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ABSTRACT:

Spectral image clustering is an unsupervised method that identifies distributions of pixels using spectral information without
requiring a previous training stage. Sparse subspace clustering methods assume that hyperspectral images lie in the union of
multiple low-dimensional subspaces. Therefore, sparse subspace clustering assigns spectral signatures to different subspaces,
expressing each spectral signature as a sparse linear combination of all the pixels, ensuring that the non-zero elements belong to
the same class. Although such methods have achieved good accuracy for unsupervised classification of hyperspectral images, their
computational complexity becomes intractable as the number of pixels increases, i.e., when the spatial dimensions of the image
become larger. For that reason, this paper proposes to reduce the number of pixels to be classified in the hyperspectral image;
subsequently, the clustering results of the missing pixels are obtained by exploiting spatial information. Specifically, this work
proposes two methodologies to remove pixels: the first one is based on spatial blue noise distribution, which reduces the probability
of removing neighboring pixels, and the second one is a sub-sampling procedure that eliminates every two contiguous pixels,
preserving the spatial structure of the scene. The performance of the proposed spectral image clustering framework is evaluated
using three datasets, which shows that a similar accuracy is achieved when up to 50% of the pixels are removed. In addition, said
framework is up to 7.9 times faster than the classification of the complete data sets.

KEYWORDS: Spectral images, Spectral clustering, Sparse subspace clustering, Sub-sampling, Image classification.

RESUMEN:

El agrupamiento de imagenes espectrales es un método no supervisado que identifica las distribuciones de pixeles utilizando
informacidn espectral, sin necesidad de una etapa previa de entrenamiento. Los métodos basados en agrupacién de subespacio
escasos suponen que las imdgenes hiperespectrales viven en la unién de multiples subespacios de baja dimensién. Basado en esto,
la agrupacién de subespacio escasos asigna firmas espectrales a diferentes subespacios, expresando cada firma espectral como una
combinaci6n lineal escasa de todos los pixeles, garantizando que los elementos que no son cero pertenecen ala misma clase. Aunque
estos métodos han demostrado una buena precision para la clasificacién no supervisada de imdgenes hiperespectrales, a medida que
aumenta el numero de pixeles, es decir, la dimensién de la imagen es grande, la complejidad computacional se vuelve intratable.
Por este motivo, este documento propone reducir el ntimero de pixeles a clasificar en la imagen hiperespectral y, posteriormente,
los resultados del agrupamiento para los pixeles faltantes se obtienen explotando la informacién espacial. Especificamente, este
trabajo propone dos metodologias para remover los pixeles: la primera se basa en una distribucién espacial de ruido azul que reduce
la probabilidad de que se eliminen pixeles vecinos; la segunda, es un procedimiento de submuestreo que elimina cada dos pixeles
contiguos, preservando la estructura espacial de la escena. El rendimiento del algoritmo de agrupamiento de imdgenes espectrales
propuesto se evalta en tres conjuntos de datos, mostrando que se obtiene una precision similar cuando se elimina hasta la mitad
de los pixeles, ademds, es hasta 7.9 veces més rdpido en comparacion con la clasificacién de los conjuntos de datos completos.

PALABRAS CLAVE: Imégenes hiperespectrales, agrupacién espectral, agrupacion de subespacios escasos, submuestreo,
clasificacién de imagenes.
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1. INTRODUCTION

Hyperspectral images (HSIs) have become a valuable tool for monitoring the Earth surface since they provide
awealth of spectral information compared to traditional RGB images [1,2]. HSIs are commonly represented
as a 3D data cube, where two dimensions (x, y) correspond to the spatial information and the third one, to
the spectral domain (}). In the 3D cube, each spatial position is represented as a vector, known as a spectral
signature, whose values correspond to its intensity in each spectral band. Since the amount of radiation that
each material reflects, absorbs, or emits varies according to the wavelength, the spectral signature of each
pixel is used as a descriptor in a wide range of applications, such as classification [1], target detection [2], and
spectral unmixing [3] among others [4,5,6,7,8,9,10].

