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ABSTRACT:

Oil palm plantations typically span large areas; therefore, remote sensing has become a useful tool for advanced oil palm
monitoring. This work reviews and evaluates two approaches to analyze oil palm plantations based on hyperspectral remote sensing
data: linear spectral unmixing and spectral variability. Moreover, a computational framework based on spectral unmixing for the
estimation of fractional abundances of oil palm plantations is proposed in this study. Such approach also considers the spectral
variability of hyperspectral image signatures. More specifically, the proposed computational framework modifies the linear mixing
model by introducing a weighting vector, so that the spectral bands that contribute the least to the estimation of erroneous
fractional abundances can be identified. This approach improves palm detection as it allows to differentiate them from other
materials in terms of fractional abundances. Experimental results obtained from hyperspectral remote sensing data in the range
410-990 nm show improvements of 8.18 % in User Accuracy (Uacc) in the identification of oil palms by the proposed framework
with respect to traditional unmixing methods. Thus, the proposed method achieved a 95% Uacc. This confirms the capabilities of
the proposed computational framework and facilitates the management and monitoring of large areas of oil palm plantations.

KEYWORDS: Hyperspectral, Spectral Variability, Unmixing, Endmember, Abundance, Oil palm.

RESUMEN:

Las plantaciones de palma de aceite tipicamente abarcan grandes dreas, por esto, la teledeteccion remota se ha convertido en
una herramienta 4til para el monitoreo avanzado de este cultivo. Este trabajo revisa y evaltia dos enfoques para analizar las
plantaciones de palma de aceite a partir de datos de teledeteccion remota hiperespectral: desmezclado espectral lineal y variabilidad
espectral. Ademds, se propone un marco computacional basado en el desmezclado espectral para la estimacién de las fracciones de
abundancias de cultivos de palma de aceite. Este enfoque también considera la variabilidad espectral de las firmas en las imdgenes
hiperespectrales. El marco computacional propuesto modifica el modelo de mezcla lineal mediante la introduccién de un vector
de pesos, de manera que se puedan identificar las bandas espectrales que menos contribuyen a la estimacién de fracciones de
abundancias erréneas. Este enfoque aprovecha la deteccion de los drboles de palma de aceite, ya que permite diferenciarlos de otros
materiales en términos de fracciones de abundancia. Los resultados experimentales obtenidos a partir de datos de teledeteccion
remota hiperespectral en el rango de 410-990 nm, muestran mejoras de un 8.18 % en la métrica de Precisidn del Usuario (Uacc) en
la identificacién de palmas de aceite por el marco propuesto con respecto a los métodos tradicionales de desmezclado espectral; el
método propuesto logré un 95 % de Uacc. Esto confirma las capacidades del marco computacional formulado y facilita la gestion
y el monitoreo de grandes dreas de plantaciones de palma de aceite.
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PALABRAS CLAVE: Hiperespectral, Variabilidad Espectral, Desmezclado, Firmas Puras, Estimacién de Abundancias, Palma de
Aceite.

1. INTRODUCTION

Oil palm production is one of the most important agroindustrial sectors in several countries in South-East
Asiaand Central and South America, and its crops cover large areas. According to the Statistical Information
System of the Palmero Sector (SISPA), Colombia leads the production of oil palm, with 537,177 hectares
in 2018, the second biggest crop in Colombia after coffee [1]. Bud Rot Disease (BRD) in oil palms is one of
the most common diseases in Central and South American countries [2]. Specifically, BRD outbreaks have
significantly affected the Colombian production, according to the Colombian Federation of Cultivators of
Oil Palm, (Fedepalma, Federacidn Colombiana de Cultivadores de Palma Aceitera). In Tumaco (Narifio), 30
thousand hectares were devastated, while in Puerto Wilches (Santander) and Cantagallo (Sur de Bolivar),
BRD destroyed 37 thousand hectares [3].

