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ABSTRACT:

Automatic human activity recognition is an area of interest for developing health, security, and sports applications. Currently,
it is necessary to develop methods that facilitate the training process and reduce the costs of this process. This paper explores a
methodology to classify human physical activities in a semi-supervised paradigm. With this approach, it is possible to reduce the
number of labels necessary to train the learning model and the complexity of this process. This process begins by deducting the
number of micro-movements or sub-movements where the data should be grouped and assigning the label through a clustering
technique. We perform this procedure for a specific group of micro-movements whose label is unknown. Later, the classification
process starts by using two methods, a Support Vector Machine (SVM) that identifies the micro-movements and a Markov Hidden
Model that detects the human physical activity as a function of sequences. The results show that with a percentage of 80 % of the
known labels, we achieved outcomes like the supervised paradigms found in the literature. This facilitates training these learning
models by reducing the number of examples requiring labels and reduces the economic costs, which is one of the significant
limitations of machine learning processes.

KEYWORDS: Spectral clustering, semi-supervised learning, motion estimation, data fusion, human activity recognition.

RESUMEN:

El reconocimiento automdtico de la actividad humana es un drea de interés para el desarrollo de aplicaciones en salud, seguridad
y deportes. Actualmente, es necesario desarrollar métodos que faciliten el proceso de entrenamiento y reduzcan los costos de este
proceso. Este trabajo explora una metodologfa para clasificar actividades fisicas humanas en un paradigma semi-supervisado. Con
este enfoque, es posible reducir el nimero de etiquetas necesarias para entrenar el modelo de aprendizaje y la complejidad de
este proceso. Este proceso comienza deduciendo el nimero de micro-movimientos o submovimientos en los que deben agruparse
los datos y asignando la etiqueta mediante una técnica de clustering. Realizamos este procedimiento para un grupo especifico
de micro-movimientos cuya etiqueta se desconoce. Posteriormente, se inicia el proceso de clasificacion utilizando dos métodos,
una Méquina de Vectores Soportados (SVM) que identifica los micro-movimientos y un Modelo Oculto de Markov que detecta
la actividad fisica humana en funcién de secuencias. Los resultados muestran que con un porcentaje del 80 % de las etiquetas
conocidas, se consigue resultados como los paradigmas supervisados encontrados en la literatura. Esto facilita el entrenamiento de
estos modelos de aprendizaje al reducir el nimero de ejemplos que requieren etiquetas y reduce los costes econémicos, que es una
de las limitaciones significativas de los procesos de aprendizaje automético.
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PALABRAS CLAVE: Agrupamiento espectral, aprendizaje semisupervisado, estimacién de movimiento, fusidén de datos,
reconocimiento de actividad humana.

HIGHLIGHTS

e Automatic recognition of human activities enables the development of applications in health, sports,
and security.

e The use of semi-supervised systems facilitates and reduces costs in the classifier training process.

e Primitive motion combined with hidden Markov models enhances performance in classifying
human activities.

NOMENCLATURE

KITF Kinect's attributes set
IMUF IMU’s attributes set
EMGF EMG's attributes set
W= [xg....x]] Kinect joins points vector in cartesian coordinates.
x = [X¥,Z)] Spatial coordinates of the joint points |
EMG; Data delivered by the EMG sensor j
I.= [nx a,a; a, as] Acceleration vector delivered by the movement sensor k
o Polar coordinates of the joint peints [ respeet to the center of
pr= [10] mass T
T Radial component of p;
a, Angular component of de p;
EK Feature Vector of primitive motions Kineet — SVM
EI Feature Vector of primitive motions IMU —SVM
EE Feature Vector of primitive moticns EMG - SVM
EF Concatenated Feature Vector of primitive motions Kinect® —
EMG - IMU
P Center of mass of @
KITF®) Reduced Kineet’s attributes set
IMUF@® Reduced IMU's attributes set
EMGF™ Reduced EMG's attributes set

Measurement of K;

Variance of K

Measurement of ax

Variance of ay

Measurement movement intensity
Al

Variance of AI (VI)

Area of the
normalized signal SMA

magnitude  of

Dominant direction eigenvalues Acceleration Covariance Matrix's eigenvectors through the axes x,
EVA ¥, and z of each obzervation window.
Energy means the sum of the square of the discreet component
magnitudes FFT of each sensor axis, normalized by the window
length.
Energy mean value through the rotation angles, for this case, only
a, and ag.

