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Abstract:

Classical image segmentation algorithms exploit the detection of similarities and discontinuities of different visual cues to define
and differentiate multiple regions of interest in images. However, due to the high variability and uncertainty of image data,
producing accurate results is difficult. In other words, segmentation based just on color is oen insufficient for a large percentage
of real-life scenes. is work presents a novel multi-modal segmentation strategy that integrates depth and appearance cues from
RGB-D images by building a hierarchical region-based representation, i.e., a multi-modal segmentation tree (MM-tree). For this
purpose, RGB-D image pairs are represented in a complementary fashion by different segmentation maps. Based on color images,
a color segmentation tree (C-tree) is created to obtain segmented and over-segmented maps. From depth images, two independent
segmentation maps are derived by computing planar and 3D edge primitives. en, an iterative region merging process can
be used to locally group the previously obtained maps into the MM-tree. Finally, the top emerging MM-tree level coherently
integrates the available information from depth and appearance maps. e experiments were conducted using the NYU-Depth V2
RGB-D dataset, which demonstrated the competitive results of our strategy compared to state-of-the-art segmentation methods.
Specifically, using test images, our method reached average scores of 0.56 in Segmentation Covering and 2.13 in Variation of
Information.
Keywords: Image segmentation, over-segmentation, RGB-D images, depth information, multi-modal segmentation.

Resumen:

Los algoritmos clásicos de segmentación de imágenes explotan la detección de similitudes y discontinuidades en diferentes señales
visuales, para definir regiones de interés en imágenes. Sin embargo, debido a la alta variabilidad e incertidumbre en los datos de
imagen, se dificulta generar resultados acertados. En otras palabras, la segmentación basada solo en color a menudo no es suficiente
para un gran porcentaje de escenas reales. Este trabajo presenta una nueva estrategia de segmentación multi-modal que integra
señales de profundidad y apariencia desde imágenes RGB-D, por medio de una representación jerárquica basada en regiones, es
decir, un árbol de segmentación multi-modal (MM-tree). Para ello, la imagen RGB-D es descrita de manera complementaria por
diferentes mapas de segmentación. A partir de la imagen de color, se implementa un árbol de segmentación de color (C-tree) para
obtener mapas de segmentación y sobre-segmentación. Desde de la imagen de profundidad, se derivan dos mapas de segmentación
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independientes, los cuales se basan en el cálculo de primitivas de planos y de bordes 3D. Seguidamente, un proceso de fusión
jerárquico de regiones permite agrupar de manera local los mapas obtenidos anteriormente en el MM-tree. Por último, el nivel
superior emergente del MM-tree integra coherentemente la información disponible en los mapas de profundidad y apariencia. Los
experimentos se realizaron con el conjunto de imágenes RGB-D del NYU-Depth V2, evidenciando resultados competitivos, con
respecto a los métodos de segmentación del estado del arte. Específicamente, en las imágenes de prueba, se obtuvieron puntajes
promedio de 0.56 en la medida de Segmentation Covering y 2.13 en Variation of Information.
Palabras clave: Segmentación de imágenes, sobre-segmentación, imágenes RGB-D, información de profundidad,
segmentación multi-modal.

1. INTRODUCTION

Segmentation is a well-known, challenging problem in computer vision. State-of-the-art research has
traditionally tackled this problem using appearance data and analytical models for the integration of global
and local color cues in order to define object boundaries [1], [2].

Nonetheless, the performance of these approaches remains limited because of the diversity and ambiguity
of natural images.

Typical segmentation, therefore, oen results in either over-segmented (the image is divided into too many
regions) or under-segmented scenes (too few regions), as illustrated in Fig. 1.

FIG. 1.
Under- and over-segmentation.

(a) Segmentation using the superpixel graph algorithm in [7]; in this case, the algorithm fails to differentiate the
curtain from under the sink cabinet, clearly because of its close color similarity. (b) Segmentation by statistical region

merging [8], where color and light variations cause a noticeable over-segmentation of the wall and the blanket.
Source: Created by the authors.

Recently, the emergence of RGB-D cameras has improved the 3D geometry analysis of indoor scenarios
by capturing depth information [3]. is knowledge enriches and complements visual cues by enabling
the grouping of coherent regions from structural 3D data. Several strategies have taken advantage of
depth geometry for segmentation applications [4]–[6]; however, merging visual and geometrical cues in
such methods requires the tuning of a large number of internal parameters that increase computational
complexity.

