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ABSTRACT:

Metabolomic studies generate large amounts of data, whose complexity increases if they are derived from #7 vivo experiments.
As a result, analysis methods highly used in metabolomics, such as Partial Least Squares Discriminant Analysis (PLS-DA), can
have particular difficulties with this type of data. However, there is evidence that indicates that Support Vector Machines (SVMs)
can better deal with complex data. On the other hand, chronic exposure to organochlorines is a public health problem. It has
been associated with diseases such as cancer. Therefore, its identification is relevant to reduce their impact on human health.
This study explores the performance of SVMs in classifying metabolic profiles and identifying relevant metabolites in studies of
exposure to organochlorines. For this purpose, two experiments were conducted: in the first one, organochlorine exposure was
evaluated in HepG2 cells; and, in the second one, it was evaluated in serum samples of agricultural workers exposed to pesticides.
The performance of SVMs was compared with that of PLS-DA. Four kernel functions were assessed in SVMs, and the accuracy
of both methods was evaluated using a k-fold cross-validation test. In order to identify the most relevant metabolites, Recursive
Feature Elimination (RFE) was used in SVMs and Variable Importance in Projection (VIP) in PLS-DA. The results show that
SVMs exhibit a higher percentage of accuracy with fewer training samples and better performance in classifying the samples from
the exposed agricultural workers. Finally, a workflow based on SVM:s for the identification of biomarkers in samples with high
biological complexity is proposed.

KEYWORDS: Organochlorines, Pesticides, Recursive feature elimination, Multivariate statistical methods, Support vector
machines, Metabolomics.

RESUMEN:

Los estudios en metabolémica generan gran cantidad de datos cuya complejidad aumenta si surgen de experimentos iz vivo. A
pesar de esto, métodos ampliamente usados en metabolémica como el andlisis discriminante por minimos cuadrados parciales
(PLS-DA) tienen dificultades con este tipo de datos, sin embargo, hay evidencia que las méquinas de vectores de soporte (SVM)
pueden tener un mejor desempefio. Por otro lado, la exposicién cronica a organoclorados es un problema de salud publica. Esta
se asocia a enfermedades como el cdncer. Identificarla exposicion es relevante para disminuir su impacto. Este estudio tuvo como
objetivo explorar el rendimiento de las SVM en la clasificacion de perfiles metaboldmicos e identificacién de metabolitos relevantes
en estudios de exposicién a organoclorados. Se realizaron dos experimentos: primero se evalud la exposicién a organoclorados en
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células HepG2. Luego, se evalué la exposicién a pesticidas en muestras de suero de trabajadores agricolas. El rendimiento de las
SVM se compard con PLS-DA. Se evaluaron cuatro funciones kernel en SVM y la precisién de ambos métodos se evalué mediante
prueba de validacién cruzada k-fold. Para identificar los metabolitos relevantes, se utilizé eliminacién recursiva de caracteristicas
(RFE) en SVM y la proyeccién de importancia de variables (VIP) se us6 en PLS-DA. Los resultados mostraron que las SVM
tuvieron mayor precision en la clasificacién de los trabajadores agricolas expuestos usando menos muestras de entrenamiento. Se
propone un flujo de trabajo basado en SVM que permita la identificacién de biomarcadores en muestras con alta complejidad
biolégica.

PALABRAS CLAVE: Organoclorados, Eliminacién Recursiva de Caracteristicas, Estadistica Multivariada, Mdquinas de Vectores
de Soporte, Metabolémica.

HiGHLIGHTS

This study sought to describe the SVMs ability to handle complex data.

PLS-DA accuracy decreased in analysis data from in vivo studies with few samples.
The linear and sigmoid kernels showed the best performance.

SVMs are robust methods for data analysis in in vivo experiments of organochlorines.

1. INTRODUCTION

Modern analytical technologies such as mass spectrometry, nuclear magnetic resonance, and tandem mass
spectrometry facilitate the study of the metabolome. Metabolomics is defined as the quantitative and
comprehensive study of metabolites in a biological system [1]. Metabolomic studies produce large amounts
of data on metabolites present in a specific biological scenario, which has been termed “metabolic profile” [2].

The complexity of metabolic profiles depends on the conditions in which the data are generated. For
example, metabolic profiles from iz vitro experiments show low variability, while those from 7z vivo studies
(e.g., with humans) might be highly variable between individuals. This complexity affects the ability of
statistical algorithms to make accurate predictions based on metabolic profiles.