Hyperspectral Remote Sensing (RS) is an imaging technique that has the potential to identify several
materials of interest, such as diseased crops. This technology also provides quantitative information on
the spatial vegetation cover, species composition, and physicochemical state of different vegetations and
crops [4]. That is possible because different materials within a scene uniquely reflect, absorb, and emit
electromagnetic radiation depending on their molecular composition and texture [5]. Hyperspectral RS has
been increasingly used to address agricultural problems [6] because the agricultural practices of planting
require large areas (hundreds of hectares). Given that oil palm is a perennial tree crop, typically planted in
large areas, hyperspectral RS techniques have gained relevance to deal with said agronomic managementissue.
For instance, the diagnosis and control of diseases in oil palm crops are time-consuming and complex when
it is necessary to perform visual inspections of symptoms [7] [8] [9] [10].

Considering factors such as the large dimensions and size of hyperspectral data, several algorithms
are required to analyze the data contained in a hyperspectral image (HSI). Several processing tasks have
been developed for HSIs, such as classification, target detection, change detection, and unmixing [5].
Classification algorithms are frequently used to map scenes; thus, hyperspectral classification is considered
a labeling problem since each pixel must be labeled in accordance with its spectral signature. The main
challenge of hyperspectral classification is the low spatial resolution of HSI, which results in the strong
presence of mixed pixels. Spectral unmixing takes on great importance to overcome this challenge. Spectral
unmixing assumes that pixels are mixtures of few materials called endmembers. Unmixing consists in the
estimation of pure spectral signatures and the abundances at each pixel [11]. The linear mixing model (LMM)
is a simple but effective model extensively used for spectral unmixing. However, spectral variability still
hinders LMM’s ability to offer a high performance [12], [13]. Compared to more complex environments
(for example, urban) agricultural scenes can be considered relatively simple, with a limited number of defined
land cover classes (for example, crop, soil, weed, and shadow) and a limited variability in the number and type
of these classes per pixel. The current study presents an alternative approach to address spectral variability.
Variations in the shape and scale of pure spectral signatures are known as spectral variability, an issue that
has been identified as a source of error in the analysis and processing of HSIs [14].

In the last decade, several algorithms have been proposed in the literature to describe and address
spectral variability [12], [13]. Some authors model the variability through multiple scalars that modulate
the endmember matrix. For instance, in [15], variability can be represented by multiple variations of the
same endmembers; this information can be used to estimate the parameters that represent the statistical
distribution of a specific endmember class. In [16], the authors modify the spectral signature in an additive
way, modelling the variability as a value that adds to the endmember matrix, using a perturbed linear mixing
model (PLMM). However, a common drawback of the methods mentioned above is the larger number of
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parameters that must be adjusted. Moreover, the larger the number of land cover materials of interest, the
higher the variations of the endmembers, which indicates that the multiple representation approach entails
high computational costs. In this work, a computational framework based on weighted linear spectral mixing
is adopted with a single tuning parameter: optimization.

This paper presents a tool for oil palm mapping based on spectral unmixing and spectral variability analysis,
which allows the identification of different oil palm behaviors based on spectral information that facilitates
the management and monitoring of large oil palm plantations. Spectral variability allows the estimation of
a better abundance fraction derived from traditional LMM. This study presents a weighted LMM approach
that normalizes a spectral signature with positive effects on abundance fraction estimates.

2. METHODS

Linear spectral unmixing is a commonly adopted method to detect subpixel proportions of vegetation, soil,
and other materials in hyperspectral RS data. In this section, the proposed computational procedure is
described and summarized in Algorithm 1.

2.1 Notation and Preliminaries

In this work, vectors are represented with bold lowercase letters and the matrices, with bold uppercase

characters. The expression R i

means the space of real matrices of size ## # ##. In the vector column #
€ R ***! the element placed in the ##th position is denoted by # (4 . In the matrices, the element placed
in the ##th row and ##th column is denoted by #, ,#. Additionally, the vector located in the ##th row of
matrix # is denoted by #(,.4 .) and, in the same way, for the ##th column, be, represent by # (,,4) . Let # =
[ff- . .pr. . .pr] € R "*% the hyperspectral matrix, where ## is the number of pixels; IV, , the number of

bands; and f#: € R ***!, the ## -th spectral vector. Due to the fact that the adjacent bands of spectral images
are highly correlated, the columns of # lie in a subspace with dimension ##, such that ## # ## [17]. Then,
using the matrix form, the spectral image # can be written as the combination of a low-rank parametrization
and additive noise see (1)