Average acceleration energy AAE

Average rotation energy ARE
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1. INTRODUCTION

Human physical recognition is a methodology that uses devices and computing algorithms to detect what
action a person performs in a certain period. Therefore, rehabilitation, medical diagnostic, and intelligent
surveillance systems, among others, have been implemented in sports [1]-[3]. Technological advance has
allowed the creation of different devices for movement detection. These devices include depth cameras such
as Kinect’, Inertial Measurement Units (IMU), and Electromyographic signal Sensors (EMG). Kinect® has
adepth sensor, and an RGB camera inside that tracks the join points of the body; therefore, it is used along
the classifiers to generate a codebook to identify human body stances and thus determine the performing
of the physical action [4]-[7]. Some works use the information of the stance given by the Kinect” and apply
unsupervised algorithms (K-means or Spectral Clustering) to generate a codebook with key sub-movements.
Later, they use a Hidden Markov Model (HMM) to recognize different combinations and thus to identify
the activity; these methods are known as primitive motions. Although those works have reliable results, they
present problems if there are lighting changes or some partial occlusions on the object or person [8]-[11].

The literature recommends opting for data fusion approaches, which use the information provided by
two or more sensors to improve detection performance and increase robustness against partial occlusions
and disconnections. Some methods show that combining IMU and EMG sensor (first case) or IMU and
Kinect® (second case) improved activity estimation compared to the use of a single type of modality [11]-[13].
In [12] EMG and IMU sensors to achieve great results, but its method shows issues with physical activity
when considering external objects. On the other hand, [9] and [14] apply a fusion method with Kinect”and
IMU sensors, achieving better system performance. However, detecting some activities presents the same
problems when a single sensor measures them. Other works fuse more than two sensors and achieve reliable
efficiencies greater than 90 % accuracy. An example is a work proposed by [1], which uses a multimodal
system composed of Kinect’, IMU, and EMG sensors and applies a Support Vector Machine to label each
activity's set of primitive movements. The biggest issue is being a supervised method. Therefore, it is not
adaptable and requires all samples to be labeled. Also, this method needs a skilled person to distinguish two
or more sub-movements, which carries classification problems. Another case shown in [15] uses K-means
clustering to find the stances of each motion but needs SVM to validate it.

Also, K-means suffers from high dimensionality or when the database is too complex and could
present partial occlusion problems or lighting changes by only using the Kinect” for activity classification.
Other approaches use modern methods of machine learning as deep learning. Among the more common
techniques, it has been highlighted the convulsed neural network, learning by reinforcement, etc. These
methods have encompassed the identification of human physical activity and have achieved reliable results
[16]-[18]. However, an extensive database is required, which increases the costs of this type of application.
Given the mentioned difficulties in human activity identification, this work shows a semi-supervised learning
method that reduces the a priori labeling of the data. Besides, the process allows inferring the number
of primitive motions needed to recognize human physical activity. The data is built by the information
collected by a multimodal measurement system composed of three sensors (Kinect’, IMU, EMG), which
apply dimensionality analysis techniques, evidencing the joint points of the Kinect” and the IMU and EMG
sensors are relevant for measurement information. The main contributions and results of the research are.

- Design, documentation, and validation of a human physical activity classification methodology under a
semi-supervised learning paradigm.

- An automatic method that allows inferring the number of sub-activities where the data should be
clustered.

- The proposed method suggests that the classifier recognizes 80 % of the labels, and we achieved reliable
results according to what is written in the literature.
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This work is organized as follows. Firstly, a methodological section describes the detail of each component
and the validation process. Secondly, a section presents how the methodology's performance is evaluated and
quantified. Lastly, a section describes the conclusion and further discussions of this research.