For instance, a volumetric superpixel representation of target images was computed in [4], from which
a final segmentation was obtained by merging regions based on similarity levels. e NYU-Depth V2
(NYUD2) dataset was implemented in that study, but with a large collection of RGB-D images that capture
diverse indoor scenes.
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Alternatively, to capture a variety of color and depth features, kernel descriptors have been used on
different over-segmentations [5], followed by a region grouping through a Markov Random Field context
model.

eir representative results were outperformed in [6], which generalized the hierarchical appearance-
based segmentation in [1], where color, texture and 3D gradients were combined in different scales. In such
study, semantic segmentation is also performed using a machine learning algorithm that classifies the regions
of images in the NYUD2 dataset into 40 dominant object categories [7], [8].

Other approaches propose to cluster RGB-D data with a subsequent globally-optimal segmentation
applying graph theory [9],  [10]. ese methods compute joint color and 3D features, which make them
highly dependent on the calibration that matches both data types. Despite several advances in multi-modal
segmentation aimed at the integration of depth maps, the use of these complementary sources remains
challenging due to missing correspondences between depth points and RGB pixels, oen produced by
multiple reflections, transparent objects, scattering, and occlusions [11], [12]. In general, multi-modal
segmentation should be completed independently since fusing color and depth information from low-level
perspectives might impose additional requirements on the registration and coherence of scene pixels.

In addition to classical schemes, learning-based methods have become much more popular in recent years
due to their improved performance [13]–[15].

eir main limitation is the extensive need of massive amounts of labeled data to achieve proper object
modeling. Furthermore, such strategies train closed models with a lot of hyper-parameters linked to the
source data format, thus limiting their flexibility to incorporate new segmentation cues. Moreover, learning-
based segmentation commonly addresses the problem from a higher level, in which a category object
prediction is the most relevant task.

In contrast, in this work, we are interested in finding region proposals by explicit boundary integration of
both depth and appearance sources of information, which does not require intense training procedures. It
is important to note, however, that such segmentation results are commonly used as input of learning-based
methods, which can perform object detection and classification based on multiple image segments. erefore,
throughout this paper, we do not consider a comparison of our method with learning-based methods, but
we do highlight the importance of generating good region proposals to follow subsequent steps of semantic
image understanding. For a more detailed discussion on learning-based methods, see [16].

is paper presents a multi-modal segmentation framework that integrates independent appearance and
depth segmentation maps in a multi-modal segmentation tree (MM-Tree) by means of hierarchical region
merging process [17].

e principal contribution is the definition of a coherency term that enables the consensus merging of
color and depth information into the MR-tree structure. In contrast to previous approaches, we start the
segmentation pipeline by processing both color and depth channels separately.

On the one hand, a color segmentation tree (C-tree) allowed us to obtain two appearance-based
segmentation maps. On the other hand, we computed planar and 3D edge segmentation maps only
from depth data in order to encode geometrical object information, thus achieving a better global shape
description. en, by building the proposed MM-tree representation, independent segmentation maps can
be hierarchically merged following a general agreement metric between segmented regions. Such process is
carried out iteratively, thus enabling us to generate different tree levels that integrate irregular shapes with
semantic object coherency. In particular, a higher confidence level was assigned to depth maps because of
their robustness in describing the global shape of objects, while the appearance maps are mostly useful to
locally regularize the contours of segmented regions. As a result, the top level of the MM-tree hierarchy
recovers and coherently integrates the available information from each color and depth channel in RGB-D
images, allowing a more tractable analysis of such multi-modal and independent sources. An evaluation of
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our approach using the public NYUD2 dataset [4] shows its competitive performance in a wide range of
scenes, outperforming state-of-the-art color segmentation approaches.

