ECOLOGÍA APLICADA

Ecología Aplicada ISSN: 1726-2216 ISSN: 1993-9507

ecolapl@lamolina.edu.pe

Universidad Nacional Agraria La Molina

Perú

EL CULTIVO DE CAÑA DE AZÚCAR EN LA COSTA DEL PERÚ DURANTE LOS EVENTOS DE EL NIÑO 1982-83 Y 1997-98

Pollack Velásquez, Manuel; Helfgott Lerner, Salomón; Tejada Soraluz, Jorge EL CULTIVO DE CAÑA DE AZÚCAR EN LA COSTA DEL PERÚ DURANTE LOS EVENTOS DE EL NIÑO 1982-83 Y 1997-98

Ecología Aplicada, vol. 17, núm. 1, 2018 Universidad Nacional Agraria La Molina, Perú

Disponible en: http://www.redalyc.org/articulo.oa?id=34157105009

Los derechos de autor están garantizados por la Ley del Deposito Legal del Perú: Salva y difunde el patrimonio bibliográfico del país a nivel nacional e internacional. La revista tiene: Hecho el deposito legal 2002-5474, todos los años enviamos 10 ejemplares impresos a la Biblioteca Nacional del Perú según lo indica la ley. El contendido de cada artículo es responsabilidad del o los autores y conservan su derecho de autor. Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.

EL CULTIVO DE CAÑA DE AZÚCAR EN LA COSTA DEL PERÚ DURANTE LOS EVENTOS DE EL NIÑO 1982-83 Y 1997-98

SUGARCANE IN THE COASTAL AREA OF PERU DURING EL NIÑO 1982-83 AND 1997-98 EVENTS

Manuel Pollack Velásquez Consultor independiente, Perú mpollackvelasquez@gmail.com Redalyc: http://www.redalyc.org/articulo.oa?id=34157105009

Salomón Helfgott Lerner Departamento de Fitotecnia, Facultad de Agronomía, Universidad Nacional Agraria La Molina, Perú shelfgott@lamolina.edu.pe

Jorge Tejada Soraluz Departamento de Fitotecnia, Facultad de Agronomía, Universidad Nacional Agraria La Molina, Perú jorgetejada@lamolina.edu.pe

> Recepción: 05 Julio 2017 Aprobación: 23 Marzo 2018

RESUMEN:

El cultivo de caña de azúcar ocupa aproximadamente 140 000 ha en la costa peruana. El rendimiento promedio de caña es de unas 140 t/ha-año y se logra entre 10% a 12% de sacarosa pero cuando se presenta un evento El Niño, la producción de caña y su calidad son seriamente afectadas. Se realizó una investigación con el objetivo de determinar el efecto de las temperaturas mínimas, por encima de 18°C, sobre la calidad de los jugos de los tallos de caña de azúcar y la presencia de insectos plaga en dos empresas azucareras durante los eventos El Niño 1982-83 y 1997-98. Se utilizó la información sobre muestras colectadas y procesadas para determinar la maduración de los tallos, entre setiembre 1982 y febrero 1983 en el caso de la empresa Paramonga y entre enero 1997 y diciembre 1998 en la empresa Casa Grande. Se encontró que la maduración fue seriamente afectada. En Paramonga, a incrementos unitarios de temperatura, hubo cambios en los valores de pol por ciento. En Casa Grande, los incrementos de la temperatura mínima redujeron la pol (R2=0.53). Los insectos plaga Perkinsiella saccharicida y Diatraea saccharalis (F.) mostraron incrementos en sus poblaciones ocasionando pérdidas de azúcar. También se observaron incrementos de los áfidos Sipha flava y Aphis sacchari, el barrenador Metamasius hemipterus y roedores (Rattus norvegicus), con casi 40 porciento de entrenudos comidos.

PALABRAS CLAVE: costa peruana, empresas azucareras, evento El Niño.

ABSTRACT:

The sugarcane crop is cultivated in about 140 000 ha in the Peruvian coastal area. The average yield is 140 t/ha-year and 10-12% sucrose. However, the occurrence of El Niño phenomenon very seriously affects cane quality and production. An investigation was carried out to determine the effect of minimum temperatures, above 18°C, in sugar cane juice quality and in the presence of insects in two sugarcane plantations during El Niño 1982-83 and 1997-98 events. Information was obtained from samples that were collected and processed to determine stem maturation, between September 1982 and February 1983 (Paramonga) and between January 1997 and December 1998 (Casa Grande). It was found out that maturation was seriously affected. In Paramonga, for each temperature unit increase, there was a change in pol percent. In Casa Grande, minimum temperature increases reduced pol percent (R2=0.53). The insect pests Diatraea saccharalis (F.) and Perkinsiella saccharicida showed increases in their populations and produced sugar losses. Increases in Sipha flava, Aphis sacchari and Metamasius hemipterus were also found. Rats (Rattus norvegicus) affected almost 40 percent of stem internodes.

