: Zona 18 L	Coordenada	s: Zona 18 L		
Muestreo de Identificación Pb (ppm)	Muestreo de Detalle		Pb (ppm)	
	CM98	277554	8665011	98.05
	CM99	277530	8665025	239.62
	CM100	277518	8665034	240.09
	CM101	277504	8665011	167.08
	CM102	277489	8665011	265.12
	CM103	277479	8664983	154.78
	CM104	277487	8664961	178.08
	CM105	277496	8664949	169.34
	CM106	277516	8664945	101.34
	CM107	277532	8664928	344.74

Bosque E		e muestreo de Coordenadas:		das: Zona 18			
	de Identific				de Detalle	Pb (ppm)	
BO1	278509	8661792	127.76	BO39	278487	8661346	181.47
BO2	278501	8661761	205.86	BO40	278497	8661437	160.21
BO3	278484	8661708	176.78	BO41	278510	8661536	327.74
BO4	278471	8661659	169.41	BO42	278504	8661494	250.64
BO5	278461	8661599	256.24	B043	278529	8661678	160.48
BO6	278466	8661640	154.79	BO44	278529	8661703	191.99
BO7	278476	8661688	145.50	BO45	278553	8661793	208.82
BO8	278495	8661778	197.89	BO46	278613	8661834	169.89
BO9	278501	8661782	136.72	BO47	278596	8661785	151.37
BO10	278430	8661440	111.39	BO48	278563	8661641	300.54
BO11	278421	8661375	71.28	BO49	278566	8661529	181.05
BO12	278445	8661522	74.13	BO50	278558	8661475	133.31
BO13	278472	8661652	102.20	BO51	278556	8661452	75.28
BO14	278414	8661322	270.75	BO52	278548	8661376	110.07
BO15	278408	8661274	167.19	BO53	278540	8661220	111.00
BO16	278402	8661216	210.23	BO54	278584	8661042	154.31
BO17	278390	8661102	124.13	BO55	278603	8661063	186.53
B018	278450	8661414	149.58	BO56	278637	8661209	155.59
BO19	278461	8661587	134.19	BO57	278656	8661464	186.96
BO20	278386	8661062	229.56	BO58	278688	8661606	147.30
BO21	278379	8660982	107.90	BO59	278710	8661668	398.48
BO22	278457	8661057	123.55	BO60	278698	8661637	329.04
BO23	278466	8661134	128.11	BO61	278713	8661728	76.50
BO24	278474	8661209	136.52	BO62	278705	8661801	281.15
BO25	278382	8660992	198.18	BO63	278705	8661785	99.19
BO26	278480	8661250	209.93	BO64	278699	8661810	172.97
BO27	278485	8661320	152.58	BO65	278595	8661056	243.31
BO28	278481	8661291	96.00	BO66	278619	8661097	165.99
BO29	278479	8661269	288.38	BO67	278625	8661135	256.72
BO30	278476	8661229	212.37	BO68	278630	8661170	270.21
BO31	278489	8661369	120.02	BO69	278637	8661314	188.34

Anexo 1. Puntos de muestreo de identificación y detalle de los GPLM.

Bosque E	l Olivar	Coordenadas:	Zona 18 L	Coordena	das: Zona 18	L	
Muestreo	de Identifica	ción Pb (p	ppm)	Muestreo	de Detalle	Pb (ppm)	
BO32	278492	8661298	115.32	BO70	278644	8661364	186.67
BO33	278527	8661650	82.24	BO71	278637	8661348	133.48
BO34	278586	8661761	134.67	BO72	278707	8661754	121.60
BO35	278577	8661743	114.24				
BO36	278562	8661711	123.39				
BO37	278554	8661681	135.97				
BO38	278562	8661502	73.70				

Anexo 1. Puntos de muestreo de identificación y detalle de los GPLM.

Parque F	entagonito	Coordenadas:	Zona 18 L	Coorden	adas: Zona 1	8 L	
Muestre	o de Identifica	ción Pb (p	pm)	Muestre	de Detalle	Pb (ppm)	
PP1	283922	8661932	190.37	PP7	284023	8661894	140.07
PP2	284403	8661656	187.08	PP8	284422	8661522	157.04
PP3	283554	8661560	189.64	PP9	283960	8660924	186.76
PP4	283727	8660751	196.52	PP10	283571	8660899	158.04
PP5	284402	8661271	154.21	PP11	283534	8661436	187.53
PP6	283560	8661059	125.85	PP12	283681	8661961	191.47

Anexo 1. Puntos de muestreo de identificación y detalle de los GPLM.