2. PROPOSED APPROACH

In this work, we present a multi-modal strategy to segment scene regions by integrating independent
geometrical depth and appearance maps into a multi-modal tree structure, namely, the MM-tree.

e general pipeline we propose is illustrated in Fig. 2. In it, part subfigure (a) shows the color-based tree
representation (C-tree) that was implemented to manage different granularity scales from color space. From
this C-tree, a first over-segmented map (C-over-segmentation) was generated as basis map for the region
merging, that is, a primary layer. A more compact appearance segmentation was also obtained as support
layer (C-segmentation) for further fusion support of the color space. Regarding depth information, Fig. 2 b)
presents the main steps to generate the geometrical depth maps. Here, conventional pre-processing steps were
followed to align color and depth data and generate 3D point clouds [18]. Subsequently, two independent
support layers were obtained: (1) a 3D-edge segmentation layer and (2) a planar segmentation layer. en,
the proposed MM-tree was built from such primary and support layers, as shown in Fig. 2 c).

FIG. 2.
Workflow of the proposed multi-modal segmentation.

(a) Color segmentation tree: C-tree (section 2.1). (b) Geometrical depth maps (section 2.2). (c) Multi-modal
segmentation tree: MM-tree (section 2.3). Different segmentations are obtained from depth and color data. is

information is incorporated as support layers into a multi-modal tree structure that starts from an over-segmented
image in color space, that is, the primary layer. A final segmentation is obtained from the last MM-tree level.

Source: Created by the authors.
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is computation allows us to iteratively fuse segmentation maps from the proposed color and depth
layers. e process is done by merging adjacent regions on the primary layer applying a similarity support
layer criterion [17]. e computations of the primary and support segmentation layers, as well as the MM-
tree structure, are described individually in the following subsections.

2.1. Color Segmentation Tree: C-tree

In this study, a first pair of segmentation maps are obtained from color cues by using the widely recognized
hierarchical scheme in [1]. Such approach mainly consists in the combination of two components: the Global
Probability Boundaries (gPb) algorithm [19] and the Oriented Watershed Transform and Ultrametric
Contour Map (OWT-UCM) framework [20]. e gPb algorithm is basically a contour detector that
exploits a multi-scale image representation from brightness, color, and texture. e OWT-UCM framework
transforms any contour signal into a hierarchy of regions while preserving contour quality. Each region
has an associated relevance according to the bounds of the weighted edges. From such representation, we
can build an appearance-based segmentation tree with l levels associated to the prevalence of the image
edges. erefore, several maps with different granularities can be generated by changing the value of l In our
pipeline, such tree is called the C-tree (see Fig. 2 (a)), from which two outputs are computed: (1) an over-
segmented map, namely C-over-segmentation, i.e., the predetermined primary layer of the proposed MM-
tree, and (2) a typical color segmentation map, referred to as C-segmentation, which is used as a supporting
layer of he proposed MM-tree.

e C-over-segmentation layer is the most granular map, considered as a primary layer due to its role as
the first level of the MM-tree, which can initialize the region merging process with many fusion possibilities
(see Fig. 2 (c)). In turn, the C-segmentation layer, with considerably fewer regions, introduces an additional
support layer to lead the regional agreement alongside the proposed depth maps (see Fig. 2 (b)). For the sake
of simplicity, throughout this paper, we will just adopt the gPb term when referring to the whole gPb-OWT-
UCM scheme [1], hereaer referred to as the gPb algorithm.

2.2. Geometric Depth Maps

As complementary information, we considered depth primitives computed from the projected 3D point
distribution of the depth image, namely, the 3D point cloud [18]. Specifically, two different segmentations
based on 3D-gradients and extracted planar surfaces were considered as support layers. e description of
such layers is presented in the next subsections.

2.2.1. 3D-edge Segmentation

Edge information was used to describe 3D discontinuities and changes in surface orientations. In this study,
a coarse geometrical scene segmentation was achieved by firstly computing 3D gradients from the 3D point
cloud, as shown in Fig. 2 (b). For this purpose, we implemented the approximated model of 3D-edge
detection proposed in [6]. Hence, we identified three types of contour signals: (1) a depth gradient DG,
which represents the presence of depth discontinuities; (2) a convex normal gradient NG+ , which captures
if the surface bends outward at a given point in a given direction; and (3) a concave normal gradient NG- ,
capturing if the surface bends inward. In the next step, in order to generate a compact representation by a
general contour signal, we defined a simple addition of the three gradient cues as: G3D = DG + NG+  + NG-.
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Fig. 3 is a set of examples of these types of gradients. Subsequently, by using the OWT-UCM framework
[20] (see section 2.1), which works on any contour signal, we obtained a depth segmentation tree from the
general 3D gradient G3D.  Such tree yields different 3D-edge segmentation resolutions according to a tree
level K3D  ∈ [0, 1]. In this paper, K_3D was set experimentally (see section 3.3).