2. MATERIALS AND METHODS

The methodology has three stages: search to extract the information from the sensors, descriptor calculation
about the data, and relevant feature analysis of the compiled information. The second stage classifies the
activity execution into micro-movements (primitive movements), and the last step codifies sequences for
activity detection. Figure 1 shows the methodological process implemented in this work. The methods and
instruments that conform to the methodology are described as follows.

DIMENSIONA’I\_‘ITY

. DATA 'Q ST O PRIMITIVE MOTIONS. > ACTIVITY

BASE AND ARTICULATED RECOGNITION RECOGNITION
POINTS

FIGURE 1.

Graphic of the activity recognition process
Source: Created by the authors.

2.1 Database

For this work, we used the database supplied by [1]. We selected this database because it provides a
synchronized register of the three-movement measure devices mentioned before (Kinect’, EMG, IMU).
Also, it allows a comparison with the methods proposed by [1]. This database recollects information from 8
users of the different physical and accommodates five physical activities where 15 articulated points measure
the action (see Figure 2). While the Kinect activity is being recorded, samples from the IMU and EMG sensor
networks are being acquired in parallel. Figure 2 shows the block diagram that resumes the building process
of the database. The following link: https://sites.google.com/a/utp.edu.co/human-activity-recognition-dat
abase/human-activity-recognition-database-with-kinect-imus-and-emgs.
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FIGURE 2.

Components of the database
Source: Created by the authors.

2.2 Dimensionality Analysis of the Sensors and Joint Points

In this section, we discuss the method to process the data through the statistic descriptors to parameterize the
information given by each articulated point in a feature set that replaces the information recollected by the
instruments. It is essential to clarify the new data space is redundant. Therefore, a dimensionality analysis is
introduced to establish the minimum feature set, stabilizing the primitive movement classifier’s performance

[19]-[21].
2.3 Feature Extraction

For each sensor, the feature set is extracted inside an observation window proposed by [1], which has a time
of 3 seconds. For the Kinect’, a collection of normalized articulated points ¥ is used (i.c. ¥ #), then, these
are transformed in polar coordinates obtaining the vector Pi.

It was previously highlighted the data is normalized concerning the torso. Additionally, the average m and
standard deviation v are calculated on each set of i, which allows for building the descriptor (1).

KIT; = [pl Pz P3 My My, M M, Mg U, V) U Uy l?g] (1)

Where 7 corresponds to the i-th join point of the Kinect®, therefore, the set of # € {1,2 ... #} computes
the vector KITF as the link of all the ####. Analogously, for each ##, the physical parameter of the human
movement and the statistic movements provided by [1] are computed. The computation delivers the vector

2).
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axr Wy r Mgz e Mgre Mg Vg Vayr Ve Vr» Ygpe

MU, = [m ALVI,SMA,EVA, . AAEI,AAET,AAE,,AAE,.,AAE,_,,M;,,K]Iw_ (2)

Thus, for the set of # € {1,2 ... #}, the concatenation provides, as a result, the descriptor #### (3).
IMUF = [IMU, IMU, IMU; IMU,] 3)

For the EMG sensors, the physical activity of four human muscles is captured, delivering the EMG ;,
where j is the j-th sensor. EMG ; is segmented to distinguish every primitive movement. For each primitive
motion, we calculate the Wavelet transform, with a Daubechies configuration, with thirty-five orthogonal
coefhicients and six levels, generating the descriptor EMGF. We chose this descriptor because it is the same
as the one used in [1], the state-of-the-art method we compare ourselves.

2.4 Dimensionality Reduction Analysis

In this stage, the most relevant features are determined to ease the clustering process of primitive motion
identification. We use the Principal Component Analysis (PCA) and ReliefF methods to make this
possible. The former reduces the feature space size by selecting the attributes with the most critical database
information. We find crucial information by determining the direction with the highest variance of the
sample space [20]. Meanwhile, ReliefF is applied to select the most relevant sample. This is done by detecting
the conditional dependence between attributes. ReliefF is an extension of the Relief algorithm used in
multiclass classification problems [22], [19].

These methods are selected by the sturdiness presented in multiclass problems and dealing with data at a
substantial noise level. Figure 3 shows a block diagram that explains the dimension reduction process done
by the data provided by the database where ####(#), ####(#), ####(#), correspond to the reduced space of
features.