Parque K	Parque Kennedy Coordenadas: Zona 18 L		Coordena	L	_		
Muestreo	de Identific	ación Pb (pj	pm)	Muestreo	de Detalle	Pb (ppm)	
PK1	279154	8659372	65.98	PK20	279163	8659366	37.36
PK2	278998	8659146	50.63	PK21	279169	8659338	30.06
PK3	279157	8659368	71.89	PK22	279165	8659320	74.33
PK4	278967	8659100	35.22	PK23	279163	8659270	41.69
PK5	279087	8659258	70.58	PK24	279158	8659262	66.95
PK6	279162	8659298	76.9	PK25	279161	8659226	38.59
PK7	279144	8659314	30.79	PK26	279149	8659207	
PK8	279151	8659362	64.3				38.26
PK9	279105	8659291	54.8	PK27	279119	8659221	75.05
PK10	279137	8659230	31.45	PK28	279036	8659211	71.85
PK11	279132	8659241	52.3	PK29	279057	8659188	65.54
PK12	279149	8659353	55.68	PK30	279047	8659171	91.5
PK13	279136	8659359	148.49	PK31	279027	8659136	73.59
PK14	279155	8659344	40.25	PK32	278999	8659108	91.09
PK15	279154	8659334	40.98				
PK16	279143	8659337	31.81				
PK17	279127	8659340	71.18				
PK18	279131	8659318	56.47				
PK19	279127	8659288	48.93				

Anexo 1. Puntos de muestreo de identificación y detalle de los GPLM.

Parque Las	Leyendas Coo	Coordenad					
Muestreo de Identificación		Pb (ppm)		Muestreo o	de Detalle	Pb (ppm)	
PLL1	272798	8664994	78.4	PLL51	272963	8664440	297.04
PLL2	272811	8665039	63.15	PLL52	272961	8664500	334.96
PLL3	272817	8665100	71.07	PLL53	272786	8665008	47.41

Anexo 1	l . J	Puntos	de n	nuestreo	de 1	denti	ficaci	ón y	y de	talle	de	los	GPLN	VI.
---------	--------------	--------	------	----------	------	-------	--------	------	------	-------	----	-----	------	-----

Parque Las Leyendas Coordenadas: Zona 18 L Coordenadas: Zona 18 L							
	le Identificación	Pb (ppm)		Muestreo d		Pb (ppm)	
PLL4	272834	8665134	92.87	PLL54	273192	8664845	223.04
PLL5	272838	8665189	74.7	PLL55	273202	8664837	334.98
PLL6	272850	8665234	33.83	PLL56	273114	8664857	88.69
PLL7	272767	8665330	25.06				
PLL8	272764	8665262	38.23				
PLL9	272748	8665197	78.72				
PLL10	272742	8665148	27.77				
PLL11	272736	8665107	35.21				
PLL12	272751	8665081	49.27				
PLL13	272742	8665036	40.87				
PLL14	272770	8664980	58.08				
PLL15	272745	8665000	58.73				
PLL16	272726	8665015	29.97				
PLL17	272669	8664930	60.65				
PLL18	272648	8664963	50.88				
PLL19	272639	8664946	80.51				
PLL20	272677	8664958	50.33				
PLL21	273099	8665300	40.01				
PLL22	273148	8665318	36.18				
PLL23	273156	8665363	36.25				
PLL24	273124	8665375	41.55				
PLL25	273111	8665343	56.06				
PLL26	273229	8664988	60.02				
PLL27	273252	8664992	24.26				
PLL28	273234	8665020	37.97				
PLL29	273250	8665047	29.59				
PLL30	273287	8665058	28.31				
PLL31	273279	8664844	72.79				
PLL32	273000	8664529	158.75				
PLL33	272972	8664522	204.5				
PLL34	273196	8664859	123.7				
PLL35	273198	8664815	163.2				
PLL36	273227	8664806	81.37				
PLL37	273253	8664776	38.25				
PLL38	273204	8664746	93.54				
PLL39	273181	8664730	66.55				
PLL40	273146	8664692	60.82				
PLL41	273122	8664671	51.21				
PLL42	273166	8664656	68.15				
PLL43	273039	8664823	81.07				
PLL44	273021	8664842	60.37				
PLL45	273002	8664854	71.25				
PLL46	272923	8664752	60.84				
PLL47	272885	8664714	88.27				

Anexo 1. Puntos de muestreo de identificación y detalle de los GPLM.