FIG. 3.
Gradients from depth map.

(a) Original image. (b) Depth gradient. (c) Convex normal gradient. (d) Concave normal gradient. (e) Sum of gradients.
Source: Created by the authors.

2.2.2. Planar Segmentation

A planar surface representation [21], [22] was also considered in this study to complement the 3D structure
description from 3D edges. is representation can be used to code geometrical planes into a segmentation
input layer of the MM-tree process to better describe different scene perspectives. For that purpose, the
algorithm starts with a fully dense graph representation that splits the 3D point cloud into uniforms
partitions. en, graph nodes are clustered to obtain . planar regions {P1, P2, …,Pk}. An agglomerative and
hierarchical clustering (PAHC) [21] machinery then iteratively finds the best planes that fit the scene by
minimizing the mean squared error between points. Such regions are merged with neighbors that satisfy the
MSE criteria. Finally, a pixel-wise region growing is performed to refine the boundaries of the clustered plane
regions. e PAHC strategy is robust for detecting planes in diverse scenarios from different perspectives
and with important object variations. Besides, such strategy is computationally efficient, achieving real-time
performance with remarkable accuracy in the state-of-the-art. is planar representation is fundamental in
the proposed approach, providing complementary information that allows the algorithm to differentiate
objects according to the perspective of the shot.

2.3 Multi-modal Segmentation Tree: MM-tree

In this paper, we propose a multi-modal segmentation tree (MM-tree) that leverages depth and appearance
segmentation maps through a hierarchical region merging step (HRM) [17]. e process is illustrated in
Fig. 4. e HRM starts from the C-over-segmentation (section 2.1) as a primary layer of the MM-tree,
represented by L0={R1,R2, …,Ri,Rj, …, Rn } with n disjoint regions. Each one of these regions is a set of
neighbor pixels with shared similarities in visual cues, such as color, brightness, and texture. Additionally, we
defined a set of supporting layers Ls (*) as follows: (1) C-segmentation (section 2.1) as L1 (C) , (2) 3D-edge
segmentation (section 2.2.1) as L2 (E), (3) the planar segmentation (section 2.2.2) as L3 PE).
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FIG. 4.
(a) MM-tree generation. A hierarchical region merging process starts from the primary layer L0.
At each iteration, a pair of regions Ri,Rj ∈ L0 are merged based on a set of similarity measures
{S(Ri,Rj )}k over all adjacent region pairs. is merging creates a new level in the MM-tree. (b)

Similarity calculation between adjacent region pairs. From L0, regions Ri,Rj are evaluated in
terms of two metrics: (1) the cross-region evidence accumulation Sc(Ri,Rj), which considers the

overlapping of Ri,Rj over the three supporting layers Ls (*) = {L1 (C), L2(E), L3 (P) }, and (2)
the appearance similarity Sa(Ri,Rj), which only considers the color distribution on Ri,Rj. ese

metrics define how the merging is carried out and are summarized into a joint similarity S(Ri,Rj).
A final segmentation in the MM-tree can be obtained by specifying a threshold STHr for S(Ri,Rj)

Source: Created by the authors.

e support layers Ls (*) encode coarse regions that guide the merging process of small regions in the
primary layer L0 Each Ls (*) consists of m different image regions Ls = {Rs 1, Rs 2,…, Rs k,…, Rs m} generally with
m # n. At each step of the HRM, two adjacent regions on the primary layer Ri,Rj ∈ L0 are considered, with
a total cardinality of | Ri |#| Rj | pixel pairs. Such region pair is spatially projected on a particular matching
region Rs k on each support layer Ls in order to assess coherency across depth- and appearance-based maps.
is coherency is measured by means of an overlapping rule between Ri,Rj ∈ L0 (see Fig. 4 (b)), which is
mathematically expressed in (1) as the joint similarity S(Ri,Rj).

S(Ri,Rj) = (1-λa) Sc + λa Sa (1)
Where

e first term in (1), Sc ∈[0, 1], is a cross-region evidence accumulation (CREA). is term measures
the coherency between two adjacent regions Ri,Rj on the primary layer L0 w.r.t. spatially coincident regions
Rs k over the three supporting layers Ls. Sc then contributes to the merging of (Ri,Rj) by taking into account
its overlapping percentage across each Ls, under the assumption that they may represent the same entity,
mostly in terms of depth (as it can be noted in the use of two supporting depth maps and only one color
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map). For instance, the maximum value of Sc is reached on a particular support layer when the whole pixel
distribution of Ri and Rj concur in Rs k.