The classification of hyperspectral images can be defined as the process of assigning each pixel to one class.
This task is mainly carried out under supervised methods that know some spectral pixel labels which are used
in the training stage [1]. Then, in the testing process, each unknown pixel is assigned the label of the spectral
signature that presents the least spectral difference [11].

However, in some applications, the labeled samples are unavailable or difficult to acquire [12]. For that
reason, unsupervised techniques such as clustering can be an effective alternative because they group a set of
similar pixels without previous information of the data. As it is widely known, HSIs are high-dimensional
data with large spectral variability and complex structure that make the clustering problem very challenging,

To date, some clustering algorithms have been used for HSIs. Specifically, they can be divided into
four groups: (a) centroid-based clustering methods [13,14,15], (b) density-based methods [16], [17], (¢)
biological methods [18], [19], and (d) spectral-based methods [8], [20]. In general, spectral-based methods
have achieved a good and robust performance for spectral images [9]. Said methods include two main steps:
(i) building an adjacency matrix that describes the relationship between the spectral pixels and, then, (ii)
applying centroid-based clustering methods to the Laplacian matrix formed by the adjacency matrix to
obtain the clustering results.

Assuming that spectral signatures, which correspond to aland cover class, lie in the same low-dimensional
subspace, a known spectral-based method called sparse subspace clustering (SSC) builds the adjacency matrix
by expressing each spectral pixel as a linear combination of all spectral signatures of the scene. In addition,
such solution is restricted to be sparse, which guarantees that the spectral signatures that correspond to those
sparse coeflicients belong to the same subspace[8]. However, in the traditional SSC scheme, only spectral
information is used to discriminate the different classes, thus ignoring the rich spatial information contained
in the HSIs. To overcome those limitations, different methods have been proposed to incorporate a 2D or
3D spatial regularizer into the SSC algorithm [9], [21,22,23]. Said methods use 2D/3D smoothing filters in
a reshaped coefficient matrix based on the fact that adjacent coefhicients generally belong to the same class.
Although those methods have shown good performance for HSIs, when the number of points increases (i.c.,
the spatial dimension of the image is large), they become computationally intractable [22], [24].

For that reason, this work proposes to remove some spectral pixels from the image in order to reduce
the number of points to classify. Consequently, the computational time of the clustering task is reduced.
Afterward, the clustering results of the incomplete pixels are assigned using a kind of filter that selects the
predominant label in a given neighborhood. Specifically, this work proposes two schemes to remove some
spectral pixels. The first one is based on spatial blue noise coding [22,25], and it allows uniform elimination
in the spatial dimensions of the scene, avoiding clusters of removed pixels, which are properties desired in the
filtering step. The second one is a sub-sampling scheme that eliminates every two contiguous pixels preserving
the spatial structure of the images, which allows the use of SSC-based methods that employ the spatial
information to improve the clustering result [21], [26]. The performance of the spectral image clustering
framework proposed in this study is evaluated using three datasets, and a similar accuracy is obtained when
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up to 50% of the pixels are removed compared with the full data using the proposed designs. In addition, the
proposed scheme is up to 7.9 times faster classifying the data sets compared to the full data sets.

2. SPARSE SUBSPACE CLUSTERING FOR HYPERSPECTRAL IMAGES

Let FE REMN e 4 hyperspectral image reorganized as F=[f(l),. ], where M and N represent the

spatial dimensions, L stands for the number of spectral bands, and f° ® € REe RL denotes the spectral

signature of the 4 -th pixel. The SSC method assumes that the HSIs lie in the union of 7 low-dimensional
subspaces UL_,S; such that each subspace corresponds to a certain land-cover class [26]. In order to group
spectral pixels, SSC assumes that each spectral signature f(k) that corresponds to a specific land-cover class
belongs to the same independent subspace [9]. Specifically, first, the SSC builds a sparse similarity matrix,
which describes the relationships between pixels exploiting the fact that each spectral signature is represented

as a linear or affine combination of few pixels in the same subspace [8]. This affinity matrix is built using

the coefficient matrix C € RMNxMN

follows (1):