Parque Las	Leyendas Coo	rdenadas: Zona	Coordenadas: Zona 18 L			
Muestreo de	e Identificación	Pb (ppm)		Muestreo de Detalle	Pb (ppm)	
PLL48	273113	8664857	34.18			
PLL49	273095	8664703	74.48			
PLL50	272748	8664862	73.28			

Anexo 1. Puntos de muestreo de identificación y detalle de los GPLM. Parque Zoológico de Huachipa Coord: Zona 18 L Coordenadas: Zona 18 L							
	ologico de Hu de Identificaci			Muestreo d			
PZH1	293197	8671044	85.19	PZH34	293321	Pb (ppm) 8671158	110.51
PZH2	293246	8671059	284.85	PZH35	293319	8671169	57.21
PZH3	293296	8671078	145.27	PZH36	293330	8671165	36.92
PZH4	293310	8671085	39.79	PZH37	293331	8671162	58.81
PZH5	293311	8671098	51.32	PZH38	293345	8671165	67.60
PZH6	293297	8671094	31.91	PZH39	293341	8671170	115.83
PZH7	293278	8671088	36.79	PZH40	293350	8671175	91.12
PZH8	293278	8671063	157.11	PZH41	293351	8671169	115.42
PZH9	293771	8671239	469.93	PZH42	293362	8671175	79.58
PZH10	293291	8671099	22.45	PZH43	293369	8671177	109.29
PZH11	293289	8671106	139.81	PZH44	293375	8671182	72.61
PZH12	293380	8671145	315.15	PZH45	293382	8671184	92.85
PZH13	293401	8671102	226.04	PZH46	293413	8671193	78.61
PZH14	293282	8671109	103.37	PZH47	293430	8671193	71.21
PZH15	293279	8671114	92.95	PZH48	293448	8671194	86.39
PZH16	293284	8671121	41.45	PZH49	293663	8671186	100.01
PZH17	293291	8671119	20.47	PZH50	293643	8671197	87.56
PZH18	293305	8671133	136.75	PZH51	293634	8671194	96.24
PZH19	293298	8671139	33.70	PZH52	293637	8671183	78.00
PZH20	293472	8671175	265.63	PZH53	293637	8671174	137.18
PZH21	293536	8671186	191.34	PZH54	293733	8671215	330.91
PZH22	293660	8671180	248.5	PZH55	293761	8671232	134.35
PZH23	293467	8671193	171.52	PZH56	293291	8671143	27.94
PZH24	293469	8671188	384.97	PZH57	293303	8671146	36.66
PZH25	293649	8671173	222.97	PZH58	293306	8671139	32.26
PZH26	293319	8671136	74.31	PZH59	293310	8671131	35.19
PZH27	293314	8671145	34.35	PZH60	293515	8671104	46.08
PZH28	293313	8671151	62.56	PZH61	293446	8671111	111.32
PZH29	293306	8671154	70.51	PZH62	293407	8671139	108.83
PZH30	293309	8671154	60.03	PZH63	293380	8671065	99.01
PZH31	293313	8671157	48.43	PZH64	293434	8671051	98.96
PZH32	293438	8671153	203.16	PZH65	293409	8671076	76.05
PZH33	293312	8671151	56.19	PZH66	293373	8671087	44.78
				PZH67	293363	8671092	43.75
				PZH68	293358	8671097	45.96
				PZH69	293350	8671114	49.85
				PZH70	293320	8671070	63.92

	J					
Parque Zoológico de Huachipa Coord: Zona 18 L		Coordenadas: Zona 18 L				
Muestreo de Identificación Pb (ppm)	Muestreo d	Muestreo de Detalle				
	PZH71	293322	8671073	109.08		
	PZH72	293309	8671063	138.71		
	PZH73	293285	8671090	77.57		
	PZH74	293280	8671096	44.00		
	PZH75	293708	8671242	222.61		
	PZH76	293396	8671141	246.18		
	PZH77	293421	8671155	362.94		

¹ Doctorante de la Universidad Nacional Mayor de San Marcos y docente de la Universidad Nacional Agraria La Molina. Av. La Molina s/n, Lima 12, Perú. ltello@lamolina.edu.pe

² Docente de la Universidad Nacional Mayor de San Marcos y asesor de tesis.

³ Docente de la Universidad Nacional Agraria La Molina y doctorante de la Universidad Nacional Mayor de San

Marcos.