Methods such as Principal Component Analysis (PCA), Partial Least Squares Discriminant Analysis
(PLS-DA), and Orthogonal PLS-DA (OPLS-DA) are commonly used to analyze metabolomics data.
However, some studies have identified that their classification capacity can be suboptimal in studies with real
life conditions where several variables cannot be controlled and the data can have a nonlinear distribution
[3].

Support Vector Machines (SVMs) area supervised learning method that generates a model able to map a
training dataset with two categories into a higher-dimensional space in order to separate them by a margin as
large as possible [4]. Additionally, SVMs use kernel functions to deal with nonlinear distributions [4], [5],
thus being able to work with a large number of variables and few samples. Some studies have shown that, in
experiments with complex samples like blood, SVMs can identify relevant metabolites where PLS-DA has
notachieved it [3], [6]. For example, a study published in 2008 [3] revealed that PLS-DA omitted creatinine,
an important feature to differentiate females from males, which does not occur with SVMs.

Recent studies have also compared PLS-DA with other methods, including SVMs. Mendez ez al. [7]
evaluated the classification performance of PLS-DA, logistic regression of principal components, SVMs,
Random Forest (RF), and Artificial Neural Networks (ANNs) in metabolomics studies. The results of such
study showed that SVMs and ANN achieved an improvement in predictive performance over PLS-DA,
which did not occur with RF. Gromski ez 4/. [8] compared the capabilities of techniques such as discriminant
function analysis of principal components, PLS-DA, RF, and SVMs and found that SVMs are suitable to
handle outliers and they resist overfitting.
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Like in PLS-DA, a list of the most relevant metabolites can be generated by SVMs using SVM-Recursive
Feature Elimination (SVM-RFE) [9]. This method employs a loop in which a SVM is trained with a linear
kernel, and the feature with the lowest decision value in the model is eliminated. Hence, features are sorted
according to their decision value [6], [9]-[11]. Among the techniques that have been implemented to
identify relevant metabolites, SVM-RFE has proven to be the most robust [6], [10], [11]. For these reasons,
SVMs can be a useful method in the analysis of metabolomics data obtained from complex samples.

On the other hand, organochlorines are a group of pesticides used to control plagues [12]. However, acute
exposure to them can produce death; chronic exposure can cause serious diseases such as cancer; and there is
not antidote [13]. Also, they can persist in the environment and penetrate the trophic chain. Chronic human
exposure to organochlorines can be imperceptible until it is too late [14]. Hence, new diagnostic methods
should be developed, and potential biomarkers in humans should be identified. Metabolomics studies can
help in this regard. Therefore, data analysis methods with good performance are key to drawing reliable
conclusions.

Thus, the aim of this study was to describe the discriminant ability of SVMs to handle samples from both
in vitro and in vivo studies and compare their results with those obtained with PLS-DA. In addition, the
capacity of SVMs to propose metabolites as candidate biomarkers in the context of organochlorine pesticide
exposure was explored.

2. METHODS
2.1. Sample preparation -in vitro study

A secondary dataset from a study published in 2016 [15] was used here. In such study, HepG2 cell cultures
were exposed to four different organochlorines (i.c., aldrin, DD T, endosulfan, and lindane) at concentrations
below the cytotoxicity index 50 in order to establish which concentration would be sufficient to induce the
metabolic reaction without causing cell destruction and maintaining cell viability above 70 %. Additionally,
a control was included: Dimethyl Sulfoxide (DMSQ). Each exposure was repeated six times under the same
cell passage to avoid genetic variation. The pesticide concentrations employed to assess cell viability were 5
uM, 10 uM, 25 uM, 50 pM, and 100 uM of endosulfan and lindane; 30 uM, 60 pM, 150 uM, 300 uM, and
600 uM of aldrin; and 2.5 pM, 5 uM, 10 pM, 25 pM, and 50 uM of DDT. The concentrations that achieved
the desired results were 100 uM of endosulfan and lindane, 50 uM of DDT, and 150 uM of aldrin.

Subsequently, 36 samples of HepG2 cells were exposed to the organochlorine solutions (i.c., 100 puM of
endosulfan, 100 uM of lindane, 50 uM of DDT, and 150 uM of aldrin), a mixture treatment at equimolar
concentration, and the controls with DMSO (1 % v/v); six samples per treatment. In addition, the cells
were incubated for 24 hours with 5 % CO; at 37 °C. After such period of exposure, cellular metabolism was
inactivated, and endogenous metabolites were extracted adopting the quenching methodology previously
published in [15]. Then, the extracts were derivatized using methoxamine hydrochloride and N-methyl-
N-(trimethylsilyl) trifluoroacetamide (MSTFA) and analyzed via Gas Chromatography combined with
Time-Of-Flight Mass Spectrometry (GC/TOF-MS) following the protocols established by the West Coast
Metabolomics Center of the University of California, Davis [16].