Otherwise, if only part of the pixels intersects Rs k, a partial coherency is obtained w.r.t. the number of
overlapping pixels and the two region sizes. In general, the Sc similarity score has a major depth weight on the
final regional merging decision, since the definition of coarse object shapes is better reflected in the respective
depth maps.

e second term, Sa ∈[0, 1], adds an appearance similarity consideration by computing a local histogram
representation hR (b) of each compared region. For this purpose, we obtain a CIE-Lab color histogram where
Nb is the number of histogram bins. en, a similarity rule is adopted according to the chi-squared distance χ2

of adjacent region histograms (hRi, hRj) [1]. e appearance confidence is then calculated by locally measuring
the χ2 distance and weighting it by the sum of its respective bins (it must be equal). erefore, close large bins
will represent a close region similarity, being robust to the noisy information of small bins.

Finally, the parameter λa ∈[0, 1] allows the method to regularize the contribution percentage of the
appearance similarity Sa.

us, by using (1) as a similarity region rule, the HRM is carried out in an iterative manner to gradually
build the MM-tree.

Specifically, at each iteration, the two regions with the highest S(Ri,Rj) are merged into a new, larger region.
is creates a new tree level where the number of regions has decreased by one. e MM-tree structure then
codes new segmentation levels with new region associations (see Fig. 4 (a)). A similarly stopping criterion
Sr defines the selection of a specific MM-tree level as the final segmentation. at is, if, from the whole
region distribution in L0, there are no remaining adjacent region pairs with significant joint similarity S, the
algorithm completes a final segmentation and the iterative process must stop.

In this paper, we propose a multi-modal tree representation (MR-Tree) that hierarchically integrates
seminal segmentations obtained from color and depth information. e MR-tree generation process is based
on a previous approach that operates only on the RGB space [17], integrating several over-segmented layers
into an appearance-based tree. at classical appearance tree uses redundant information over different
spatial scales to recover object shapes. Nevertheless, as a traditional RGB approach, it misses additional
and complementary information from geometrical depth cues. In contrast, the proposed approach achieves
a multi-modal integration by projecting appearance granular regions on coarse depth segments. Also, a
regularization term defines additional appearance support. In that way, the regional coherence in RGB-D
images is strongly influenced by depth information.

erefore, a complex texture computation, originally considered in [17], was removed due to its noisy
distribution in natural and cluttered scenes.

3. EXPERIMENTAL SETUP

3.1 Dataset and Implementation Details

e proposed strategy was evaluated on the public NYUD2 dataset [4], which is composed of 1,449 RGB-
D images and their corresponding ground truth segmentations.

e images capture diverse indoor scenarios of private apartments and commercial accommodations. e
NYUD2 dataset is very challenging due to its high scene variability, numerous and cluttered objects, and
multiple perspectives. Two image subsets were extracted for the evaluation steps in this study: Tuning set
and Test set. For tuning experiments (section 3.2), the tuning set contained 290 randomly selected images
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(20 % of the total dataset). For the quantitative performance evaluation (section 4.2), we used the remaining
images, that is, 1159 pictures.

e experiments were conducted in 64-bit MATLAB R2016b (Ubuntu Linux) on a workstation with an
Intel Core i7 CPU (4 cores, 8 threads) processor and 32 GB of RAM. MATLAB libraries Image Processing
and Computer Vision toolboxes were required. e specific state-of-the-art segmentation algorithms used as
components of this study, as well as those used for comparison, are original implementations by the authors
in MATLAB soware.

e execution time of the complete pipeline for segmenting a single image was 282.6 seconds on average,
which mostly depends on the complexity and number of objects in the imaged scene. is overall duration
covers 4 steps with the following typical individual times: 121.1 sec (C-tree, section 2.1), 32.6 sec (3D-edge
segmentation, section 2.2.1), 0.14 sec (planar segmentation, section 2.2.2), and 128.8 sec (MM-tree, section
2.3).