obtained from the sparse optimization problem, which is modeled as

in ||C A Z||2
min ||Cl[o + 12117
s.t. F=FC+Z, diag(C)=0,CT1=1 (1)

where, ¢ -norm is the number of nonzero elements of C; Z, the error matrix; and A, a regularization
parameter for the sparsity coefficient and noise level trade-off. The constraint diag ( C') =0is used to eliminate
the trivial ambiguity where a point is represented by itself, and the constraint CT 1=1 ensures that it can work
even in case of affine subspaces [8], [24]. After solving (1), the k-th column of C, which corresponds to a data
point f ) that lies in a d; dimensional subspace S;, is expected to have only d; non-zero elements. However,
since ¢-norm is an NP-hard problem, the relaxed ¢,-norm is usually adopted to relax the problem as (2):

in ||C +’:L Z||?
min [|C[[s +11Z][¢
s.t. F=FC+ Z, diag(€) =0, "1 =1 @)

where, the ¢,-norm promotes sparsity, i.c., each spectral signature is represented by few pixels [8]. This
formulation can be efficiently solved using the alternating direction method of multipliers (ADMM) with
a computational complexity O(L(MN)Z) [27]. After solving (2), each column of C is normalized to better
deal with different norms of the spectral signatures as ¢; = ¢;/llc|| . Subsequently, C is used to construct
the non-negative similarity matrix / as (3):

w=|c|+|c|T
cl+1cl "

where, W;; represents the similarity between the i—th and j—th pixels. Finally, to obtain the
segmentation of the data into different subspaces, a weighted graph G =(%,6,/7) is built, where v denotes the
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set of NM nodes of the graph that correspond to NM pixels of the image; € # vxv, the set of edges between
the node; and W € RMNMN g e weights of the edges. Then, the data is clustered by applying spectral

clustering methods [8,28] over the graph G which, naively implemented, has a computational complexity

O(MN)) [8].

3. SPARSE SUBSPACE CLUSTERING FOR HYPERSPECTRAL IMAGES WITH
INCOMPLETE PIXELS

Note that this sparse representation builds the C matrix using only spectral information, i.c., the sparse
representation of the k-#b pixel is the same regardless of its spatial position. Therefore, considering that land-
cover materials are distributed homogeneously (i.e., contiguous pixels in a spectral image generally belong
to the same material), different constraints have been applied to C in order to incorporate the spatial
information of the scene [9], [21,22,23], [26], [29]. Specifically, different smoothing filters are applied at
each iteration of the ADMM algorithm to a reshaped version of the C matrix in order to obtain the same
value in a neighborhood of pixels [9], [21,22,23]. Furthermore, the use of smoothing operators on the image
has been explored for SSC [23], [29]. Although said method has shown good results in non-supervised
classification tasks, when the spatial resolution of those images increases, they become computationally
intractable [24].

For that reason, we propose to remove certain pixels from the image before solving step (2) and the spectral
clustering method in order to reduce the computational time of those steps. Mathematically, the incomplete
image can be represented as (4):

F = FH,
(4)

I}MNX P

where, F'# is the incomplete image, and H & {0, is the selecting matrix that has only one non-

zero value per row, with P as the number of preserved pixels. Therefore, the SSC model is applied to obtain
the clustering results for those pixels. This segmentation can be represented in s € RP which is a vector with
the labels of the preserved pixels. In order to obtain the incomplete labels, let § = Hs be a vector where the

missing positions are present. Then, this vector is reorganized in a matrix S € RM*N (see Fig. 1), where the
incomplete labels are obtained applying a kind of filter that selects the predominant label in a given window;
in this case, of a 3 x3 size. Specifically, when y={1, ...,z} denotes the set of 1 class labels, those missing values

are given by (5):

x+|w /2] [w/2]

§,y = argmax Z Z &(Sxy X),
o ): -

= (L} j:f—lurl."zj ji= :'I.'—I_'H-‘_."-EJ (5)

where w = 3 is the size of the window; #.#, the floor function; and &, the Kronecker delta function, which
is 1 if the arguments are equal and 0 otherwise.