KEYWORDS: peruvian coastal area, sugarcane plantations, El Niño phenomenon.

Notas de autor

mpollackvelasquez@gmail.com

MANUEL POLLACK VELÁSQUEZ, ET AL. EL CULTIVO DE CAÑA DE AZÚCAR EN LA COSTA DEL PERÚ DURANTE LOS EVE...

Introducción

La caña de azúcar es una planta eficiente en la utilización de la radiación solar para la fotosíntesis, siendo la temperatura óptima del aire entre 25 a 34 ° C. Según los resultados del IV Censo Nacional Agropecuario 2012, realizado por el Instituto Nacional de Estadística e Informática (2013), en el Perú se cultivan alrededor de 140 000 ha de caña de azúcar y se producen alrededor de 10 millones de toneladas de caña y un millón de toneladas de azúcar, principalmente en los departamentos de La Libertad y Lambayeque (Figura 1). Los rendimientos son altos (10-12 t/ha-mes) pero cuando se presenta un evento El Niño, la producción de caña y su calidad son seriamente afectadas.

El evento atmosférico El Niño es el resultado de la interacción de un fenómeno oceánico con uno atmosférico. El primero de ellos se refiere a la corriente de El Niño, originada por variaciones de la temperatura superficial del mar y el segundo es la llamada Oscilación Sur, debida a cambios en la presión atmosférica. Los cambios relacionados con El Niño-Oscilación Sur (ENOS) producen grandes variaciones en las condiciones del tiempo y clima en el planeta. La intensidad de un fenómeno ENOS depende de la magnitud de las anomalías y del área de influencia (Takahashi, 2014).

Aguilar (1990) publicó un resumen sobre los eventos El Niño en el Perú señalando que en 65 años de información (1925 a 1989) se han producido cinco Niños fuertes (1925/1926, 1930/1931, 1940/1941, 1957/1958 y 1972/1973) y un Niño extraordinario (1982/1983). De acuerdo a la Organización Panamericana de la Salud (2000), en los últimos 430 años en el Perú se presentaron 15 eventos El Niño fuertes y 10 muy fuertes. De estos eventos, El Niño 1997-1998 fue extremo, ocasionando pérdidas de US \$ 1 000 millones solo entre inundaciones y sequías. Respecto al último evento El Niño, el Ministerio de Economía y Finanzas (2017) estimó que en el 2017 se redujo el crecimiento económico nacional en 1.2%, respecto al 2016.

Alexander & Samuels (1968) reportaron que los entrenudos inmaduros que crecían a temperaturas de 13 a 16°C, tenían un contenido bajo de invertasa ácida y un más alto contenido de sacarosa que aquellos que crecían entre 27 a 29°C. Chaves (1982) indicó que cuando se presentan temperaturas bajas y poca lluvia, se logran cañas con alto contenido de sacarosa y buena pureza.

Larrahondo & Villegas (1995) indicaron que, en condiciones tropicales, la temperatura tiene su mayor efecto sobre la calidad del jugo en los periodos secos, cuando la diferencia entre las temperaturas máxima y mínima oscila entre 11 y 12°C, lo cual estimula el almacenamiento de sacarosa. En épocas lluviosas esta oscilación es menor y los rendimientos decrecen.

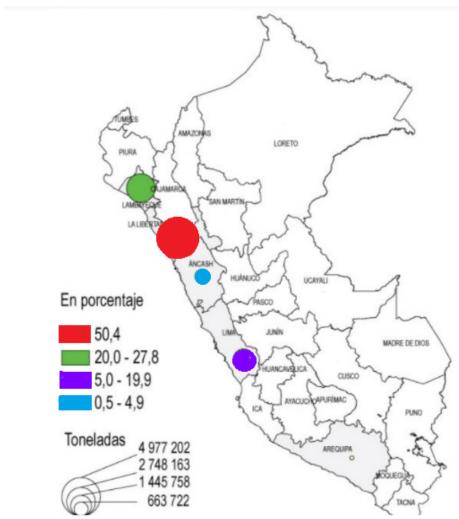


Figura 1. Producción de caña de azúcar en el Perú, INEI - MINAGRI (2013)

FIGURA 1.

Producción de caña de azúcar en el Perú (Instituto Nacional de Estadística e Informática, 2013).

Instituto Nacional de Estadística e Informática, 2013

Helfgott (2016) mencionó que la acumulación de sacarosa es mayor cuando las noches son frías y los días calurosos. Una mayor oscilación entre los valores de temperatura máxima y mínima favorece la maduración de las plantas y la calidad de los jugos. Por ello, en el Perú, los años que los cañeros consideran como muy buenos para la producción de azúcar, coinciden con temperaturas nocturnas bajas y altas en el día. Temperaturas mínimas altas, mayores de 18°C y una menor oscilación entre las temperaturas máximas y mínimas alteran los procesos fisiológicos, acelerándose el uso de los fotosintatos producidos y almacenados en el tallo y permitiendo que el crecimiento vegetativo continúe. Además, se favorece la floración y se complican los roles de cosecha.