3.2. Performance Measures

ree standard metrics were selected to quantitatively evaluate the performance of the segmentation results
compared with human ground truth: Segmentation Covering [23], Rand Index [24], and Variation of
Information [25].

3.2.1. Segmentation Covering

Segmentation covering has been widely used for comparing the similarity of segmented regions with respect
to ground-truth labels [23]. Specifically, this metric quantifies the level of overlapping between the estimated
region . and the ground-truth region R’, defined by (3) as:

where N denotes the total number of pixels in the image and a value of 1 indicates perfect covering.
erefore, the segmentation is considered better as C approaches 1.

3.2.2 Rand Index

Let us consider two segmentations S and G of N pixels {x1,x2,…,xN } that assign labels {li} and {l’i} respectively,
to a pixel xi . e Rand Index RI can be computed as the ratio of the number of pixel pairs having the same
label relationship in S and G. [25].

Such ratio is then defined by (4). Where  I  is the identity function and is the number of possible unique
pairs among N pixels. is gives us a measure that quantifies the fraction of pixel pairs whose labels are
consistent between S and G. And, as in the case of (2), its maximum value is 1 when the two segmentations
are actually the same.
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3.2.3. Variation of Information

e Variation of Information (VI) is a global measure of the distance between two clusters of data from a
combination of entropy (H) and mutual information (I) indexes [25]. In this case, the metric is defined as the
distance between estimated (S) and ground truth (G) segmentations, expressed in a simplified form in (5):

VI(S,G)= H(S) + H(G) - 2 I(G,S) (5)
Regarding this metric, unlike in (2) and (3), values close to zero indicate greater similarity since it is an

error quantification.

3.3 Parameters Tuning

e experimental setup of this study required a final step: assessing the effect of the main parameters on the
performance of our method. For this purpose, we performed a grid search over parameters K3D, λa , and Sr

. From that analysis, it was possible to analyze the contribution of each perceptual cue to the segmentation
process, namely, 3D-edges (K3D ), appearance and CREA similarity (λa ), and RGB-D segmentation tree
granularity (Sr ). e grid search was performed as a different tuning experiment for each of the parameters
mentioned above.

Tuning experimentation was then carried out on a randomly selected image subset of 290 images (20 %
of the total dataset). e results we obtained are detailed below.

3.3.1 3D-edge Segmentation Level

K3D  is the tree level that yields the 3D-edge segmentation from 3D gradients (see section 2.2.1). is support
layer represents the main cue from depth data to be fused with appearance information. As shown in Fig. 5
(a), the best covering score for the 3D-edge segmentation was achieved at K3D  = 0.35, which corresponds to
gradient maps with few object details and thus removing small noisy image artifacts.

3.3.2. Trade-off between Appearance and CREA Similarities

e λa  parameter weights the importance of appearance and CREA similarity metrics from depth and
color information (see section 2.3). Fig. 5 b) presents results for different values of this parameter. e best
performance was observed at the peak of λa  = 0.4 which highlights the importance of a balanced trade-off
between appearance and depth fusion.

3.3.3 Stopping Criterion for the MM-tree

e parameter Sr  controls the stopping criterion for the MM-tree computation to return a final
segmentation (see section 2.3). Such parameter was fixed at Sr  = 0.59 for the previously highlighted λa

value, as it represents the best covering point and the merging of adjacent regions with a joint similarity
greater than 0.59 (see Fig. 5 (b)).
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FIG. 5.
Parameter selection. We performed a parameter tuning of the main components of our methodology:

(a) 3D-edge segmentation granularity (K3D). (b) Appearance and CREA similarity contributions (λa) and the final
segmentation granularity on the MM-tree level as a function of the Sr stopping criterion. Subfigure (a) shows the

average covering score of the 3D-edge segmentation as a function K3D. Values within the interval [0.25, 0.5] suggest a
low detailed gradient map; this is the best option to support segmentation. Subfigure (b) indicates that the consideration

of both modalities via the CREA Sc and appearance Sa similarities (see Equation (1)) improves segmentation results,
that is, λa>0. Note that the stopping criterion Sr ∈[0.55, 0.6] yields the best segmentation results at λa =0.4.

is result is a reasonable value since it is approximately a 60 % probability of being
the same region according to the integrated appearance and depth segmentations.

Source: Created by the authors.