F=X+0.
(1)

Where # € R 7% is the true signal of numerical rank ## and Q € R ###% is the additive noise matrix

that is assumed to be distributed as the matrix normal distribution as (2)

Q~M Ny, (O, v, I, E) o

with noise covariance ¥ € R ###, Traditionally, the noise in HSIs is modelled as additive Gaussian and
i.i.d. with covariance ¥, = o I## [18].
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2.2 Denoising

Recently, noise has been assumed to be non-iid. having a diagonal noise covariance matrix as

Z =dia( 0% - -Gib- . -GIZ%) [17] [19]. In order to reconvert the non-i.i.d. model into an i.i.d. one, Equation

(1) is rewritten as (3)

F=FE12=X+Q):21V2=X+0 (3)

Therefore, noise matrix @ is assumed to be i.i.d. in accordance with the matrix normal distribution with
noise covariance =1, . Specifically, if ixi. = /e represents the so-called Frobenius norm of the matrix #,
then, the solution to the constrained optimization problem by (4)

N

£

.
— . - _ -~ — T
X= argmin ||F- K";‘ = E B, Winy Fin,

rank (K=, me=1 (4)

Where x-stt.n) -2 7,050, is the truncated SVD of # When x is estimated from f, the true signal is x = xzv2 .
Since there is a correlation between bands, the spectral correlation can be removed successfully using multiple
linear regression by estimating the diagonal matrix # [17].

2.3 Endmember Estimation

In accordance with the LMM described in [20], it is assumed that the spectral scene, for a given pixel,
is generated by a linear combination of a small number of deterministic spectral signatures known as
endmembers. The basic vectors may be interpretable as the mixing matrix, containing the spectral signatures

of the endmembers, and a,, = [an#s 1 o angs Nevw ansts N o] L € R **las the abundance vector of the spectral
vector #,4 From (1), the matrix form of LMM is given by (5)

X=AE. Ez0A=0
- (5)

where A= [ag ... aps... ans] T € R #*##¢ is the matrix of abundances and E= [eIT- el cﬁe]T € R ¥ #7

is the matrix of endmembers. Due to physical considerations, the abundance coeflicients should satisfy the
non-negativity constraints (ANC). When the hyperspectral dataset is denoised, the proposed method only
requires the initialization of the endmember matrix #. The pure pixel-based algorithms assume the presence,
in the data, of at least one pure pixel per endmember [11]. The Vertex Component Analysis (VCA) is a pure
pixel-based algorithm that iteratively projects data onto a direction orthogonal to the subspace spanned by
the endmembers already determined [21]. However, the pure pixel assumption is a strong requirement that
may not hold in many datasets. For that purpose, the Simplex Identification via Split Augmented Lagrangian
(SISAL) method [22] is a state-of-the-art method that does not require the presence of pure pixels in the
image.
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2.4 Abundance Estimation

The unmixing procedure can be formulated as a constrained #--. norm optimization problem, in which the
observations are affected by Gaussian noise [23]. Furthermore, the abundance sum-to-one constraint (ASC)
is defined as Al 4 = 14 ; then, the optimization problem is formulated as (6). This problem is solved using the
SUnSAL TV algorithm [24]. Such formulation looks for the sparsest non-negative solution # which explains
data #, given endmembers #. However, traditional LMM approaches fail to fully account for the spectral
variability associated with spatial changes. In this work, the LMM has been extended into an augmented
linear mixing model by introducing a weighting vector introducing the weigh 7, into (6), the bands that
contribute the least to erroneous fraction estimates are prioritized, and the effect of unfavorable bands can
be mitigated.

Wy Wy
1 ) r -
min ZI1X - AE[[} + 2 z Ao, + 2z Z TV(A ()
Hy=1 fip=1 (6)

Where TV (A (.nb) ) is a vector extension of the non-isotropic TV and (A, ATV) 2 0 are regularization
parameters.