Helfgott et al. (1998) reportaron que durante el desarrollo de los eventos El Niño 1982-83 y 1997-98, el cultivo fue afectado en sus rendimientos en azúcar. Esto fue debido a que durante el periodo de maduración, las cañas sufrieron cambios internos que impidieron la acumulación de sacarosa y fomentaron el incremento de azúcares reductores. Además, los ciclos de los cultivos de caña de azúcar se acortaron tanto en lo que se refiere al crecimiento vegetativo como a la etapa de maduración, reflejando un comportamiento similar al que tiene lugar en zonas tropicales por lo que a este escenario lo denominaron como tropicalización del cultivo.

De acuerdo a Macharé & Ortlieb (1993), la definición de El Niño está basada en las anomalías de la temperatura superficial del mar (TSM) observadas en ciertas estaciones de la costa peruana, como por ejemplo Puerto Chicama (7°41′ S y 79°26′ W). La información brindada por estaciones meteorológicas durante eventos ENOS se debe revisar y analizar para estimar los impactos futuros antes de la ocurrencia de dicho fenómeno.

El carácter permanente del cultivo, permite la presencia continua de ciclos superpuestos de las diferentes plagas y, a su vez, de los enemigos naturales de éstas. Pollack (2016) mencionó que existen plagas como el barrenador del tallo *Diatraea saccharalis* (F.), común en la mayor parte de las zonas cañeras, existiendo abundante información acerca de ella. Otras plagas son consideradas como secundarias porque tienen características de temporales y presentan brotes esporádicos. Como plagas secundarias se consideran el saltahojas *Perkinsiella saccharicida*, los áfidos *Sipha flava* y *Aphis sacchari*, el perforador de plantas tiernas *Elasmopalpus lignosellus*, el gusano enrollador verde *Marasmia trapezalis*, el gusano cogollero *Spodoptera frugiperda*, el gorgojo rayado *Metamasius hemipterus* y el barrenador de tocones *Opogona sacchari*. La rata *Rattus norvegicus* se observa en los campos cercanos a las poblaciones.

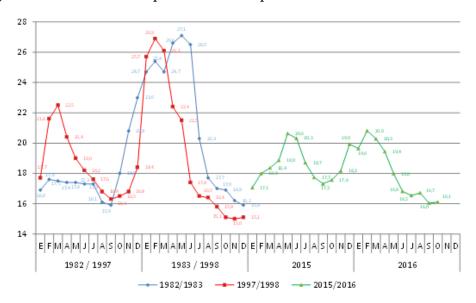


FIGURA 2.
Temperaturas superficiales del mar (TSM) registradas a las 7 am en Puerto Chicama (7°41' S y 79°26' W), durante los eventos El Niño 1982/83, 1997/98 y 2015/16.

El objetivo de la presente investigación fue presentar y analizar los registros de los análisis de maduración y temperaturas mínimas en el cultivo de caña de azúcar durante los eventos El Niño 1982-83 y 1997-98 en las empresas azucareras Paramonga y Casa Grande, respectivamente. Asimismo, se analiza el efecto de las temperaturas mínimas durante los eventos mencionados, en la calidad de los jugos y su influencia en la presencia inusual de los insectos *Perkinsiella saccharicida* y *Diatraea saccharalis*. El análisis de la información recolectada ayudará en la toma de decisiones acerca de acciones a realizar para mitigar los impactos de futuros eventos similares.

Materiales y métodos

En Paramonga, se utilizó la información sobre muestras colectadas y procesadas para determinar la maduración de los tallos, entre setiembre 1982 y febrero 1983. Luego de pesar las muestras se extrajo el jugo y se determinó: pol por ciento (incluye todos los azúcares solubles que existen en el agua que contiene la caña),

brix por ciento (es el porcentaje, en peso, de los sólidos en una solución de sacarosa pura), pureza por ciento (es la relación en porcentaje que existe entre la pol y los sólidos totales o brix) y pol recuperable por ciento.

En Casa Grande se utilizaron y adaptaron los resultados mensuales de los análisis de maduración realizados durante 1997 y 1998, reportados por Fernández (2014).

La información acerca de las poblaciones de *Perkinsiella saccharicida*, *Diatraea saccharalis* (F.) y otros insectos y roedores, fue la registrada en las evaluaciones de campo.