The information was processed as follows. First, the signals were automatically deconvolved using
ChromaTOF software. Then, the data were extracted without smoothing, and peaks were detected at signal/
noise ratios of 5:1 and a peak width of 3 s [15]. Subsequently, the retention peak width was filtered and
calculated by means of the BinBase algorithm [17] and cross-checked with the Fiehn mass spectral library.

Finally, 1081 signals were deconvolved. Those with more than 30 % missing values were discarded, leaving
399 signals related to potential metabolites, out of which 153 were identified and 246 remained unidentified.
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The dataset obtained was composed of 6 classes (aldrin, DDT, endosulfan, lindane, mixture, and DMSO)
and 153 features.

2.2. Sample preparation -in vivo study

A secondary dataset from a study into agricultural workers exposed to different pesticides was used here. In
that study, plasma samples were collected from 100 agricultural workers on coffee plantations. This process
was led by the Laboratorio de Pesticidas of Universidad del Quindio (Colombia). Besides, a negative control
group of thirty volunteers who had not been exposed to pesticides was included.

All the participants signed an informed consent (previously approved by the ethical committee) to take
part in the study. The inclusion criteria included male subjects aged 18 or older and living in the Colombian
Coftee Region.

A blood sample was taken from each participant and processed to obtain blood plasma. Each plasma was
analyzed to evaluate the presence and concentration of pesticides using Gas Chromatography with Flame
Ionization Detector (GC-FID). Out of the 100 cases, 27 were found to be below the detection limit and
considered negative cases, while 73 were found to be above the detection limit and considered positive cases.

In the plasma of the 73 positive cases, the presence of six organochlorine pesticides (i.c., endosulfan,
endrin, heptachlor, DDT, methoxychlor, and lindane) and chlorpyrifos (an organophosphorus pesticide)
was identified. Furthermore, to assess the metabolic profile, the samples were processed and derivatized
following the same protocol used for cell extracts [16]. Then, they were analyzed using a GC/MS single
quadrupole, thus obtaining 478 signals. The dataset obtained was composed of 8 classes (endosulfan, endrin,
heptachlor, DDT, methoxychlor, lindane, chlorpyrifos, and control) and 478 features.

2.3. Statistical analysis

PLS-DA and SVM-RFE were performed here to evaluate the metabolic profiles taken from the iz vitro and
in vivo studies. In the iz vitro data, a subset with 153 metabolites was identified. Five groups were defined,
one for each organochlorine: aldrin, DDT, endosulfan, lindane, and the mixture. Each group was compared
with the control; hence, each test consisted of six experimental replicates.

Regarding the i7 vivo data, the plasma samples were classified into seven groups according to the pesticide
found in them: 5 samples in endosulfan, 31 in endrin, 28 in heptachlor, 3 in DDT, 4 in methoxychlor, 35 in
lindane, and 18 in chlorpyrifos. Each group was then compared with the negative control.

MetaboAnalyst 4.0 was used to perform PLS-DA [18]. For this purpose, the data were normalized with
logarithmic transformation and scaled using the Pareto method. Subsequently, PLS-DA was applied to each
group. Its accuracy to predict each metabolic profile was assessed with the k-fold cross-validation method
for groups with at least ten samples, while, for those with less than ten samples, the Leave-One-Out Cross-
Validation (LOOCV) technique was employed. Parameters R2 and Q2 were also measured.

The list of the ten most relevant metabolites was obtained compiled using the Variable Importance in
Projection (VIP) score [19], attaching greater relevance to those with higher VIP values. The SVM method
was implemented in R language [20] using the RStudio platform [21] and the ¢1071 library [22]. Four

kernels (linear, polynomial, sigmoid, and radial) were evaluated using four different margin penalties (1'%,

1¢'% 1, and 1),

Incremental training was carried out with 20 %, 40 %, 60 %, and 80 % of the samples in order to identify
the lowest number of samples needed to achieve 100 % accuracy (measured by k-fold cross-validation). SVM
training was conducted with both normalized and raw data. The kernel with the best performance and
minimum sample size required for training was employed to implement the SVM-RFE algorithm, but, in



JORGE ALEJANDRO LOPERA-RODRIGUEZ, ET AL. SUPPORT VECTOR MACHINES FOR BIOMARKERS DETECTION IN IN VI...

this case, using 100 % of the available samples. The lists with the ten most relevant metabolites were obtained
for each metabolic profile.