<t @

>

<
v
{3

(a)

| FEATURE '!:J; DIMENSIONALITY ~ IMUF
< &> EXTRACTION e ANALYSIS AND )
REDUCTION
EMG; => E'> IZ:>
PCA
RELIEF
FIGURE 3.

Block diagram of the characteristic dimensionality analysis process
Source: Created by the authors.
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2.5 Primitive Motion Detection

Activity recognition can be divided into sub-activities or primitive movements. The goal is to divide each
activity in a time window (establishing the primitive motions), generating a sequence that allows building a
model for activity recognition. This will enable us to generate a unique code that provides a discriminating
factor for the classification of the activity, as shown in Figure 4.

TIME
WINDOW

+ |

% Ol o | O &
0 0 d 0 IIj
! |

Primitive movement and time window
Source: Created by the authors.

It is important to note that each window does not obey a posture but a submovement. In addition, for
sensor modalities where it is impossible to determine the visuality of abody posture, as is the case for IMU and
EMG sensors, we assign the label based on the information provided by the Kinect”s sensor. This is possible
because the sensors are synchronized in their capture (See Figure 5). The primitive movements chosen in
this work are 1- Repose, 2- Half Crouches, 3- Fully crouching, 4- Suspended in mid-air (1/2), 4-Raise hand
(1/4), 5- Raise hand (3/4), 6- Move right leg forward, and 7- Move left leg forward.

PRIMITIVE
MOTIONS
o SPECTRAL FEATURES y
(@) | KITF—s| CLUSTERING
1 KITF (FULL) ?
KITF TRAINING P
INDEXING MATRIX —» SVM
|| TECHNIQUE MODEL
[ |MUF(a) |MUF(FULL) —
IMUF g
inect label
< @) emcE CLUSTER UNKNOWN
EMGF #FULL’) NUMBER LABELS [~
EMG COMPUTING KNOWN \MERGE |
—TN EMG label
LABELS

UNSUPERVISED MODEL

FIGURE 5.
Block diagram model for primitive movement detection
Source: Created by the authors.

The micro-movement identification is achieved by combining an unsupervised learning technique
(Spectral Clustering) with a supervised learning technique (SVM). The fusion of the former is done by
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estimating the labels of the unknown primitive motions, yet they are needed to train the supervised model.
The latter emulates the codification of the activities.

It is important to clarify how the primitive movement classification includes an instrument that allows
for correcting the issues in building the database. In this situation, a proportion of the reduced space
{KITF®, IMUF®, EMGF®} does not have any associated label space {KITF™%, IMUF"", EMGF™"},
while the remainder are known {KIT. ), INfUFRY) EM G ETY #, therefore, the features on the simplified

plane {KT1 TFD, IMUF™, EMGF™") are processed by an unsupervised model that searches to infer the
unknown labels, so the Spectral Clustering technique is applied [23]. Notice how this paradigm does not
require a priori assignation of the labels from the sub-movements.

Thus, the identification of data groups is performed by the similarity of the samples. When the method
assigns the distinctive set from {KT TE"0 InUF™ ) EprG Y /, they combine with other known groups,
completing the training data set for the supervised model (SVM).

2.6 Compute of Clusters Number

In other words, the procedure is explained as follows, in the first place, the number of primitive motions (#) is
determined, the physical activities should be divided, and the previous process is done by spectral clustering
(see Figure 5).

This process is performed by the data set of the joint points. The goal is to build a similar graphic based on
the Ng-Jordan-Weiss algorithm for spectral clustering. The algorithm uses a Gaussian kernel given by (4) as
a scale factor & to calculate an affinity matrix 4 # R where A; = k(x; x;) with i # j which 4;; = 0. Then,
from # the affinity matrix # is built, i.c., a place where the inputs are normalized, the data is similar to each
other if they are at a maximum distance of [—1 1], i.e., the process establishes how similar x,, is concerning
xd evaluating £(x,, x4), so if it is close to 1, the data is clustered to its assigned # ; otherwise, set us a zero.
Measurements 1 and -1 are dimensionless and therefore have no units.