1 -r'lr|| N.l_;
min E||:i—.euz||§+ z Wi, ||A_;,1", ;.||ﬂ+ P z TV(A )
Ry=1 =1

()

Where [+..[, is the number of non-zero entries in w,» and ., is the weighted regularization parameter, i1,
commonly called the 4 “norm” (although it is not a norm).

Figure 1 provides an overview of the weighting operation. Note that, when the signatures are normalized
by the weight factor, they are very similar. The plot shows that the influence of spectral variability weight
on original signatures is more beneficial for the unmixing problem. For that reason, the weighting factor is
introduced in (6) to reduce erroneous abundances. The estimation becomes (7).

Without Scaling Scaled
1 r.‘

06 Sample 1 Sample 1 AN

0.5 Sample 2 0.8 Sample 2 I 11 ‘\
o o | I
S04 S06 | [
S93 5 Y4
=
E Eon4 Jtil'| Iu‘

0.2 i

0.1 0.2 Y

500 600 FOO  BOO 900 500 600 VOO 800 900
wavelength (nm) wavelength (nm)

FIG. 1.

Example of weighting operations. Signatures without scaling step (Left) and scaled signatures (Right).
Source: Authors’ own work.

Despite the fact that this regularizer is not convex, the corresponding function also has a simple closed
form: the so-called hard-threshold function, where hard (-, a) denotes the component-wise application of the
function Y Y1 115, In this work, the SUNSAL TV algorithm was modified [24]. In (22), the soft operator
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is changed by a weighted hard thresholding operator. Additionally, the TV regularizer term is introduced to
impose spatial consistency in hyperspectral sparse unmixing solutions.

The proposal is summarized in Algorithm 1.

Algorithm 1: Hyperspectral Unmixing

// Input parameters //

I: Input: FER HEH N1y, ## and #.

// Denoising procedure//

// (Section 2.2) //

2: #->noise_estimation(F) // Alg. 1 [17] //

3: F=rz12

. ¥ B — 5N, P ]
4. X = svd(FN,) = L5, &, B, 05T,

S: XZ)N(ZUZ

// Endmember extraction //

// (Section 2.3) //

6: s—sisal(%, n.) // Algorithm 1[22] //
// Abundance estimation //

// (Section 2.4) //

7 sy =01 x [5G,

8: W= [Wl Wn#... W##]

9:#-> modified_sunsal tv (E,)N(, w, AM1v)
// Algorithm 2 [24] //

// Output parameters //

10: Output: A € R*#% and E € R **#

3. RESULTS AND DISCUSSION

This section presents numerical results from real datasets of oil palm crops in Colombia. Matlab software was
used and all the numerical experiments were conducted on a computer with an Intel(R) Core(TM) i7-4790
CPU@3.60GHz and 32 GB of RAM running the operating system Windows 10.

3.1 Data Description

This paper uses a dataset of an oil palm plantation acquired through hyperspectral airborne remote sensing
in Colombia. The dataset was recorded and supplied by the Colombian company Quimbaya Aerial Services.
These images were acquired in the visible and near infrared (VNIR) range using a2 HySpex VNIR-1600
hyperspectral camera (Norsk Elektro Optikk AS, Norway) over oil palm crops in the southeastern region
of Colombia in 2017.

Figure 2 shows the RGB map of the study area, which is located in the Department of Caquet4, Colombia.
The study area is a 130-hectare oil palm plantation and the HSIs were acquired through nine flights lines at
an altitude of 430 m. Specifically, the dataset considered in this work has a spatial resolution of 0.6 x 0.6 m,
and a spectral resolution of 3.7 nm in the spectral range 0f 415 - 990 nm. The dimensions of the hypercube are
## =256 X 256 and ## = 160 spectral bands. Fig. 2 shows three subsections in the scene, and each subsection
includes various land cover types, e.g., oil palm plantation areas, other vegetation, bare land, buildings, and
roads, etc. The first scene exhibits three materials (Oil Palm, Oil Palm Disease, and Grass); the second scene,
four materials (Soil, Tree, Palm, and Grass); and the third scene, five materials (Roof, Soil, Grass, and Palm).
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First scene Second scene Third scene

FIG. 2.
Location of study area, Department of Caquetd, Colombia.
Source: Authors’ own work.