2.4. Comparative analysis

The two methods were compared based on the accuracy results of the k-fold cross-validation and the position
and inclusion of metabolites in the lists obtained by both.

3. RESULTS

Data normalization with log transformation, Pareto scaling, and PLS-DA were performed using
MetaboAnalyst 4.0. PLS-DA was conducted with normalized data.

Regarding PLS-DA, although accuracy was measured by k-fold cross-validation, it should be noted that
MetaboAnalyst 4.0 requires a minimum of ten samples to apply such method. This criterion was not fulfilled
by the DDT and methoxychlor samples in the iz vivo study. In those cases, accuracy was validated using the
LOOCY algorithm. Note that the results shown in Figure 1 represent the first principal component (the
component with the best score).
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FIGURE 1.
PLS-DA classification performance. Accuracy, R2, and Q2 values in PLS-DA are presented for each
type of experiment (i vivo and in vitro). All the values of the pesticides were obtained by k-mean

cross validations, except for DDT in an in vivo experiment. Values are presented as percentages
Source: Created by the authors.

o ~
B A

o
&

value

o ~
= &

r
o

Endrin
Heptachlor
Lindane
Mixture

Aldrin
Methaxychiol

Chlarpyrifos
Endosulfal

From Figure 1, we observe that, when PLS-DA was implemented using the data from the 7 vitro study,
R2 was above 95 %; and Q2, above 85 %.

However, when implemented using the data from the 7 vivo study, its accuracy decreased in those groups
in which there were fewer samples. R2 fell to 63.4 % (endrin). In addition, Q2 was also affected; it fell to
50.05 % (lindane) and did not exceed 81.9 % (endosulfan).

SVMs were applied to both normalized and raw data. Nevertheless, the best results were achieved with
normalized data; they are shown in Figures 2 and 3. In these, SVM training was performed with 80 % of
the data, and 20 % was used to test the SVM model obtained. Four kernels were evaluated in terms of SVM
training: Linear, Polynomial, Sigmoid, and Radial. Four cost margin penalties were implemented in each
kernel: 1e!%, 1'% 1, and 1e'°. Kernel and cost used in each model are specified in the figure. Bar sizes
represent the prediction accuracy obtained by each SVM model in a scale between 0 % and 100 %.
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Accuracy of the SVMs trained with the iz vitro data using different types of kernel and margin penalties
Source: Created by the authors.
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FIGURE. 3.
Accuracy of the SVMs trained with the in vivo data using different types of kernel and margin penalties
Source: Created by the authors.

Employing the normalized data from the 7z vitro study, all kernels exhibited good performance (except
for the polynomial one) with 100 % accuracy using 80 % of the samples for training. Implementing the
normalized data from the iz vivo study, there was a slight decrease in accuracy, especially in those groups with
a number of samples below ten (DDT and methoxychlor). However, the latter achieved 100 % accuracy in
some scenarios of the sigmoid kernel.

With respect to raw data, the best performance was achieved using 80 % of the samples for training, and
the accuracy was between 90.63 % and 93.15 %. In addition to the linear kernel, the polynomial and radial
kernels showed good performance. The polynomial kernel in particular yielded an accuracy of 93.1 % using

a margin penalty of 1¢'°. This case opens up the possibility of overfitting.

In PLS-DA, the relevant features were identified by means of VIP scores, while, in SVM, the SVM-RFE
technique was employed for such purpose. Both scenarios used normalized data. Tables 1 and 2 show the
features proposed by both methods for the iz vitro study.
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TABLE 1

Top ten metabolites obtained by PLSDA

Aldrin DDT Endosulfan Lindane Mixture

Fhosphoethanclamine Phosphoethanolamine N-acetyl aspartate Taurine Glucose-6-phosphate

Phosphogluconic acid Cytidine-5 Citric acid Phosphogluconic acid  Phosphoethanolarmne
-mmonophosphate

Cytosin Phosphogluconic acid Taurine Gluconic acid Citric acid

Cysteine Glutathione Glucose-c-phosphate Alpha-ketoglutarate  [Socitric acid

Gluconic acid 2 S-difyaroxy Phosphogluconic acid 28wl Phosphoglucoriic acid
pyrazine INANIOSAITLNe