—lx —xdllf)
kl(x;, x; =exp(m—,,
[ _i') Elﬂ" (4)

Finally, these values are normalized by computing the matrix ¥; and then, the matrix is represented in a
graphic. Therefore, the number of primitive motions suggested for the data is visualized. Calculating 7 is
inferred, as shown in [23]. It is important to clarify that giving a complete explanation of the Jordan-Weiss
is too extensive for this article. Therefore, the reader could search in [24] and [23] for more details.

2.7 Activity Recognition

For activity recognition, shown in Figure 2, we put a data fusion module that centralizes the information
supplied by primitive motion detection. A Hidden Markov Model (HMM) is applied as an activity classifier.
This methodological instrument is shown in Figure 6.
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FIGURE 6.
Physical activity recognition block diagram
Source: Created by the authors.

2.7.1 Data Fusion

In this stage, the labels that model the activity for each sensor modality are fused. It is important to note the
information measured by the sensors is found in different frequencies. Hence, it is necessary for a module
that gathers the data before applying the HMM.

To sum up, a feature vector EF is generated to linearly concatenate the set of labels delivered by the support
vector machine during an observation window of 3 seconds, shown in the following structure (5).

EF = [{EK, EK, .....EK,; }{EI, EL, ...... EL, }{EE, EE, ...... EE,.}] (s)

2.7.2 Hidden Markov Model Classifier

The HMM training uses 24 states and 32 centroids to build the codebook, and this process chooses the best-
performing model after achieving 100 iterations. To evaluate the performance of the trained model, we use
a cross-validation strategy, which divides the database into 70 % for training and 30 % for evaluation in
100 iterations of Montecarlo experiments. The average, variance, confusion matrix, and index calculation
compute the statistics acquired by the experiments. For every test, the success percentage average will be

reported for each class defined by this paper.
2.8 Experiments

The experiments achieved in his work are approached from different parts. First, the joint points are analyzed
by applying ReliefF and PCA, allowing the most relevant information of the sensor coordinates to be
inferred (a color diagram is used as a representation scale graphic). This enables unlabeled samples to be
grouped through similarity analysis and is represented graphically. We perform this procedure graphically
by analyzing the values of the covariance function defined in (4), assuming the value ¢* as an initial value of
0.3. When the number of appropriate sets for the data is identified, we evaluate the percentage of supervised
labels required by primitive movement detection.

Then, we proceed with a cross-validation experiment to measure the SVM performance by changing the
portion of a priori labels (from 10 % to 100 %), i.c., we change the participation of the known labels vs the
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unknown labels. Therefore, the model performance of the primitive movement classification is evaluated.
It is essential to clarify the test seeks to establish the number of known stances by the SVM to divide the
primitive motions properly. This process is done by calculating the average success concerning the number
of samples classified a priori by the SVM, i.e., we establish the model capacity to recover the unknown labels
by evaluating the accuracy for a different proportion of the unlabeled data.

These results will be displayed in bar charts and tables for different sensors used in this work. Also, we
include the performance results by considering the different sensor modalities. These results are shown
in confusion matrices using color diagrams. For physical activity In Recognition, the results are similarly
displayed.

However, we compute the impact by fusing different modes for physical activity identification. The results
are compared to those presented in [1]. To make the SVM training clear, we set a Gaussian kernel with a
radio of (#) 1 x 10" and the model is trained by a Sequential Minimal Optimization (SMO) algorithm [25].
On the other hand, we clarify the value # corresponds to an initial value [26], which is defined by a searching
grid through a Montecarlo experiment.

3. RESULTS AND DISCUSSION

Figures 7 and 8 show the relevant distribution graphic for each joint point sampled by the Kinect’, IMU,
and EMG sensors, according to the ReliefF and PCA techniques. The yellow points bring the most relevant
information (100 %), while the blue points give the least relevant information (0 %). Figure 7 exposes that
using the ReliefF technique, the main features are stored in the arms and hands, while the PCA technique
(Figure 8) shows the relevant information presented in the legs. Finally, we establish ReliefF technique offers
better results than PCA by bringing reliable information and using fewer joint points.

100%

{75 %

50%

25%

Kinect®'s join point EMG sensors IMU sensors 0%

FIGURE 7.