3.2 Experiments and Parameter Analysis

This section explores the effect of selecting the parameter #4 and the number of features ## on the
performance of the proposed method for oil palm identification. In the inference experiments, such as
unmixing, classification, and detection, the estimators have been improved when denoising techniques are
applied asa preprocessing step. Fig. 3(a) is the original noisy spectral band 160, while Figs. 3(b) and 3(c) show
the clean spectral band 160 when the rank of the matrix # is ## = 10 and ## = 20, respectively. As can be seen
in Fig. 3(d) (diagonal covariance matrix), the high noise is present in the 160 band, which can be observed
in Fig. 3(e) that the pixel in the clean dataset is smooth with respect to the original pixel in the noisy dataset.
The estimation of the number of endmembers is a critical stage in the unmixing. In this work, we consider
two of the most widely used approaches: virtual dimensionality (VD) [25], which allows some flexibility
in the estimation by having an additional input parameter that enables the control of the sensitivity of the
method, and hyperspectral signal identification with minimum error (HySime)[17], which offers advanced
features when modeling the noise present in the HSIs. The average number of endmembers estimated by
the HySime algorithm for the three scenes was 9 endmembers. However, based on knowledge of the actual
terrain and each scene used in this work, the endmembers with the greatest abundance and interest in this
study are shown (diseased oil palm, healthy oil palm, grass, soil, and roof).
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Original noisy 160-th band (a), clean band when ## = 10 (b), clean band when ## = 20 (b),
estimated diagonal covariance matrix (d), clean and noisy pixel in position (128,128) (e).

Source: Authors” own work.

The SISAL regularization parameters were set to # = 10, and the remaining parameters were set to #

=1 and # = 10 Fig. 4 shows the endmember signatures estimated by using SISAL (first column) and
VCA (second column) for each scene. Note that the results of endmembers estimated by VCA in the
three scenarios are very similar to those of SISAL. However, when abundances are estimated, the difference
between VCA and SISAL is noticeable. Figures 5 and 6 show the abundances using the proposed method
for the first and second scene, respectively, when the endmembers matrix is initialized using VCA (first row)
and SISAL (second row). In optimal conditions, the algorithm without the pure pixel assumption offers a
better performance. In the abundance results in the second row in Fig. 6, the red points indicate the oil palms
detected by the proposed method and the blue spaces, other types of objects. Note that the proposed method
achieves great oil palm identification results using SISAL, as opposed to when the endmembers are initialized
with VCA. Furthermore, Fig. 7 shows the effect of the parameter #44 on palm identification; the proposed
method is applied to the dataset with three different values of #44 = 0.025, 0.01, 0.001 and ## = 10. It can be
seen that using #44 = 0.01 yields better results than other cases.

136



HicTor VARGAS, ET AL. SPECTRAL UNMIXING APPROACH IN HYPERSPECTRAL REMOTE SENSING: A TOOL FOR OIL P...

First scene First scene
0.4 0.4
Palrm dizeaged Palm diseased
Palm Palm
_§ 0.3 Grass § 0.3 Grass
=02 = 0.
E E
w w
0.4 .
i
s00 600 To0 800 200 500 BOD 70O BOD 800
wavelength (nm) wavelength (nm)
0.4 Second scene y Second scene
Sl
Tirese
LE Tree .
E Grass E
=02 5
E E
m -]
0.1 0.1
o o . . . . .
500 600 TOO 800D 900 SO0 600 TOD  BOD 900
wavelength (nm) wavelength {nm)
Third scene Third scene
0.4
— Rl
L Tres, Griss
§ ’ e 03 Sail
2 3 Falm
g g
W n
0.1 0.1
Q L1}
500 BOD 700 800 800 500 600 700 800 900
wavelength (nm) wavelength (nm)
FIG. 4.

Endmember signatures estimated using SISAL (first column) and VCA (second column).
Source: Authors’ own work.
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FIG. 5.
Abundance maps of the first scene when matrix E is

estimated using VCA (first row) and SISAL (second row).