RESULTADOS Y DISCUSIÓN

Temperaturas superficiales del mar durante los eventos El Niño 1982/83, 1997/98 y la probable ocurrencia en 2015/16

En la Figura 2, podemos observar las temperaturas superficiales del mar (TSM) durante los eventos El Niño. El evento 1982/83 se inició en octubre 1982 y continuó hasta agosto 1983 alcanzando los valores máximos, por encima de 26°C, entre abril y junio, disipándose a partir del mes de julio. En el evento 1997/98, a partir de marzo, la TSM comenzó a incrementarse gradualmente y alcanzó sus valores más altos entre junio 1997 y febrero 1998, luego descendieron rápidamente hasta comenzar a disiparse a partir de mayo. Los valores de las TSM llegaron a ser entre 6 a 10°C superiores a las temperaturas normales por lo que dicho evento fue considerado como uno de los más intensos del siglo veinte. En el 2015/16, hasta octubre del 2015, las TSM fluctuaron entre 17,1 y 20°C y en ningún momento alcanzaron los 22°C. De acuerdo a Quispe (1993), es considerado como "año normal", por lo que es probable que no se desarrolle el componente oceanográfico de ENOS, similar a los eventos 1982/83, 1987/98. La Figura 2 fue construida usando los datos de Quispe (1993) el cual fue adaptado (Tabla 1), para incluir los datos de las TSM de los últimos años (1993 a 2016), proporcionados por Fernández 2016 (comunicación personal).

Evento El Niño de 1982-83, en Paramonga (valle del rio Pativilca)

Los conocimientos de la época no permitieron conocer con anticipación la ocurrencia de este evento. El aumento de las temperaturas mínimas del aire, comenzó a notarse desde octubre de 1982, se incrementó notoriamente en diciembre (22°C) y continuó aumentando hasta junio de 1983. A partir de julio de dicho año, las temperaturas comenzaron a disminuir hasta setiembre y luego se normalizaron (Figura 3).

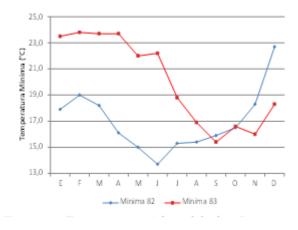


FIGURA 3. Temperatura mínima del aire, Paramonga 1982-1983. Estación Chilca I, Paramonga.

MANUEL POLLACK VELÁSQUEZ, ET AL. EL CULTIVO DE CAÑA DE AZÚCAR EN LA COSTA DEL PERÚ DURANTE LOS EVE...

En Figura 4 y Figura 5 se presenta la oscilación entre las temperaturas máxima-mínima en Paramonga. En el periodo 1978-1981 (Figura 4), la oscilación fluctuó entre 5.5°C (setiembre) a 10.0°C (mayo). Las temperaturas máximas variaron entre alrededor de 20°C (agosto y setiembre) y 28°C en marzo. Las temperaturas mínimas oscilaron entre 12°C (junio) y 19°C en marzo. En los años 1982-1983 (Figura 5), las oscilaciones entre temperaturas máximas y mínimas fueron ligeramente menores pero dichos valores fueron superiores a los del período 1978-1981. Las temperaturas mínimas del aire durante el periodo 1978-81 y los primeros meses de 1982 fueron muy similares, pero comenzaron a incrementarse a partir del mes de octubre 1982, coincidiendo con el inicio del fenómeno El Niño y estuvieron en alrededor de 22°C hasta mayo de 1983, cuando comenzó a disiparse el evento. Esto significa que durante ocho meses, el cultivo estuvo expuesto a temperaturas mínimas mayores de 18°C, periodo durante el cual la tasa de acumulación de sacarosa fue afectada.

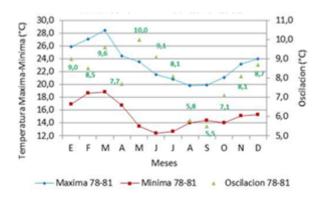
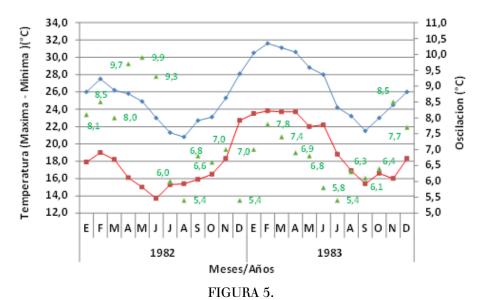



FIGURA 4. Temperatura máxima y mínima del aire, Paramonga 1978-1981. Estación Chilca l, Paramonga.

En un proceso normal de maduración, cuando las temperaturas mínimas están por debajo de 18°C, conforme aumentan los dias de agoste (suspensión del riego) los valores de pol porciento se incrementan mientras que el porcentaje de reductores disminuye (Figura 6). Este comportamiento coincide con lo mencionado por Cardozo (2012) quien señaló que los estudios indican que las variables meteorológicas tales como bajas temperaturas y déficits moderados de agua asociados a la deficiencia de nitrógeno, son los agentes más eficaces para la maduración. Cuando disminuyen las tasas de crecimiento, son más bajas las cantidades de azucares utilizados en la formación de nuevos tejidos y mayor la cantidad de sacarosa almacenada. Por lo tanto, durante la maduración el porcentaje de sacarosa en el tallo aumenta gradualmente a medida que el porcentaje de glucosa y fructosa disminuyen.

Temperatura máxima y mínima del aire. Paramonga 1982-1983. Estación Chilca l, Paramonga.