Performance for each sensor modality using ReliefF method
Source: Created by the authors.
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FIGURE 8.
Performance for each sensor modality using PCA method
Source: Created by the authors.

The results of the similarity analysis are shown in Figure 9 (a, b, ¢) for each kind of sensor (Kinect®, IMU,
EMG). The Kinect”s Graphic (Figure 9 (a)) presents the information clustered in different sets, where this
could build 5, 6, or 7 clusters, but it is unknown which cluster gives the most reliable classification results.

g 8 g

Sample number

Sample number
Sample number

g

g
g
2

1000 1500 2000 2500 500 1000 1500 2000 2500 500 1000 1500 2000 2500 3000
Sample number Sample number Sample number
(a) (b) (c)

Similarity graph. a) Kinect’b) IMU y c) EMG

Source: Created by the authors.

The same happens with the IMU sensor network (Figure 9 (b)). Finally, the sampled data by the EMG
sensors (Figure 9 (c)) displays complete overlap, which generates a hypothesis that the data capture was
inaccurate or required more EMG sensors to track the primitive motions correctly.

Given the last situation where the number of clusters is uncertain, cross-validation, the process with the
SVM is performed by changing the number of sets and calculating the average performance for 200 iterations
of Montecarlo. The results of this testing show that 7 clusters have the best performance (see Figure 10).
The previous test is based on the low dispersion and more competitive average performance against the other
settings. It is crucial to notice the goal is to compute the number of sets that enhance the performance of the
primitive motions classifier because they suggest a searching restricted space automatically inferred and not
being defined by a prior or by an expert.
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FIGURE 10.

SVM’s Classification performance with 5, 6, and 7 clusters
Source: Created by the authors.

1
Kinect+*EMG

IMU+EMG

Figure 11 shows the results of the accuracy percentage calculation and standard deviation for a Montecarlo
experiment by considering seven clusters. This proves by adding more supervised labels, the system is
stabilized, and the dispersion is decreased (see Figures 11 (a) and (b)).
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FIGURE 11.
(a) Kinect’s Performance, (b) IMU’s performance, and (c) EMG’s

performance for percentage variation of samples a priori labeled by the SVM
Source: Created by the authors.

The previous process allows us to infer a suitable percentage of labels happens when the standard deviation
is stable, so the recognition process requires 80 percent of a priori samples for Kinect” and IMU modalities.
Meanwhile, the EMG sensors require using 100 % of labels, i.e., they need a supervised method for this kind
of modality (see Figure 11 (c)). Then, the primitive movement detection performance is verified.

Figure 12 shows the success percentage for seven primitive motions by choosing 80 % of the supervised
labels. It shows a reliable performance for primitive motion detection, comparable with state-of-the-art
methodologies. However, the EMG sensor only reaches an efliciency of 58.57 % + 20.15 % despite having

100 % of the a priori labels. This behavior happens for the overlap of the samples in comparison with the
other kind of sensor.
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FIGURE 12.
Primitive movement recognition
Source: Created by the authors.

Since the performance of primitive movements is consistent, we perform physical activity recognition
using the HMM. The set of labels ## are computed by the models that emulate the primitive movement
codification (see Figures 10 and 12). Figure 13 presents the physical activity classifier’s performance along
with the fusion sensors modality, Kinect®, IMU, and EMG, assuming seven primitive movements have better
results than 6 (see Figure 10). Also, the Kinect® sensor has better average performance for classes 1, 3, and
4. IMU Sensor has high average efficiency for classes 2 and 5. Besides, it shows the best total performance

avcerage.
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FIGURE 13.
Physical activity recognition
Source: Created by the authors.
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Figure 14 displays the activity classification results considering all fusion modalities: Kinect"+IMU, IMU
+EMG, Kinect'+EMG, and Kinect’™+IMU+EMG. In Figure 14, we show the sensor modality, Kinect”
+IMU, delivers the best average performance for class 1 (along with the modality, Kinect"+IMU+EMG),
2, 3, and 5; also, it has the best total average. Meanwhile, IMU+EMG fusion only has the best average
performance for class 4.
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FIGURE 14.