Source: Authors” own work.

Palm Soil

FIG. 6.
First three abundance maps of the second scene when matrix

E is estimated using VCA (first row) and SISAL (second row).

Source: Authors’ own work.
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FIG. 7.
Palm abundance maps obtained applying the proposed method and

varying # = 0.025 (first), # = 0.01 (second), and # = 0.001 (third).

Source: Authors” own work.

3.3 Comparison with other methods

In this section, the proposed framework is compared with two state-of-art unmixing methods: SUnSAL [23]
and SUnSAL TV [24]. Fig. 8 illustrates the performance of the proposed computational framework with
the third scene. Comparisons with pure pixel estimation methods were conducted, and the obtained results
shown the effectiveness of the proposed method to map oil palm plantations. It can be seen that this area
is not homogeneous. Namely, it contains objects that are not oil palm trees, i.c., buildings, other trees, and
shadows.
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Proposed Sunsal_ TV

Tree and Grass

FIG. 8.
Abundance estimation of the third scene by the proposed method (first

column), SUnSAL TV (second column), and SUnSAL (third column).

Source: Authors” own work.

Moreover, the SUnSAL and SUnSAL TV methods could merge some trees together due to the presence
of spectral variability or when the distance between them is short. In that case, the regions obtained as palms
and non-palms using the proposed method are quite evident.

In addition to that, an oil palm detection procedure was applied for evaluation purposes. After the
abundance maps of the oil palm plantation were estimated, oil palm detection was performed using the Circle

Hough Transform (CHT) algorithm [26], the Producer Accuracy (Pacc) and User Accuracy (Uacc) by (8)

T, T,
r r
JUace =
Npaim To+F (8)

Pacc =

Where ##### is the total number of palm trees in the image; ##, the true positive detection indicating the
number of detected palms trees; and F#, the false negative detection indicating the number of palm trees that

140



HicTor VABGAS, ET AL. SPECTRAL UNMIXING APPROACH IN HYPERSPECTRAL REMOTE SENSING: A TOOL FOR OIL P...

were not detected (missed). Fig. 9 shows some palm and no-palm templates highlighted with circles bythe
CHT algorithm. In the first image, the white circles represent the true location of oil palms. In the second
and third images, the white circles represent 7#, and the red circles represent F#, which are estimated from
abundance map by the proposed method and SUnSAL TV, respectively. For example, the oil palms missing
in the detection are marked with red circles. Oil palm trees can be missing from the detection because of the
presence of other objects or tree crowns close together. Table 1 illustrates the detection results using different
measurements. Note that the results suggest that the proposed method is the most promising strategy as
preprocessing step before oil palm mapping,

Ground thruth Proposed SUnSAL TV
Mpaim=| 24 Palms Te =114 Fp=6 Tp= 12 Fp=I7

FIG. 9.
Palm detection results using the CHT algorithm. Actual ground (left), abundance
map using the proposed method (middle), and using the SUnSAL TV method (right).

Source: Authors’ own work.

TABLE 1.

Detection results obtained with the proposed method and SUnSAL TV.
Method Ty Fy Pacc (%) Uace (%)
Propozed 114 3] 091.94 92.00
SUnSAL TV 112 17 20.32 85.82

Source: Authors’ own work.

4. CONCLUSIONS

This study proposed a computational framework based on spectral unmixing to estimate the abundance
fractions of oil palm plantations. Asan additional contribution, the proposed approach considers the spectral
variability of hyperspectral image signatures. The results of this study demonstrate that the proposed method
is a promising technique as a tool for oil palm mapping, and it can be used to identify and mapping different
oil palm plantations. Furthermore, an oil palm detection procedure was applied using the Circle Hough
Transform (CHT) algorithm on the estimated abundances fractions. The detection results obtained with the
proposed method, compared to a state-of-art alternative, show that the proposed approach is the most robust
and provides better results. Finally, we encourage the scientific community in Colombia to conduct future
research and develop applications using hyperspectral remote sensing, which will enable the adaptation and
exploration of techniques to extract useful information from spectral data in Colombia or tropical countries.
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