TABLA 1. Chicama: Temperaturas superficiales del mar (°C): 1925 - 2016 (En base al Cuadro 2, página 116, Quispe, 1993).

Tabla 1. Chicama: Temperaturas superficiales del mar (°C): 1925 - 2016 (En base al Cuadro 2. página 116. Quispe 1993)

base al Cuadro 2, página 116, Quispe 1993).												
Año	ENE	FEB	MZO		MAY		JUL	AGO	SET	OCT	NOV	DIC
1925	18.3	20.8	26.8	19.7	19.7	19.1	19.0	18.7		17.5	17.5	21.1
1926	21.6		18.6	17.0	16.8	16.7	17.3		16.4	16.6	17.1	16.3
1929	18.2	20.8	22.6	18.4	20.4	18.3	17.6	17.7	16.9	16.9	17.3	17.7
1930	18.1		20.6	20.3	19.6	18.1		18.3	18.8	18.8	19.1	19.8
1935	15.0	15.8	15.5	15.2	16.7	15.6	15.7		14.6	14.6	15.2	15.9
1938		17.0	17.4		15.1		15.2				14.4	14.5
1939	18.5	18.8	19.1	18.3	17.9	17.9	16.9	16.4	16.2	15.5	15.6	16.9
1946		18.3	17.6		16.7	16.3		16.0			15.8	17.4
1947	19.1	18.7	18.0	17.3	16.9	16.3	16.1		15.4		15.1	15.5
1950	15.7	16.0	16.7		15.4	15.8		15.2		14.9	14.9	14.9
1952	16.6		21.0	17.9	19.6	20.3		17.8			16.6	16.8
1957		21.7			21.3		19.2		16.8		16.4	19.6
1959		20.1	19.7		18.0	16.9	16.1		15.6		15.6	16.6
1961	17.7	18.8	17.7	17.2	17.4	16.4			15.6		15.0	15.1
1963		19.1	21.1		19.0	18.1	17.9		16.8		16.4	16.5
1965		19.3	19.8		20.9	19.0	19.0		16.7		16.6	19.0
1966		18.4	18.0		17.6	16.8	16.7		15.6	15.1	14.8	14.9
1972		20.4		19.8	19.4	19.9	19.7			16.2	16.4	20.9
1973		20.9			15.5	15.3		15.1		14.5	14.5	15.1
1974		16.2	17.2	17.6	17.8	17.6		15.5			14.4	14.3
1975		17.1	18.4	18.5	16.7	15.7		15.3		14.2	14.1	14.4
1977	18.2	18.1	18.6	18.0	16.9	16.8		16.0		15.1	15.5	17.3
1979		17.8	19.4		17.6	16.2	16.2	16.4	15.5	16.5	16.6	16.6
1980	18.2	18.8	18.6	18.2	17.0	16.5		15.9 15.6		15.7	15.9 15.3	15.9 15.7
1981 1982	16.0	16.6 17.6	17.3 17.5	16.6 17.4	16.5 17.4	16.4 17.3		16.1		18.0		23.0
1983		25.4			27.1		20.3			16.9	16.2	25.0 15.9
1984	16.2	16.3	16.7		16.2	15.8	15.7			15.2	15.3	15.3
1985		15.7	17.1		15.6	15.4				15.3	15.3	15.7
1986	17.1	17.5	17.2	16.1	16.5	16.6		17.0	15.0	15.3	17.0	17.9
1987	17.7	21.6			19.0	18.2	17.6		16.3		16.8	18.4
1988	17.3	17.6	17.1		15.9	15.3		15.1	15.0	15.1	15.1	15.1
1989	15.3	17.9	18.0	17.3	15.3	15.2	15.4		15.1	15.2	15.3	15.6
1990	15.5	18.0	19.2		17.4	17.0	16.2		10.1	10.2	15.1	15.9
1991	19.5	19.9		17.9	16.6	17.7	17.2		16.6	15.8	16.7	20.0
1992		22.9				21.0		17.0		15.2	15.2	
1993		20.6	19.4	18.3	18.3	18.1				15.5	15.7	15.1
1994	15.8	17.2	16.4				16.2	16.5			16.4	17.9
1995		18.9		17.1	16.4	15.2		15.4		15.0	15.0	15.0
1996			17.9			15.6		15.1	14.9	14.5	14.6	15.0
1997	15.1	16.2	19.7		20.6	22.1		22.4		19.4	22.4	24.9
1998	25.7				21.5	17.4	16.5		15.8	15.1	15.0	15.1
1999	15.0	17.3	17.2	16.2								
2012	14.8	17.1	17.5	18.2	18.1	17.8	17.5	16.1	15.6	15.2	15.0	14.7
2013	15.5	16.1	16.0	15.0	15.6	15.4	14.7		14.4		14.8	15.3
2014	17.7	16.9	16.7	16.7	20.2	19.2	16.1	15.3	14.6	15.4	15.8	16.2
2015	17.1	18.0	18.4	18.9	20.6	20.3	18.7	17.7	17.3	17.6	18.2	19.9
2016	19.6	20.8	20.3	19.4	18.0	16.8	16.5	16.7	16.0	16.1		

Cuadro 2, página 116 de Quispe (1993).