Fig. 1 represents the step-by-step of the proposed method and Algorithm 1 summarizes the computations
described above. Note that the quality of the proposed methodology mainly depends on the structure of
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matrix . For that reason, the two following sub-sections propose different strategies to design selecting
matrix / in an efficient way.

min ||Cl|; +

A
mig 5 1213

| 2

. = 1. F=FC+Z |—

ding{C) =0, C"1 =1,

Optimization model Sparee coefficient

graph

N
Full-data

L

Similary graph

Results

FIG. 1.
Visual step-by-step process of the sparse subspace clustering for hyperspectral
images with incomplete pixels showing the full data in a 3D structure.

Source: Authors’ own work.

Algorithm 1: Spectral Subspace Clustering for incomplete hyperspectral image
Input: F,n, A, H, p

Design matrix H, holding p pixel positions

Extract the selected pixels as F #=HF.

Solve the sparse optimization problem in (2) with the incomplete image F #.
Normalize the columns of C as ¢j=¢j /|| ¢ ||

Construct the similarity graph representing the data point W= |C| + |C|" -
Apply spectral clustering as in [28] to the similarity graph.
Complete the non-labeled pixels using a 3 x3 filter for the segmentation in step 6

NN W R WD =

Output: Segmentation of the data §
3.1 Design of the Selecting Matrix Based on Spatial Blue Noise Coding

mportant design parameter of the selection matrix is the number of pixels that will be removed. Therefore,
let {, be the preservation ratio defined as (6):

M N

& = %Z Z{H):’.j = %

i=1 j=1

()

For instance, {; = 0.2 means that 20% of the pixels would be preserved and 80% of the pixels would be
removed after applying (4). A conventional selection matrix uses random entries; however, random binary
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codes tend to form clusters. Figure 2 (a) shows an example of a random matrix with {; = 0.75, where matrix
H isrepresented asan M x N matrix where white spaces mark the pixels to remove, and black represents the
pixels to keep. Note that the random matrix tends to form clusters, which leads to a negative impact when
the non-labeled pixels in the incomplete image are assigned using the strategy presented in Section 3. For
that reason, a blue noise pixel distribution is used in order to reduce clusters and achieve uniform selected
pixels, as shown in Fig. 2. (b) [25].

(a) Random (b) Blue noisc

(c) Sub-sampling

FIG. 2.
Visual representation of selecting matrix H for (a) random distribution and
(b) blue noise distribution with {, = 0.75, and ¢) sub-sampling with {, = 0.5.

Source: Authors’ own work.

3.2 Design of the Selecting Matrix-Based Sub-sampling

The random and spatial blue noise criteria to remove pixels do not preserve the spatial distribution of the
scene after the reorganization in (4) because more rows than columns, or vice versa, can be eliminated.
Therefore, SSC-based methods that incorporate the spatial information cannot be directly applied to F #.
For that reason, a sub-sampling scheme that eliminates every two contiguous pixels and preserved the spatial
structure of the images is proposed. Specifically, matrix A has the structure (7).
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4. SIMULATIONS AND RESULTS

In this section, the performance of the proposed hyperspectral image clustering framework is evaluated.
The clustering result of applying Algorithm 1 to the incomplete image is denoted as IP. The spectral Indian
Pines dataset and two regions of Pavia University data set were used for these experiments. The results
presented here are the average of 10 trial runs. Overall accuracy (Acc_Q), average accuracy (Acc_A), and
Kappa coeflicients were used as quantitative performance metrics. In the tables, the metric used for each land
cover class is Accuracy. All the simulations were implemented in Matlab 2017a on an Intel Core i7 3.41-Ghz
CPU with 32 GB of RAM. In all the tables, the optimal value of each row is shown in bold.

4.1 Spectral image datasets

The Indian Pines hyperspectral data set, sensed by the AVIRIS sensor, has 145 x 145 pixels and 224
spectral bands [30]. A total of 20 water absorption and noisy bands were removed, thus leaving 200 spectral
features for the experiments. A known sub-image of the Indian Pines data set was used in the test; its spatial
dimensions are 70 x 70 pixels, and it includes four main-land cover classes: corn-no-till, grass, soybeans-
minimum-till, and soybeans-no-till [9].