Effectiveness of the fused sensors and their tolerance
Source: Created by the authors.

The results in Figure 14 suggest uncertainty levels greater than 5 %. This phenomenon occurs due to the
variability induced by the EMG modality (see IMU+EMG and Kinect+ EMG). In both fusions, the classifier
is confounded (see Figure 14). Although EMG reduces classifier performance, note how the fusion method
improves the performance provided by electromyography. This implies that sensor fusion helps to strengthen
the individual weakness of each modality and increases classification performance. The above indicates that
the EMG modality should not be included since the variability of the fusions is less or similar for the Kinect®
and the IMU (comparing the standard deviation of classes 1, 2, and 5).

On the other hand, the performance of the Kinect"+IMU and Kinect"+IMU+EMG fusions is interesting
because it improves the stability in the classification, allowing all classes to present detection with greater
than 89 % accuracy. Note that the fusion of the three types of sensors does not show the best hit performance
due to the instability presented by the EMG modality. This implies that future research is required, in which
other forms of description are explored, as well as the inclusion of an EMG sensor network with more
sensing points. Although this research is required, the results demonstrate the fulfillment of our hypothesis.
This focuses on the primitive motions classification without labels and the competitive performance of the
method with other developments in the literature. Finally, we compare the results of this work with another
state-of-the-art methodology, such as [1].

We chose this work because it uses a supervised classification strategy for primitive motion detection,
which allows us to test the performance and hypothesis of this research. Table 1 shows that the supervised
method performs similarly to the unsupervised method. However, the supervised system evidence is in lower
deviation; this is observed in the mergers, IMU+EMG, Kinect"+EMG, and Kinect’+IMU+EMG. The above
information suggests that the overlap between the EMG database samples hinders the performance of the
semi-supervised learning methodology for labeling activities. Although our method has lower performance,
its hit rate is competitive, which makes it attractive for this type of application.
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TABLE 1.
Performance comparison of physical activity recognition

between the semi-supervised and supervised learning models

KINECT + KINECT + KINECT+
sensor mode MU MU + EMG EMOC MU + EMG
Sermi-supervised (95.69x5.02) (§9.16x1529) (91.19+11.98) (85.91+£65.14)
learning model % % % %
Supervised (35.03x2.32) (37.60x255) (95.14+3.59) (95.04x2.31)
learning model % % % %

Source: Created by the authors.

Also, Table 1 evidence the difference in the standard deviations between both methods. Note that merging
with EMG results in lower accuracy of the semi-supervised algorithm in labeling the activities. This is due to
the uncertainty built in each Montecarlo experiment cycle to evaluate the performance of the unsupervised
learning technique because it implies changing the selection of the 80 % of the labels in each test, developing
fake classifications of micro-movement that impact the physical activity detector’s Performance (HMM).
Although the result is lower, the Kinect + IMU and Kinect+IMU+EMG mergers present competitive
results, demonstrating the usefulness of this method. The previous is an advantage for the field since fewer
labels are required to classify the same activities, translating into less time to train the model and possible
costs in labeling the database.

4. CONCLUSIONS

This work presents a methodology that classifies human physical activity through a semi-supervised learning
approach; this process defines an automatic method that allows computing the number of micro-movements
where the physical activity should be divided and looking at the results from Figure 10. This parameter affects
the performance and stability of the SVM. On the other hand, the results in Figure 11 show the robustness
of the SVM method for the primitive motions classification when the percentage of known labels is close
to 80 %. The previous process is due to the average performance, and uncertainty is similar to a supervised
learning approach, i.e., the performance is statistically overlapped.

The results in Table 1 suggest a supervised learning procedure is more stable concerning unsupervised
learning due to the lower dispersion, and this behavior prevails for all the sensor modalities presented in
this article. However, the results from the fusion of Kinect+IMU and Kinect+IMU+EMG show similar
behavior for both strategies. This suggests that the semi-supervised approach is competitive for physical
human activity classification against the unsupervised one under these modalities. These results are shown in
Figure 14, where the fusion from some sensor modalities (Kinect+IMU) achieves high average performance
and stabilizes the uncertainty values for action recognition.
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