En las Tablas 2 a 6 y en las Figuras 7 a 11, se presenta la evolución de la maduración en campos con diferentes variedades. En la Tabla 2 y en la Figura 7, se puede observar el comportamiento de la variedad H50-7209, durante el periodo de maduración de setiembre 1982 a enero 1983. En el segundo muestreo de evaluación, las cañas mostraron el incremento esperado y las temperaturas mínimas estaban dentro de los rangos normales. Sin embargo, en los siguientes muestreos, cuando las temperaturas mínimas alcanzaron los

22°C, se puede observar que los azúcares reductores (Red) se incrementaron a 3.806 y como consecuencia de ello, los valores de pol recuperable disminuyeron hasta 7.53 por ciento. En la Tabla 3 y en la Figura 8 se presenta la evolución de la maduración para la variedad H44-3098, la cual desde octubre 1982 hasta febrero 1983 estuvo expuesta a temperaturas mínimas que alcanzaron 22°C. En esta variedad, el efecto negativo fue mayor que para la variedad H50-7209. En la Tabla 4 y Figura 9 se puede observar el incremento de los reductores y la reducción de los valores de pol para la variedad H32-8560. En la Tabla 5 y Figura 10 se puede notar el comportamiento de la variedad H37-1933 y en la Tabla 6 y Figura 11 se observa el comportamiento de la variedad PCG12-745. En general, las tres últimas variedades fueron menos afectadas por las temperaturas mínimas elevadas pero su efecto negativo en todas las variedades coincide con lo afirmado por Helfgott et al (1998) quienes señalaron que los periodos de maduración se acortaron, bajó la calidad de los jugos, se acentuó la floración y se agudizaron los problemas sanitarios.

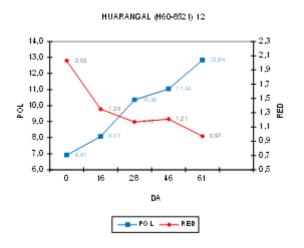


FIGURA 6. Comportamiento de la pol % y los red % en un proceso normal de maduración.

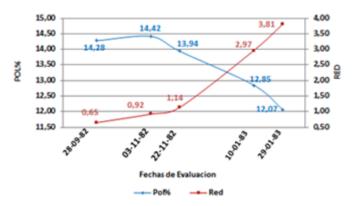


FIGURA 7. Maduración variedad H50-7209, Paramonga.

TABLA 2. Maduración variedad H50-7209, Paramonga.

Tabla 2. Maduración variedad

H50-7209, Paramonga.					
		Reductores			
Muestreo	Pol %	%			
28/09/1982	14.28	0.65			
03/11/1982	14.42	0.92			
22/11/1982	13.94	1.14			
10/01/1983	12.85	2.97			
29/01/1983	12.07	3.81			
Campo:		San			
Francisco. Edad corte:					
19.5 m. Area:					
44.97 ha.					

Para las condiciones de Paramonga, durante el periodo 1982-1983, se analizaron datos de calidad (pol) versus temperatura (campo Desempeño) y se encontró la siguiente función: pol = 14.96 – 0.148x, válida para un rango de temperaturas entre 16 y 24.4 °C. Según esta función, a incrementos unitarios de temperatura, hay una disminución de los valores de pol en 0.148 por ciento.

Evento El Niño 1997-98, en Casa Grande (valle del rio Chicama)

En la Figura 12 se puede observar que las temperaturas mínimas durante 1997 presentaron anomalías significativas. En los tres primeros meses, las anomalías fueron negativas y el resto de los meses las anomalías fueron positivas, llegando a registrarse temperaturas mínimas promedio de 5.5 °C superiores al promedio histórico, en el mes de diciembre. En la Figura 13 se observa que los siete primeros meses de 1998 continuaron con temperaturas mínimas superiores al promedio histórico, siendo enero el de mayor anomalía (5.0 °C). A partir de agosto, no se observan mayores diferencias y las temperaturas son solo ligeramente inferiores a los valores normales, variando entre 0.1 a 2 °C (Fernández, 2014).

TABLA 3. Maduración variedad H44-3098, Paramonga.

Tabla 3. Maduración variedad

H44-3098, Paramonga.				
	Redu	ctores		
Pol %	%			
10.91	0.78			
11.77	0.63			
11.94	0.63			
10.89	1.49			
11.35	1.96			
9.75	3.67			
		San		
	1	Edad		
	21.7	m.		
	Pol % 10.91 11.77 11.94 10.89 11.35	Redu Pol % 10.91 0.78 11.77 0.63 11.94 0.63 10.89 1.49 11.35 1.96 9.75 3.67		

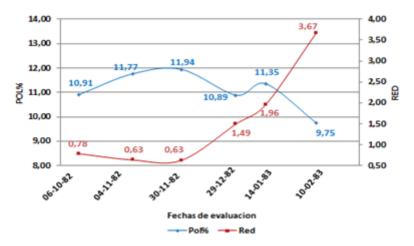


FIGURA 8. Maduración variedad H44-3098, Paramonga.