The second scene, of Pavia University, was acquired by the Reflective Optics System Imaging Spectrometer
(ROSIS) airborne sensor over an urban area of Pavia, Northern Italy. The size of the image is 610 340 pixels
and 103 spectral bands [9]. For the tests, the authors selected a typical area of a size of 140 80 pixels containing
eight main land-cover classes: asphalt, meadows, trees, metal sheet, bare soil, bitumen, bricks, and shadows.
Furthermore, a different region of ROSIS Pavia University data set was also used; its size is 64 64 pixels, and
it contains four land-cover classes: asphalt, meadows, trees, and bricks.

The number of classes for each data set was manually fixed as an input for Algorithm 1. Additionally,
parameter A was chosen applying the formulation in [9] as (8):

A = —,where y = minmax |fIf],
¥ K k) | k _.I| ®)

where, y is a parameter that directly depends on the spectral image that is used and f is a tunable parameter
that was fixed for all the experiments at f=1000.

4.2 Quality of classification results vs number of eliminated pixels

The first test was performed to show the quality of the results and the computational time using the number
of eliminated pixels by means of the preservation ratio ({;). For that purpose, the proposed methods were
compared with random elimination and the complete image. The Indian Pines and Pavia University data
tests were used in this test. Figure 3 and 4 show the general accuracy and the computational time obtained
with the different configurations for the two data sets, respectively. Note that, in the sub-sampling method,
the preservation ratio is fixed at {; = 0.5 and, with the full image, it is {; = 1. It can be observed that, when
the number of preserved pixels increases, the quality of the classification by the designed and randomized
elimination schemes improves. However, the designed blue noise scheme outperforms the random selection
matrix with {; <0.5 for both data sets. In addition, the proposed methods maintain a performance comparable
to the full data when more than half of the pixels are conserved. Fig. 3 and 4 also show the time spent applying
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different preservation ratios and a drastic increase in computational time as the number of removed pixels
decreases.

2 ool
£ %)
o —3— Random
f - —3— Blue noise
E | o-- Sub-sampling
5 = Full-data
0z |:|.3 C'-'-l EI5 ':'-En |:'-."' . G-E ﬂlﬂ
- |
ek
2|
8 200
E 150
%ﬂﬂ:ﬁ
=y PRI SOOI SORTNY SO vk IS ISP RO
g |
&

FIG. 3.
Preservation ratio versus (top) overall accuracy of the clustering

result and (bottom) computational time for the Indian Pines data set.
Source: Authors’ own work.
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FIG. 4.

Preservation ratio versus (top) overall accuracy of the clustering result
and (bottom) computational time for the Pavia University data set.

Source: Authors’ own work.
4.3 Advantages of the Sub-sampling scheme

The second test shows the advantages of the sub-sampling method because SSC with spatial regularizer (SSC-
SR) algorithms can be used. Therefore, the SSC with a 3D spatial regularizer (SSC-3DSR) was employed
for this test [22]. Figure 5 and Table 1 show the detailed results of the classification and computational
time, respectively, for the Indian Pines data set. Note that the SSC-3DSR and SSC-3DSR (IP) obtained
a better clustering accuracy. In addition, the proposed approach obtained clustering results comparable to
the classification of the full data by the SSC and SSC-3DSR methods. Nevertheless, the proposed method
reduces the computational time by 83.65% and 83.23% compared to SSC and SSC-3DSR, respectively.
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B Unlabeled
B Com-no-till

B Grass

| Soybeans-min-till L8
Bl Sovbeans-no-till "‘

(d)
FIG. 5.

Visual clustering results on AVIRIS Indian Pines image: (a) ground
truth, (b) SSC, (c) SSC (IP), (d) SSC-3DSR, and (e) SSC-3DSR (IP).

Source: Authors” own work.

TABLE 1.
Clustering results for the AVIRIS Indian Pines Image.