Ribulose-5-phosphate 5'~deoxy -5'-methyl Phosphoethanclamine Glutaric acid Ribose

Hypoxanthine

Alpha ketoglutarate

Fructose 1 phosplhiate
Aspartic acid

thio adernosine
Cytosin

Glucoric acid

Hesiatol
Sulfuric acid

Alpha-lketo glutarate

[socitric acid

Hexose-&-phosphate
Cysteine

2. 5-dihvdroxy
pyrazine
Alpha-arine adipic
acid

Adenine

Aspartic acid

Hypoxanthine
Hexose-6-phosphate

Ribulose-S-phosphate Alpha-ketoglutarate

Source: Created by the authors.

TABLE 2

Top ten metabolites obtained by SVM-RFE

Aldrin DDT Endosulfan Lindane Mixture
Phosphogluconic acid Phosphoethanolarmne Citric acid Alpha ketoglutarate Glucose & phosphate
Alpha arrinoadipic Cytosin Phlosphoglucomc Ph_osphoglucomc Phosphogluconic acid
acid acid acid
Fhosphoethanolarmine 215 . [socitric acid Taurine Fhosphoethanolarmine

dihvdroxypyrazine
Cysteine Alpha aruaoadipic Alpha N . (Citric acid

acid ketoglutarate AcetylIMAanosarnine

. . . ., Hexose g Glycercl alpha .
Gluconic acid Fhosphogluconic acid phosphate phosphate Ribose
Cytosin Glucoric acid Asparticacid  Gluconic acid Cyticine >
monophosphate

Hyposxanthine AsSpartic acid I acetylaspartate Xilitol [S0CIriC acld

Cytidine 5 . . .
Alpha ketoglutarate monophosphate Hyposxanthines Creatinine Hyposxanthine

. 3 25

3 phosphoglycerate  Ribulose 5 phosphate phosphoglycerate dihydroxypyrazine Alpha ketoglutarate
Malic acid Glutathione Aconitic acid ASparagine Cysteine

Source: Created by the authors.

The results of the i vivo study are not reported because no identification of the compounds was performed
in that case. However, the percentage of coincidence between the two methods (i.c., PLS-DA and SVM-
RFE) in the two studies was calculated here (Table 3).
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TABLE 3
Comparison of top ten metabolites. Results in percentage

Data from the in vitro study

Pesticide Included in the top ten Same position in the top
Aldrin 70.00 40,00

oDT £0.00 10.00

Endosulfan E0.00 0.00

Lindane £0.00 10.00

Mixture 5000 20,00

Data from the in vive study

Pesticide Included in the top ten Sarme position in the top
Chlorpyrifos 50,00 20.00

DOT 2000 0.00

Endosulfan E0.00 0.00

Endrin 70,00 .00

Heptachlor 20.00 Z0.00

Lindane 80,00 10.00

Methoxychlor 60,00 10.00

Source: Created by the authors.

The comparative analysis reveals that, in the 7 vitro study, aldrin and the mixture were found to have the
highest coincidences among the relevant metabolites identified in each method. Nevertheless, this panorama
changes in the iz vivo study, as heptachlor and lindane exhibited the highest number of coincidences.

4. DISCUSSION

In this study, PLS-DA was proven to be a good method to analyze data from iz vitro studies, as it presented an
R2 and a Q2 close to ideal values. However, when analyzing data from iz vive studies, its accuracy decreased
in scenarios with few samples. Conversely, SVMs achieved 100 % accuracy in all the scenarios (i vitro and in
vivo), but it was necessary to test the performance of the different kernels. Although the linear and sigmoid
kernels exhibited good performance using margin penalties of 1¢100, 1¢10, and 1, the radial and polynomial
kernels showed a poor one.

According to this, the accuracy of PLS-DA and SVMs can be affected by conditions such as high variability
and few samples, like those in 77 vivo studies. Nonetheless, it is possible to identify the kernels with the best
performance for data analysis from iz vive studies and use them in SVMs, thus allowinga better classification.
Moreover, another advantage of SVMs is that they can achieve an accuracy of 100 % with fewer training
samples. For instance, in this study, they employed 80 % of the samples, while PLS-DA required all of them.

Furthermore, comparing the lists of the ten relevant features of each profile in each method (SVM-RFE
and PLS-DA), both methods shared similarities in the analysis of the iz vitro study (equal to or greater
than 70 %), but the results were heterogeneous for the iz vivo study. The group with the lowest number of
coincidences was DDT in the iz vivo study, which poses the question of whether the number of samples
could have influenced these results.