En la Figura 14 se presenta el efecto de la temperatura mínima del aire sobre la pol % en Casa Grande, donde se puede observar que los incrementos de la temperatura mínima, por encima de los valores normales, redujeron los valores de pol % (R2=0.53). Además, la presencia de lluvias provocó otros daños. Las precipitaciones más altas se registraron en febrero de 1998, totalizando 108.6 mm. Los días más lluviosos fueron el 9, 10 y 11 con 28.9, 33 y 33.7 mm, respectivamente, provocando el desborde del rio Chicama, afectando áreas de cultivo, infraestructura vial y viviendas (Fernández, 2014).

TABLA 4. Maduración, variedad H32-8560. Paramonga.

Tabla 4. Maduración, variedad H32–8560, Paramonga.

		Reductores	
Muestreo	Pol %	%	
23/11/1982	12.89	0.66	
22/12/1982	12.52	0.73	
11/01/1983	11.56	1.08	
03/02/1983	10.25	1.16	
Campo:		Menacho.	
Edad corte:	17.4 m.		
Área:		49.94 ha.	

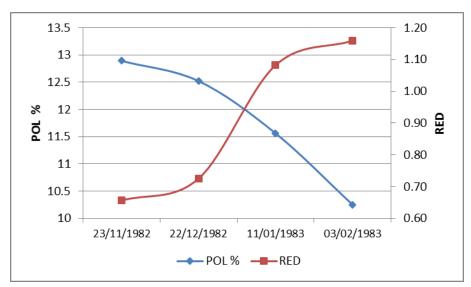


FIGURA 9. Maduración, variedad H32-8560. Paramonga.

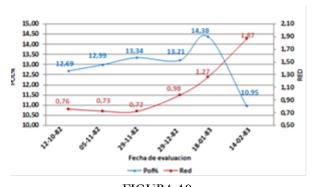


FIGURA 10. Maduración, variedad H37-1933, Paramonga.

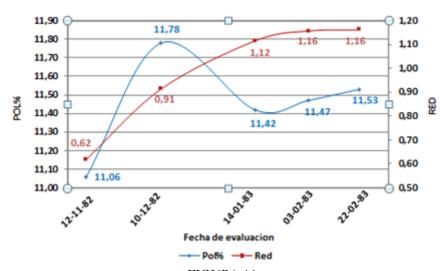


FIGURA 11. Maduración variedad PCG12-745, Paramonga.

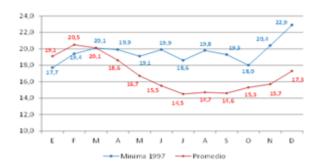


FIGURA 12. Temperaturas mínimas del aire en 1997 y promedio histórico. Casa Grande.



FIGURA 13. Temperaturas mínimas del aire en 1998 y promedio histórico. Casa Grande.

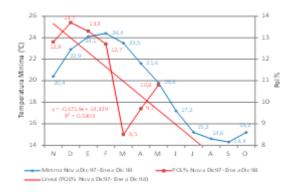


FIGURA 14. Efecto de la temperatura mínima del aire sobre la pol %. Casa Grande.

Las plagas y El Niño

En los años 1982 y 1983 el saltador de hojas *Perkinsiella saccharicida*, alcanzó niveles nunca antes observados. En Paramonga se contaron hasta más de 100 adultos por brote, aunque no se observaron síntomas de enrollamiento ni sequedad de las hojas. Sin embargo, siempre hubo presencia de "fumagina", provocada por el hongo *Capnodium* sp., en hojas inferiores, limitando el proceso de fotosíntesis (Risco, 1966). En Casa Grande, se registró en promedio 29 adultos por tallo, con "fumagina" cubriendo el 62 por ciento del área foliar.

TABLA 5. Maduración, variedad H37-1933, Paramonga.

Tabla 5. Maduración, variedad HR7-19RR Paramonga

1157-1355, Faramonga.					
		Reductores			
Muestreo	Pol %	%			
12/10/1982	12.69	0.76			
05/11/1982	12.99	0.73			
29/11/1982	13.34	0.72			
29/12/1982	13.21	0.98			
18/01/1983	14.38	1.27			
14/02/1983	10.95	1.87			
Campo:					
	_				

Lampay 1. Edad

17.8 m. corte: Área: 29.93

El barrenador de la caña Diatraea saccharalis (F.) mostró un incremento moderado en cuanto a entrenudos perforados (entre 3.1 y 20.8 por ciento) y junto con la pudrición por Fusarium, incrementaron las pérdidas de azúcar (0.014 a 0.053 por ciento). El principal agente de control de Diatraea, la mosca Billaea claripalpis, mostró una menor actividad (39.4 por ciento de parasitismo) en 1983, en comparación con el año 1982 (59.2 por ciento). Además, se observaron incrementos de los áfidos Sipha flava y Aphis sacchari, el barrenador Metamasius hemipterus y roedores (Rattus norvegicus), con 37 por ciento de entrenudos comidos.