Class S8C 33C (IP) SS8C-3DSR S5C.3DSR (1P
Corn-noe-till 49.86 40.50 52.48 57.51
Grass 98.60 9707 100 D972
Soybeans-no-till 70.63 G2 84 73.22 G2.70
Sovbeans-minimum-till 59.23 70.49 49.73 68.39
Ace O 62.62 63.21 60.47 67.30
Ace A 60,35 67.90 68.95 72.08
Kappa 0.4758 0.4715 0.4551 0.5364
Time [g] 283.88 46.40 179.13 30.03

Source: Authors’ own work.

Furthermore, Figure 6 and Table 2 show the visual and numerical results of the first region of the
Pavia University dataset in terms of classification accuracy. For this dataset, the best result is achieved
by the SSC-3DSR without the proposed subsampling method. Moreover, the proposed scheme provides
the shortest classification time, thus maintaining a good performance. Specifically, it solved the clustering
problem 6.11 times faster than the other methods.

16
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B Unlabeled

Asphalt [l Bare soil .
Bl Meadows I Bitumen g
B Trces Ml Bricks

[ IMetal sheet ll Shadows ::'Ir, -

FIG. 6.

Visual clustering results on ROSIS Pavia University image: (a) ground
truth, (b) SSC, (c) SSC (IP), (d) SSC-3DSR, and (¢) SSC-3DSR (IP).

Source: Authors’ own work.

TABLE 2.

Clustering results for the ROSIS Pavia University image.
Class S3C SSC (IP) SSC-3DSR SSC-3DSR (IP)
Asphalt 0 57.49 ] 0
Meadows 31.67 61.77 91.76 55.15
Trees 100 8477 100 84.62
Metal sheet 98 .68 89.3 100 97.75
Bare =so1l 35.09 72.54 53.80 6257
Bitumen 892.95 T8.15 98.62 94.49
Bricks G627 T7.29 99.20 96.39
Shadows 98.45 90,588 100 100
Ace O 72.75 73.73 89.72 8217
Acc A 655.51 76.20 80.42 73.62
Kappa 0.6452 0.6944 0.8653 0.7670
Time [s] 5214.8 6G57.54 14646.9 321.28

Source: Authors’ own work.

Finally, the classification performance achieved for the other region of the Pavia University dataset is
shown in Fig. 7, and the quantitative results are presented in Table 3. Note that the quality is preserved, but
our method is 5 times faster for this subregion of Pavia University.

17
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Bl Uniabeled
[ Asphalt
B Meadows
B Trees
Il Bricks

(d)

FIG. 7.
Visual clustering results for a region of Pavia University image: (a) ground

truth, (b) SSC, (c) SSC (IP), (d) SSC-3DSR, and () SSC-3DSR (IP).

Source: Authors” own work.

TABLE 3.
Clustering results for a region of Pavia University image.

Class 85C SSC (1P SS5C.3DSR S8C.3DSR (IFP)
Asphalt 100 100 100 100
Meadows 98.44 95.02 96.26 98.44
Trees 91.08 95.09 98.73 97.45
Bricks 100 100 090.49 100
Ace O 98.48 94.48 98.72 99.28
Ace_ A 07.38 098.28 98.62 98.97
Kappa 0.0979 0.0979 0.0982 0.9901
Time [s] 232.02 39.79 135.33 27.15

Source: Authors’ own work.

5. CONCLUSIONS

A method to reduce the computational time of sparse subspace clustering for hyperspectral images was
proposed in this work. Such scheme is based on the fact that some spectral pixels can be omitted in the
clustering steps. Therefore, the clustering of the removed pixels is completed using a special filter that selects
the most frequent value in a given neighborhood. Specifically, this work proposed two schemes to remove
pixels. One is based on spatial uniform blue noise coding, and the other is a sub-sampling of every two pixels
that preserves the spatial structure of the scene. In general, the results for three different datasets show that
the proposed clustering achieves similar accuracy, but it is up to 7.9 times faster than the other methods.
However, removing some pixels can sharply reduce classification accuracy in some images, especially when
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there are few pixels per class. Therefore, future work includes grouping pixels according to the spatial
structure of the scene instead of eliminating them.
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