This study identified an improvement in the predictive performance of SVMs over PLS-DA in the analysis
of data from iz vivo experiments, something previously described by Mahadevan ez 4/.[3] and Mendez et 4.
[7]. Although Gromski ez al. [8] reported some shortcomings of SVM in dealing with missing values and
assessing the importance of compounds, we consider that these problems could be overcome with SVM-RFE
implementation. Gromski ez 4/. also reported problems in visualizing, interpreting, reducing dimensions,
and selecting parameters. This could be solved with an appropriate kernel selection.

In this study, the linear and sigmoid kernels showed the best performance. Although the radial kernel
did not exhibit an adequate performance in this article, it has been one of the most widely employed [23],
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[24]. In some studies, it has even shown a superior performance compared to other popular predictors such
as Naive Bayes, linear discriminant analysis, and quadratic linear discriminant analysis [25]. Probably, the
present results may be explained by the fact that the data underwent a previous normalization process. The
effect of data normalization on kernel performance has been analyzed by Wan ez al. [26].

Although this study focused on the classic SVM kernels, new kernels have been proposed, such as the
Hermite orthogonal polynomial kernel. This kernel makes it possible to use fewer support vectors for
classification. In addition, it has been reported to achieve better error-rate performance [27]. Another new
kernel is the weighted variable kernel, whose implementation in SVMs outperforms the classification of
methods such as RF [28]. Other techniques with SVMs, such as SVM least squares, have been proposed for
medical image analysis [29], [30]. These approaches could be evaluated to be implemented in metabolomics.

SVM-RFE was employed here to select a list of relevant features. For this purpose, we suggest
implementing SVMs with a kernel having an optimal margin penalty before using SVM-RFE. In particular,
in this study, the linear and sigmoid kernels presented a margin penalty that was optimal for most scenarios.
Nevertheless, for scenarios with few samples such as DDT, the sigmoid kernel was the only one that showed
optimal performance. Although there were enough samples for data comparison in the iz vitro study, some
scenarios in the iz vivo study, such as DDT and methoxychlor, had few samples. In this case, there was the
risk of overfitting in both methods.

Furthermore, it should be noted that, in the iz vivo study, among the 73 cases with proven pesticide
exposure, some agricultural workers had been exposed to more than one pesticide, which could have
influenced the metabolic profiles and, hence, the performance of each technique.

Although we identified 153 metabolites from the spectrometry signals obtained in the i% vitro experiment,
this was not done in the i% vivo study, but it remains to be performed in order to define the biological impact
in each scenario.

In addition to SVM-REFE, another strategy that has been proposed to identify relevant features is multiclass
SVMusing L1-norm [10] and L2-norm, the latter exhibiting greater stability [31]. Thus, it may be interesting
to explore these options in future studies.

In summary, according to the findings of this work and those of the other studies mentioned here,
SVMs are robust methods suitable for data derived from iz vivo experiments and exhibit good classification
performance even with few samples. Also, SVMs are advantageous in dealing with outliers, predictive power,
and resistance to overfitting. However, their performance will depend on the hyperparameters and kernels
used.

Therefore, in order to make the most of the analysis with SVM-RFE and the “kernel trick”, it is
recommended to initially evaluate each kernel, as well as the different margin penalty scenarios. Performance
must also be evaluated based on the percentage of samples used for training in order to avoid overfitting. In
this study, 80 % of the samples were needed for most scenarios. However, this may vary depending on the
number of features and samples available. Next, the last step would be to implement SVM-RFE with the
best kernel identified.

Finally, it is necessary to clarify that the results obtained from one or the other method should be validated
in future biological experiments to determine the biological impact of exposure to pesticides.

5. CONCLUSIONS

In this study, SVMs and PLS-DA were proven to be appropriate methods to analyze data from 7z vitro studies
with controlled conditions, but PLS-DA presented difficulties with data from i vive studies (non-controlled
conditions and non-linear data) in the context of organochlorine exposure.

Regarding class prediction in data from iz vive studies, SVMs exhibited a greater predictive power than
PLS-DA. Moreover, the kernel with the best performance identified by SVM analysis can be used in SVM-
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RFE to obtain an adequate list of most relevant features in the context of pesticides exposure. Additionally,
the computational cost of SVMs is low.

SVM-REE is becoming a useful tool for biomarker identification, even when there are few samples. In
addition, it is considered a robust method to analyze data derived from iz vivo and iz vitro studies.
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