TABLA 6. Maduración variedad PCG12-745, Pramonga.

Tabla 6. Maduración variedad

PCG12-745, Paramonga.				
		Reductores		
Muestreo	Pol %	%		
12/11/1982	11.06	0.62		
10/12/1982	11.78	0.91		
14/01/1983	11.42	1.12		
03/02/1983	11.47	1.16		
22/02/1983	11.53	1.16		
Campo:				

Desempeño. Edad

corte: 18.3 m.

Área: 29.93 ha.

Conclusiones

La presencia de temperaturas mínimas nocturnas por encima de 18°C, durante el periodo de maduración del cultivo de caña de azúcar, ocasionó una disminución en la recuperación de azúcar en las empresas azucareras Paramonga y Casa Grande, durante los fenómenos de El Niño 1982-1983 y 1997-1998. Las poblaciones del insecto Perkinsiella saccharicida mostraron un notable incremento durante el evento 1982-83 mientras que Diatraea saccharalis (F.) mostró incrementos moderados en ambos eventos.

LITERATURA CITADA

- Aguilar P. 1990. Eventos El Niño periodo 1925-1989. Boletín de Lima 70:69-84.
- Alexander A. & Samuels G. 1968. Controlled-temperature studies of growth, enzymology, and sucrose production by two sugarcane varieties in Puerto Rico. J. Agric. Univ. P.R. 52:204-217.
- Cardozo N. 2012. Modelagem da maduracao da cana-da-acucar em funcao de variaveis meteorológicas. Dissertacao (Maestrado). Escola Superior de Agricultura "Luiz de Queiroz". 205 p.
- Chaves S. 1982. La maduración, su control y la cosecha de la caña de azúcar. Seminario de Tecnología Moderna de la Caña de Azúcar. Memorias. San José, CAFESA / ATACORI / MAG/ LAICA. p: 28-40.
- Helfgott S. 2016. Características y control de la maduración. En: El Cultivo de la Caña de Azúcar en la Costa Peruana. Segunda Edición. UNALM. Lima, Perú. p. 399-435.
- Helfgott S., Cañamero M. & Vásquez A. 1998. El fenómeno de El Niño y el proceso de maduración de la caña de azúcar en la costa peruana. Seminarios Inter-Americanos de la Caña de Azúcar. Memorias: 523.
- Instituto Nacional de Estadística e Informática. 2013. Resultados Definitivos. IV Censo Nacional Agropecuario 2012 (en línea). Consultado 19 de marzo de 2018. Disponible en http://proyectos. inei.gob. pe/web/ Documentos Publicos / Resultados Finales IVCENAGRO. pdf.
- Larrahondo J. & Villegas F. 1995. Control y características de maduración. En: El Cultivo de la Caña de Azúcar en la Zona Azucarera de Colombia. CENICAÑA. Colombia. p. 297-313.
- Macharé J. y Ortlieb L. 1993. Registros del fenómeno El Niño en el Perú. Bull. Inst. fr. etudes andines 22 (1):35-52.
- Ministerio de Economía y Finanzas. 2017. Informe de actualización de proyecciones macroeconómicas 2017 (en línea). Consultado 29 de agosto de 2017. Disponible en https://www.mef.gob.pe/contenidos/pol_econ/marco_macro/informe_actualizacion_proyecciones.pdf.
- Organización Panamericana de la Salud. 2000. Fenómeno El Niño, 1997-1998. 294 p. (Serie Crónicas de Desastres, 8).
- Quispe J. 1993. Variaciones de la temperatura superficial del mar en Puerto Chicama y del índice de oscilación del sur: 1925-1992. Bull. Inst. fr. etudes andines 22(1): 111-124.
- Pollack M. 2016. Insectos plaga y roedores de la caña de azúcar en el Perú. En: El Cultivo de la Caña de Azúcar en la Costa Peruana. Segunda Edición. UNALM. Lima, Perú. p. 325-369.
- Risco S. 1966. Notas adicionales sobre el "saltahoja" de la caña de azúcar *Perkinsiella saccharicida* K. Rev. Per. de Ent. 9(1):181-185.
- Takahashi K. 2014. Variedades de El Niño. Boletín Técnico (Inst. Geofísico del Perú) 1(2):4-7.

Los derechos de autor están garantizados por la Ley del Deposito Legal del Perú: Salva y difunde el patrimonio bibliográfico del país a nivel nacional e internacional. La revista tiene: Hecho el deposito legal 2002-5474, todos los años enviamos 10 ejemplares impresos a la Biblioteca Nacional del Perú según lo indica la ley. El contendido de cada artículo es responsabilidad del o los autores y conservan su derecho de autor. CC BY-NC