4. EXPERIMENTS AND RESULTS

Four state-of-the-art approaches were considered for comparison. ese strategies include widely recognized
color-only frameworks such as Statistical Region Merging [8] (referred to as Nock, its creator’s last name),
Full Pairwise Affinities for Spectral Segmentation [26] (referred to as MLSS, as in the original paper), and
Global Probability Boundaries [1] referred to as gPb, as explained in section 2.1), as well as the top performing
color-plus-depth approach in [6] (referred to as gPbD since it is a generalized version of the gPb algorithm).
For a fair comparison, the parameters of the Nock, MLSS, and gPb approaches were tuned based on the
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segmentation covering scores on the tuning set. e same parameters on the same dataset reported in [6]
were used here for gPbD.

4.1 Qualitative Evaluation

A qualitative analysis of five sample scenes is presented in Fig. 6. e first column presents the original image
input.

FIG. 6.
Sample images and their segmentations. From le to right: input image,

ground truth, MLSS [23], gPb [1], gPbD [6], and proposed segmentation.
Source: Created by the authors.

Ground truths are on the second column, and the next three columns report a baseline evaluation
performed with MLSS [23], gPb [1], and gPbD [6], respectively.

e last column shows the final segmentation result achieved in this study.
In almost all the images, the proposed approach performs a robust scene segmentation by integrating depth

and appearance information. Some local and specific drawbacks are reported because of the sensitivity of the
computed features and the integration of initial region proposals, restricted to a color base layer.

Also, in some cases, strong light intensity can affect the results (fih row).
Particularly, in the images in the first and fourth row, our strategy yields better results than other baseline

techniques due to its capability to exploit and properly code depth information. In the third and fih rows,
as well as the first, a richness of small scene objects can be noticed, a particularly challenging problem for
most non-supervised strategies.

4.2 Quantitative Evaluation

We carried out a quantitative evaluation of the proposed approach and the baseline strategies compared to
human ground truth delineations in the testing set (1159 images) by implementing the benchmarks/metrics
detailed in section 3.2.

Fig. 7 shows the performance obtained using the Segmentation Covering evaluation. We achieved the
best results, in terms of overlapping, with an average accuracy of #0.56 (black asterisk in the box plot).
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is performance was mostly due to the proper integration of depth geometrical features that allowed
a better identification of objects categorized on the same plane. Such extra depth cue was also exploited
by the gPbD algorithm, but it needed many additional computational resources to segment the objects.
Despite small numerical differences, compared to gPbD, our segmentation pipeline is simpler and more
flexible in introducing new geometrical and appearance features without changing the general computational
framework. In contrast, color-only strategies over-segment images and tend to split objects into small
instances because of the high light variability and multiple color distribution in the captured scenes. In such
cases, 2-dimensional edges are considerably noisy and cannot support object geometries.

FIG. 7 .
Performance comparison between state-of-the-art and proposed segmentations in terms of

Segmentation covering (C). Higher values indicate better segmentation. Note that the score obtained
with the proposed strategy is competitive because it is higher than that of the other techniques.

Source: Created by the authors.

Fig. 8 presents the general scores of the approaches evaluated here using the Rand Index. Our score can be
summarized as a mean value of 0.907, being slightly lower than that of the gPbD method (0.914), without
statistically significant differences.
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FIG. 8.
Performance comparison between state-of-the-art and proposed segmentations in terms of Rand Index

(RI) Higher values indicate better segmentation. Here, the score of the proposed segmentation is
slightly lower than that of the gPbD scheme, but the performance remains better w.r.t. RGB approaches

Source: Created by the authors.

e best performance was also achieved with both depth-aware strategies, with even more compact results
regarding quartile score distribution. e proposed segmentation results are competitive thanks to the
coding of plane and 3D-edge features, but numerous mistakes are produced by the incorrect labeling of
tiny scene objects that share the same plane or have negligible edge discontinuities. In turn, the color-based
strategies exhibited a lower performance, except for the gPb approach (# 0.89), but with a larger variance in
the results. e MLSS approach, in contrast, achieves a more compact RI variance with an average accuracy
of 0.892, exceeding the gPb average but with the drawback of requiring the number of desired segmented
regions.

Finally, Fig. 9 reports the results of the metric Variation of Information. In it, the proposed approach
achieves the lowest score, with an average of 2.13, while gPbD reached 2.36 with larger score variance (see
Fig. 9). Regarding color-based strategies, MLSS achieved the best performance. In general, the proposed
segmentations achieve competitive results with respect to the widely known gPbD scheme, which also
involves depth information but with more complex joint definitions and relationships of data primitives.
In contrast, this study is focused on the computation of simple yet robust primitives from image and depth
channels, treated and coded independently.
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FIG. 9.
Performance comparison between state-of-the-art and proposed

segmentations in terms of Variation of Information (VI).
Lower values indicate better segmentation. Note that the score obtained with the proposed
strategy in this scenario is competitive because it is lower than that of the other techniques

Source: Created by the authors.

A hierarchical and iterative merging allow us to efficiently integrate such primitives and obtain a relatively
coherent scene grouping. As shown in the previous results, the use of depth primitives is a clear advantage to
face the challenging problem of image segmentation.

4. DISCUSSION AND CONCLUDING REMARKS

RGB-D image segmentation is a field in continuous development with powerful and interesting advantages
that allow us to deal with several applications limited by the use of color relationships only.

For instance, the problem of object detection is very challenging when objects share a lot of key
features in appearance space and also present a wide variability due to differences in perspective, capture,
and illumination conditions. With the availability and leverage of depth information, such issues can be
significantly reduced. In this study, we presented a novel RGB-D segmentation strategy based on the
integration of color and depth information. A key difference of the proposed method with respect to state-of-
the-art approaches is the analysis of color and depth data in an independent manner, before performing the
fusion of both information sources. To this end, we incorporated consensus clustering algorithms [27] into
the segmentation process, which aims to combine a set of different clusters to find a more accurate one. e
proposed method achieved competitive results on the NYU-Depth V2 dataset with respect to three relevant
segmentation metrics in the literature: Segmentation Covering, Rand Index, and Variance of Information.

Remarkably, the proposed approach only requires visual and depth information without any prior
labelling in order to deal with regional segmentation. In that sense, this study can be used as a starting
point for more sophisticated approaches, such as visual component regularization, in order to achieve more
effective and faster segmentations.
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e planar and 3D edge maps computed from depth information supported coherent object segmentation
tasks, according to results reported on the public dataset evaluated here. In that sense, the proposed
approach is robust compared to the baseline depth gPbD scheme [6]. e computation of independent
geometrical cues leverages important patterns to perform segmentation in depth space, without the noisy
color components. Also, the use of independent geometrical cues avoids the computation of joint color
and 3D features, as done in previous studies [4], [6], [10], a task that involves too many parameters and is
difficult to tune and normalize for different natural scenes. Note, however, that the contribution of depth
information depends on well-defined geometry features and the plane of capture for some fine-detailed
objects. In such cases, it might be necessary to develop additional alternatives that could adaptatively adjust
the weight of depth cues in the observed scene. In several cases, the sparse nature of planes and intrinsic object
representation could introduce local segmentation errors. As RGB-D acquisition technologies continue to
improve, 3D data is expected to achieve a more precise capture of local geometric information, which should
naturally yield improved segmentation results.

e proposed approach, non-supervised in nature, can serve as input for supervised frameworks.
Currently, most segmentation schemes take advantage of learning-based strategies that learn complex
parametric models from hand-labeled images in massive datasets.

Training these approaches is computationally expensive and limited in terms of incorporating new
perceptual cues for segmentation improvement, as required with emerging technologies in multi-modal
sensors. Conversely, the proposed pipeline has potential for multi-modal cue integration and can contribute
as a primary step to automatically segment coherent regions that can be evaluated by more sophisticated
learning-based algorithms. Regarding computational cost, our method is efficient and can be parallelized
since geometrical and depth features are processed independently.

Additionally, the hierarchical region merging process implemented here is based on an iterative process
that can be treated in new computational configurations.

Despite current studies that report remarkable advances in segmentation tasks [13] -[15], the effectiveness
of their strategies depends of proper adjustments of learned representations, which, in general, require large
training batches.

In that sense, those approaches achieve effectively hierarchical architectures, discovering kernels even to
represent basic primitives. e proposed approach could be integrated into first- and mid-level layers of such
hierarchical schemes, allowing a more effective and faster training. Finally, the use of these pre-computed
regions from the proposed tree representation can reduce overfitting problems and address the segmentation
challenges of reduced training datasets.
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